

Review Mesh & Nodal, Introduce Linearity & Superposition

> EGR 220, Chapter 4 February 13, 2020

Overview

- Two new analysis techniques, for reducing complexity of circuits
 - 1) Linearity
 - 2) Superposition

Use linearity to solve for i_o

- How do we find *i*_o?
- What is *i_o* if V_s is 10V?
- What is the power consumed by the **load** in each situation?

- How do we find *i*_o?
- What is *i*_o if V_s is 10V?
- What is the power consumed by the **load** in each situation?

Setting Sources = 0

- If a current source = 0A, it acts as a(n):
 - 1) Short circuit?
 - 2) Open Circuit?
- If a voltage source = 0V, it acts as a(n):
 - 1) Short circuit?
 - 2) Open Circuit?

Superposition Warmup

- Could use nodal or mesh analysis
- New technique superposition

Superposition \rightarrow Solve for each source, setting all other sources to a value of 0

Superposition

Voltage divider
V_{1R3} =

Superposition

• Voltage divider

 $V_{2R3} =$

Superposition

• Add the result contributed by each source for final value

$$V_{R_3} = V_{1R_3} + V_{2R_3}$$

Superposition

- How do we find $i \& P_{4\Omega}$?
- * First set V_{src} = 0
- * Next set I_{src} = 0
- Since power *is not* linear, how do we find it?

Practice Circuit Analysis 1

• Find all currents and voltages

• Find all currents and voltages

15

Discussion Circuit Analysis

- How can you find the voltages indicated?
- Compare ability to use nodal analysis vs. mesh analysis.

• How to find the voltages indicated?

Practice Circuit Analysis 2

• Find all currents and voltages

• Find all currents and voltages

Discuss Practice Analysis

19

17

20

Practice Analysis (posted)

- How would we apply the tools learned so far?
 - KCL \rightarrow Nodal analysis
 - KVL \rightarrow Mesh analysis
 - Current or voltage divider with R_{eq}?

Analysis Tools

- Ohm's law
- KVL: Kirchhoff's voltage law
- KCL: Kirchhoff's current law
- Equivalent resistance
- Current divider
- Voltage divider
- Mesh analysis
- Nodal analysis
 - → Exam 1 Through Mesh & Nodal; Linearity and Superpostion ←

23

• Next core theorem: Thevenin Equivalent Circuit

Important Notes

- Read the text book!
 - We have limited in-class time
- Check out the applets link
 - on webpage from the first week of class
- Homework
 - show and develop clear thinking
 - *learn* from the homework

Exam 1

- Next week during lab time, February 19
- All content through _____
- Spread yourselves across:
 - 1. Circuits lab room
 - 2. Adjoining conference room
 - 3. Room 146 at end of hall

Summary

- Circuit analysis tools
 - Nodal and mesh analysis, that use...
 - KVL and KCL to get simultaneous equations
 - Ohm's law to put equations into needed form
 - R_{eq} and voltage/current dividers if they help
- Today
 - Linearity
 - Superposition
- Next Thursday: **Thevenin** equivalent (& source transformation)
 - READ chapter

