Voltage Divider Rule & Current Divider Rule

EGR 220, Chapter 2
Sept 18, 2018

Find \(R_{eq} \) and \(I \)

\[\begin{align*}
R_{eq} &= \frac{V}{I} \\
I &= \frac{V}{R_{eq}}
\end{align*} \]

Circuit Analysis Techniques

- Review what we have done...
 - Bring questions to office hours
- Equivalent resistance, \(R_{eq} \)
 - Series and parallel resistors
- Current divider and voltage divider
- Mesh and nodal analysis
 - Building on KVL and KCL

Different \(R_{eq} \) for Different Terminals

We will discuss the role of \(V_s \) and \(I \), later (with Thevenin equivalent)
Voltage Divider Rule

- Resistors and elements in Series...
- Current or voltage is the same for \(R_1 \) & \(R_2 \)?
- Current or voltage is partitioned across \(R_1 \) & \(R_2 \)?
- Prove, or demonstrate, using KCL and KVL.

Voltage Divider: Series \(R \)

- Find \(v_1, v_2 \) in terms of \(v_{src}, R_1 \) & \(R_2 \)
 \(\rightarrow \) derive the expression
Voltage Divider: Series R

- Solve for v_1 and v_2
 - Which resistor will have the larger V drop?

Current Divider Rule

- Resistors, elements and branches in Parallel...
- Current Divider:
 - I is partitioned, flowing through these resistors
 - What is the relationship of V for each element?
 - Prove, or demonstrate, using KCL and KVL.

Current Divider: Parallel R

- Find i_1, i_2 in terms of i_{src}, R_1 & R_2
- Derive the expression...
Current Divider: Parallel R

- Solve for i_1 and i_2
 - Which R will carry the larger current?

\[\text{20 mA} \downarrow 6 \text{k}\Omega \downarrow 4 \text{k}\Omega \downarrow \]

I-Divider Discussion

\[120 \text{ V} \quad 20 \\Omega \quad 30 \\Omega \quad 40 \\Omega \quad 3 \text{ A}\]

Ammeter – Introduced Error

- Find the current i in circuit (a).
- An ammeter with an internal resistance of 1 ohm is inserted in the network to measure i' as shown in circuit (b). Does current, i', increase or decrease relative to part (a)?

\[\text{4 V} \quad 40 \\Omega \quad 60 \\Omega \quad (a)\]

\[\text{4 V} \quad 40 \\Omega \quad 60 \\Omega \quad (b)\]
Voltmeter – Introduced Error

- Calculate the voltage \(V_o \) in circuit (a).
- Is the voltage \(V_o' \), measured when a voltmeter with 6-kΩ internal resistance is connected as in figure (b), greater or less than \(V_o \) in circuit (a)?

![Circuit Diagram](image)

Reminders for Lab & HW

- Labs
 - Eliminate (minimize) use of extra wire
 - Clip probes directly to resistor leads
 - Please be sure to neaten your lab station
 - Cables returned to the hanging racks
 - Elements to return bin at back of lab
- Homework
 - Please do one problem per page
 - Provide problem setup, to make the question and what you are solving very clear to all readers

Lab 2 – Lab equipment as part of your circuit

- Pre-lab 1: Explain why...
 - Ideal voltmeter \(R_m = \infty \) Ω
 - Ideal ammeter \(R_m = 0 \) Ω
- Pre-lab 2: Again explain why we want...
 - Ideal voltmeter \(R_m = \infty \) Ω
 - Think in terms of \(R_{eq} \) and effect of \(R_m \) on the circuit
Fundamental Analysis Tools for the Semester

- Basic analysis laws
 - Ohm’s law
 - KVL: Kirchhoff’s voltage law
 - KCL: Kirchhoff’s current law

- Analysis tools using the basic laws
 - Equivalent resistance
 - Current divider
 - Voltage divider
 - Mesh analysis
 - Nodal analysis
 - Equivalent Circuits