# Review: Basic DC Circuit Analysis Tools 

## EGR 220, Chapters 1 - 4

February 18, 2020

1

## Our Circuit Analysis Toolbox

- Resistor networks \& simple circuits
- Nodes and branches
- Series and parallel combinations
- Equivalent resistance
- Circuit laws
- Ohm's law
- Kirchhoff: KVL and KCL
- Techniques and theorems
- Current divider and voltage divider rules
- Mesh and nodal analysis
- Linearity \& Superposition


## Lab Memo Feedback

- Engineering/Scientific experiments
- Text of the lab is limited to 1 page
- Include data, circuit diagrams and calculations as short, $1 / 2$ page appendices (for example)
- Final statement
- Go beyond what is in the lab handout
- Have your own thoughts/questions/observations, etc. to demonstrate your thinking and learning.


## General Method for Circuit Analysis

- Identify knowns and unknowns and what is being sought
- Reduce Complexity - simplify circuit as needed
- $\mathrm{R}_{\text {eq }}$ (all or only part of circuit)
- Superposition (Analyze all sub-circuits)
- Redraw circuit at each analysis step, as needed
- Solve for desired values
- Write down the law, theorem, or rule(s) you are using
- Might use current and/or voltage dividers with $\mathrm{Req}_{\text {eq }}$
- Nodal and Mesh analysis (KCL and KVL) to obtain simultaneous equations and solve


## V, I, Req Practice

- Draw a simple resistor network for yourself
- Ask questions about changes in V, I, $\mathrm{R}_{\text {eq }}$ as you add or remove resistors \& open or short branches

HW 2 problem 1


HW 1 problem 8: Find $V_{0}$




9

## HW 2 problem 5

- An ammeter measures $i_{1}$
- Determine if the voltage $v_{o}$ in the circuit would increase, decrease, or be unchanged, if the ammeter's internal resistance were to be:
- $0 \Omega, 9 \mathrm{k} \Omega, 10 \mathrm{M} \Omega$
- Calculate the numerical value of $v_{o}$ in each case.



## HW 2 problem 5

- An ammeter measures $i_{1}$
- Determine if the voltage $v_{o}$ in the circuit would increase, decrease, or be unchanged, if the

- $0 \Omega, \quad 9 \mathrm{k} \Omega, \quad 10 \mathrm{M} \Omega$
- Calculate the numerical value of $v_{o}$ in each case.

1) Find $i$ in the circuit below

2) Find $i$ in the circuit below

3) Find $V_{20 \Omega}$


14

- Think through all analysis tools, and pros and cons of using each for the circuit below.


16


17


- Think through all analysis tools, and pros and cons of using each for the circuit below.


18

- Think through all analysis tools, and pros and cons of using each for the circuit below.


- Think through all analysis tools, and pros and cons of using each for the circuit below.


21

$\square \square \square \square \square \square \square$
23

