Linearity
Superposition
& Source Transformation

EGR 220, Chapter 4
Sept 25, 2018

Analysis Tools

- Ohm’s law
- KVL: Kirchhoff’s voltage law
- KCL: Kirchhoff’s current law
- Equivalent resistance
- Current divider
- Voltage divider
- Mesh analysis
- Nodal analysis
- Next important theorem: Thevenin Equivalent Circuit

Overview

- Mesh and Nodal review
- Three new analysis techniques, for reducing complexity of circuits
 - Linearity
 - Superposition
 - Source transformation

Important Notes

- Read the textbook!
 - We have limited in-class time
- Check out the applets link
 - On webpage from the first week of class
- Homework
 - Show and develop clear thinking
 - Learn from the homework
Practice Circuit Analysis 1
• Find all currents and voltages

Practice Circuit Analysis 1
• Find all currents and voltages

Practice Circuit Analysis 2
• Why can’t we use mesh analysis?

Practice Circuit Analysis 3
• Find all currents and voltages
• Find all currents and voltages

\[v_1 \quad 6\Omega \quad v_2 \quad 8V \quad v_3 \quad 12V \quad \]
\[i \quad \]
\[4\Omega \quad \]

Practice Analysis (posted)

• How would we apply the tools learned so far?
 o KCL → Nodal analysis
 o KVL → Mesh analysis
 o Current or voltage divider with \(R_{eq} \)?

New theorems:
Linearity
Superposition & Source Transformation

Use linearity to solve for \(i_o \)

• How do we find \(i_o \)?
• What is \(i_o \) if \(V_s \) is 10V?
• What is the power consumed by the load in each situation?
• How do we find i_o?
• What is i_o if V_s is 10V?
• What is the power consumed by the load in each situation?

Superposition Warmup

• Could use nodal or mesh analysis
• New technique – **superposition**

Setting Sources = 0

• If a current source = 0A, it acts as a(n):
 1) Short circuit?
 2) Open Circuit?

• If a voltage source = 0V, it acts as a(n):
 1) Short circuit?
 2) Open Circuit?
Superposition

- **Voltage divider**

 \[V_{1R3} = V_1 \left(\frac{(R_2||R_3)}{R_1 + R_2||R_3} \right) \]

 \[V_{2R3} = V_2 \left(\frac{(R_1|R_3)}{R_2 + R_1||R_3} \right) \]

- Add the result contributed by each source for final value

 \[V_{R3} = V_{1R3} + V_{2R3} \]

Superposition

- **How do we find \(i \) & \(P_{4\Omega} \)?
 - First set \(V_{src} = 0 \)
 - Next set \(I_{src} = 0 \)
 - Since power is not linear, \(20 \text{ V} \), how do we find it?
Source Transformation & Equivalents

- Voltage V_{ab} and R_{eq} can be measured across any nodes of any device or circuit.
- We are interested in the equivalent $V - I - R$ behavior at the nodes
 - ("sc" = short circuit; "oc" = open circuit)

Source Transformation

- For circuit elements connected across nodes a and b, the sources above have identical behavior
 - This means ____________________________
- Caution: maintain polarity of sources

Source Transformation

- Find i in the circuit below
• Find i in the circuit below

Source Transformation
• Find V_s + series-R equivalent circuit:

Example in Homework
• Find V_o using superposition and source transformation
Lab 3: Linearity

Lab 3: Superposition

Lab 3 Preview
- Design your own lab – for Superposition and Linearity in circuits
- Read the chapter to begin learning these analysis methods
- Use simple circuits from the chapter to get ideas for your circuits, to build and test in the lab
- Pre-lab – design your lab experiment
 - Design it for 1 hour, allow ½ hour for mistakes and learning as you go.

Office Hours?
- Monday:
- Tuesday:
Exam 1

• Next week during lab time, October 3
• All content through Thevenin Equivalent circuits (Thursday’s class)
• Spread yourselves across:
 1. Circuits lab room
 2. Adjoining conference room
 3. Room 146 at end of hall

Summary

• Circuit analysis tools
 o Nodal and mesh analysis, that use...
 o KVL and KCL to get simultaneous equations
 o Ohm’s law to put equations into needed form
 o R_{eq} and voltage/current dividers if they help
• Today
 o Linearity
 o Superposition
 o Source Transformation
• Next class **Thevenin** equivalent
 • READ chapter