Mesh \& Nodal
Analysis

EGR 220, Chapter 3
Feb 11, 2020

Recap Voltage Divider: Series R

- Solve for v_{1} and v_{2}
- Think about which resistor will have the larger V drop

Overview

- Use Ohm's Law, KVL \& KCL for simultaneous equations with...
- Nodal Analysis
- One equation per node
- Solve for node voltages
- Mesh Analysis
- One equation per loop
- Solve for loop currents (not necessarily the same as element currents)

Recap Current Divider: Parallel R

- Solve for i_{1} and i_{2}
- Think about which R will carry the larger current

Write Expressions for I , using Ohm's Law \& " $\mathrm{V}_{\text {drop }}$ "

Nodal Analysis

- Apply Kirchhoff's current law to solve for nodal voltages

1) Label diagram (nodes, all directions)

- Initial labeling is arbitrary but must be consistent!

2) Obtain equations using KCL and substituting in Ohm's law
3) Solve equations for nodal voltages

- Substitutions, linear algebra (matrices), Matlab
- Note, negative answers indicate polarity is opposite your initial assumptions and are not incorrect
- Solution often requires iteration, as first attempt may not work.

Write Expressions for I, using Ohm's Law \& " $\mathrm{V}_{\text {drop }}$ "

Nodal Analysis

- How do we find $\mathrm{v}_{1}, \mathrm{v}_{2}$ and power dissipated in the resistors?

10

Concept Check: Voltage Across

- $\mathrm{v}_{1}, \mathrm{v}_{2}$ are voltage values relative to what?
- What is the voltage across the 4Ω resistor?

Mesh Analysis

- Apply Kirchhoff's voltage law to solve for loop (mesh) currents
- Other law(s), expression(s) to use?
- Process?

1)
2)
3)

Mesh Analysis Warmup

- How do we find (and label) i through R_{3} ?
- Mesh currents versus element currents (linearity for resistor behavior; superposition of sources)

Mesh Analysis

- How do we find I_{1}, I_{2}, I_{3} and I ?

Mesh Analysis Warmup

If we draw loop currents to be opposing through $\mathrm{R}_{3} \ldots$

Mesh Analysis

- Write equations for I_{1}, I_{2}, I_{3} and I

Use Matlab to solve...

$\mathrm{R}=7$	2
2	12
1	0

>> $V=[8 ; 6 ; 2]$
$\mathrm{V}=8$
>> $I=\operatorname{inv}(R) * V$
$I=1.0256$
0.3291
0.1624

- Find all currents and voltages

Practice Circuit Analysis 1

- Find all currents and voltages

20

Discussion Circuit Analysis

- How can you find the voltages indicated?
- Compare ability to use nodal analysis vs. mesh analysis.

- How to find the voltages indicated?

Practice Circuit Analysis 2

- Find all currents and voltages
24

Practice Analysis

Practice Analysis

Practice Analysis

Practice Analysis (posted)

- How would we apply the tools learned so far?
- KCL \rightarrow Nodal analysis
- KVL \rightarrow Mesh analysis
- Current or voltage divider with $\mathrm{R}_{\text {eq }}$?

Analysis Tools

- Ohm's law
- KVL: Kirchhoff's voltage law
- KCL: Kirchhoff's current law
- Equivalent resistance
- Current divider
- Voltage divider
- Mesh analysis
- Nodal analysis
\rightarrow Exam 1 Through Mesh \& Nodal \leftarrow
- Next core theorem: Thevenin Equivalent Circuit

Important Notes

- Read the text book!
- We have limited in-class time
- Check out the applets link
- on webpage from the first week of class
- Homework
- show and develop clear thinking
- learn from the homework

Lab 3: Superposition

Lab 3: Linearity

Lab 3 Preview

- Design your own lab - to verify Superposition and Linearity in circuits
- Read the chapter to begin learning these analysis methods
- Use simple circuits from the chapter to get ideas for your circuits, to build and test in the lab
- Pre-lab - design your lab experiment
- Design it for $13 / 4$ hour, allow time for mistakes and learning as you go, in our $21 / 2$ hour lab time.

Lab 2 Experiments - Find $R_{\text {Multimeter }}$
$R=10 \mathrm{M} \Omega$

Lab 2 Experiments - Find $R_{\text {Multimeter }}$
$\mathrm{R}=10 \mathrm{k} \Omega$

