Voltage Divider Rule & Current Divider Rule

EGR 220, Chapter 2
Feb 6, 2020

Recap Concepts

• Series Elements (draw example)
 • Exclusively share a single node and
 • Carry the same current.
• Parallel Elements (draw example)
 • Share the same two nodes and
 • Have the same voltage drop across them.

Circuit Analysis Techniques

• Equivalent resistance, R_{eq}
 • Series and parallel resistors
• Current divider and voltage divider
 • Mesh and nodal analysis
 • Building on KVL and KCL
• Review what we have done...
 • Bring questions to office hours

Find R_{eq} and I
Different R_{eq} for Different Terminals

We will discuss the role of V_s and I_s later (with Thevenin equivalent)

![Circuit Diagram]

Voltage Divider Rule

- **Resistors and elements in Series**...
- **Current or voltage** is the same for R_1 & R_2?
- **Current or voltage** is partitioned across R_1 & R_2?
- Prove, or demonstrate, using KCL and KVL.
Voltage Divider: Series R

• Find v_1, v_2 in terms of v_{src}, R_1 & R_2 → derive the expression

Voltage Divider: Series R

• Solve for v_1 and v_2
 • Which resistor will have the larger V drop?

V-Divider Discussion

Current Divider Rule

• Resistors, elements and branches in Parallel...
• Current Divider:
 o I is partitioned, flowing through these resistors
 o What is the relationship of V for each element?
 o Prove, or demonstrate, using KCL and KVL
Current Divider: Parallel R

- Find i_1, i_2 in terms of i_{src}, R_1 & R_2
- Derive the expression...

I-Divider Discussion

Lab Experiments – Find $R_{\text{Multimeter}}$

(1) $R = 10M\Omega$
(2) $R = 10k\Omega$
Lab Experiments – Find $R_{\text{Multimeter}}$

$R = 10\text{M}\Omega$

![Image of circuit diagram with multimeter configuration](image1)

Lab Experiments – Find $R_{\text{Multimeter}}$

$R = 10\text{k}\Omega$

![Image of circuit diagram with multimeter configuration](image2)

Ammeter – Introduced Error

- Find the current I in circuit (a).
- An ammeter with an internal resistance of 1\text{\,}\Omega is inserted in the network to measure I' as shown circuit (b). Does current, I', increase or decrease relative to part (a)?

![Image of circuit diagram with ammeter configuration](image3)

Ammeter – Introduced Error

![Image of circuit diagram with ammeter configuration](image4)
Voltmeter – Introduced Error

• Calculate the voltage V_o in circuit (a).
• Is the voltage V'_o, measured when a voltmeter with 6-kΩ internal resistance is connected as in figure (b), greater or less than V_o in circuit (a)?

Fundamental Analysis Tools for the Semester

• Basic analysis laws
 • Ohm’s law
 • KVL: Kirchhoff’s voltage law
 • KCL: Kirchhoff’s current law
• Analysis tools using the basic laws
 • Equivalent resistance
 • Current divider
 • Voltage divider
 • Mesh analysis
 • Nodal analysis
 • Equivalent Circuits

Questions?