

Voltage Divider Rule & Current Divider Rule

EGR 220, Chapter 2 Feb 6, 2020

Circuit Analysis Techniques

- Equivalent resistance, R_{eq}
 Series and parallel resistors
- Current divider and voltage divider
- Mesh and nodal analysis • Building on KVL and KCL
- Review what we have done...
 Bring questions to office hours

Recap Concepts

- Series Elements (draw example)
 - Exclusively share a single node and
 - Carry the same current.
- Parallel Elements (draw example)
 - Share the same two nodes and
 - Have the <u>same voltage drop across</u> them.

3

Different $R_{\rm eq}$ for Different Terminals

We will discuss the role of V_s and I_s later (with Thevenin equivalent)

5

E E E E E E

Voltage Divider Rule

- Resistors and elements in <u>Series</u>...
- <u>Current or voltage</u> is the same for R₁ & R₂?
- <u>Current or voltage</u> is partitioned across R₁ & R₂?
- Prove, or demonstrate, using KCL and KVL.

Voltage Divider: Series R

• Find v_1, v_2 in terms of v_{src} , $R_1 \& R_2 \rightarrow$ derive the expression

E - **E E E**

V-Divider Discussion

Voltage Divider: Series R

Solve for v₁ and v₂
Which resistor will have the larger V drop?

10

12

Current Divider Rule

- Resistors, elements and branches in <u>Parallel</u>...
- Current Divider:
 - *I* is partitioned, flowing through these resistors • What is the relationship of V for each element?
 - Prove, or demonstrate, using KCL and KVL.

Current Divider: Parallel R

- Find i_1 , i_2 in terms of i_{src} , $R_1 \& R_2$
- Derive the expression...

13

Solve for i₁ and i₂

• Which R will carry the larger current?

I I I I I I 14

I-Divider Discussion

Lab Experiments – Find R_{Multimeter}

15

Lab Experiments – Find $R_{Multimeter}$

R = 10MΩ

Lab Experiments – Find R_{Multimeter}

Ammeter – Introduced Error

- Find the current *I* in circuit (a).
- An ammeter with an internal resistance of 1Ω is inserted in the network to measure I' as shown circuit (b). Does current, I', increase or decrease relative to part (a)?

Ammeter – Introduced Error

= - **= = = =**

Voltmeter – Introduced Error

- Calculate the voltage V_o in circuit (a).
- Is the voltage V_{o} , measured when a voltmeter with 6-k Ω internal resistance is connected as in figure (b), greater or less than V_o in circuit (a)?

Voltmeter – Introduced Error

Questions?

22

Fundamental Analysis Tools for the Semester

- Basic analysis laws
 - Ohm's law
 - KVL: Kirchhoff's voltage law
 - KCL: Kirchhoff's current law
- Analysis tools using the basic laws
 - Equivalent resistance
 - Current divider
 - Voltage divider
 - Mesh analysis
 - Nodal analysis
 - Equivalent Circuits

