

Voltage Divider Rule & Current Divider Rule

EGR 220, Chapter 2 Feb 6, 2020

Recap Concepts

- Series Elements (draw example)
 - Exclusively share a single node and
 - Carry the same current.
- Parallel Elements (draw example)
 - Share the same two nodes and
 - Have the same voltage drop across them.

Circuit Analysis Techniques

- Equivalent resistance, R_{eq}
 - Series and parallel resistors
- Current divider and voltage divider
- Mesh and nodal analysis
 - Building on KVL and KCL
- Review what we have done...
 - Bring questions to office hours

2

Find R_{eq} and I

1

Different R_{eq} for Different Terminals

We will discuss the role of V_s and I_s later (with Thevenin equivalent)

- Resistors and elements in <u>Series</u>...
- Current or voltage is the same for R₁ & R₂?
- Current or voltage is partitioned across R₁ & R₂?
- Prove, or demonstrate, using KCL and KVL.

Voltage Divider: Series R

• Find v_1 , v_2 in terms of $v_{\rm src}$, R_1 & R_2 \Rightarrow derive the expression

Voltage Divider: Series R

- Solve for v₁ and v₂
 - Which resistor will have the larger V drop?

9

10

V-Divider Discussion

Current Divider Rule

- Resistors, elements and branches in <u>Parallel</u>...
- Current Divider:
 - \circ I is partitioned, flowing through these resistors
 - o What is the relationship of V for each element?
 - o Prove, or demonstrate, using KCL and KVL.

12

Current Divider: Parallel R

- Find i₁, i₂ in terms of i_{src}, R₁ & R₂
- Derive the expression...

Current Divider: Parallel R

- Solve for i₁ and i₂
 - Which R will carry the larger current?

13

1.1

I-Divider Discussion

$Lab\ Experiments-Find\ R_{Multimeter}$

16

$Lab\ Experiments - Find\ R_{Multimeter}$

R = 10MΩ

Lab Experiments – Find R_{Multimeter}

R = 10kΩ

17

Ammeter – Introduced Error

- Find the current *I* in circuit (a).
- An ammeter with an internal resistance of 1Ω is inserted in the network to measure I' as shown circuit (b). Does current, I', increase or decrease relative to part (a)?

Voltmeter – Introduced Error

- Calculate the voltage V_o in circuit (a).
- Is the voltage $V_{\rm o}$, measured when a voltmeter with 6-k Ω internal resistance is connected as in figure (b), greater or less than $V_{\rm o}$ in circuit (a)?

Fundamental Analysis Tools for the Semester

- Basic analysis laws
 - Ohm's law
 - KVL: Kirchhoff's voltage law
 - KCL: Kirchhoff's current law
- Analysis tools using the basic laws
 - Equivalent resistance
 - Current divider
 - Voltage divider
 - Mesh analysis
 - Nodal analysis
 - Equivalent Circuits

Voltmeter – Introduced Error

Questions?