

Kirchhoff's Laws II & Equivalent Resistance

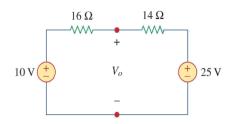
EGR 220, Chapter 2 February 4, 2020

Class Concepts

- Open & short circuits
- Series and parallel elements
- Kirchhoff's Laws Examples
 - Current law, KCL
 - Voltage law, KVL
- Equivalent resistance
 - Series R_{eq}
 - Parallel R_{eq}

2

Open Circuits: V & I

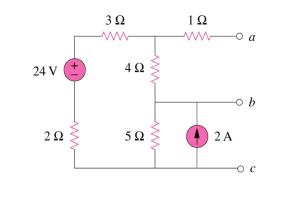


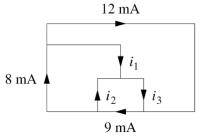
3

Open Circuits: V & I

Homework Check-in

Recap: Node, Branch, Series and ||

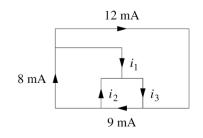

- A branch represents a single element such as a voltage source or a resistor.
- A node is the point of connection between two or more branches.
- Series elements share a node *exclusively* (no third element shares the node)
- Parallel elements share the *same two nodes*

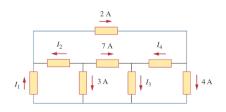


Series, Parallel, Open & Short and other things you notice

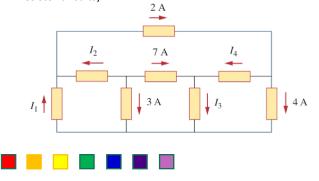
Kirchhoff's Current Law

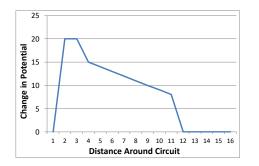
- Find *i*₁, *i*₂ and *i*₃
 Label nodes
 - Label hodes
 - Write KCL eqn's
 - Solve
 - We will use Ohm's law when there are resistors in the circuit diagram


6

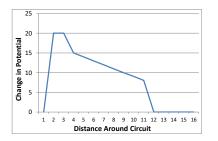


10


Kirchhoff's Current Law

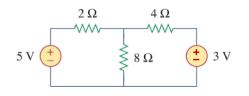

Kirchhoff's Current Law

- From HW 1: Find i_1 , i_2 , i_3 and i_4
 - Label nodes
 - Write KCL equation and solve (use Ohm's law for actual resistor circuits)


Kirchhoff's Voltage Law, KVL

Draw and label an electrical circuit that is consistent with the graph shown below.

11


Kirchhoff's Voltage Law, KVL

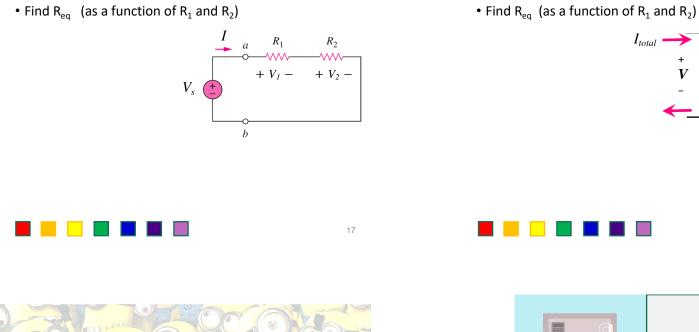
- The conservation of ______
- Combine Ohm's law with KVL to \mathbf{R}_1 solve for ____? \sim + v₁ $20 \,\mathrm{V}$

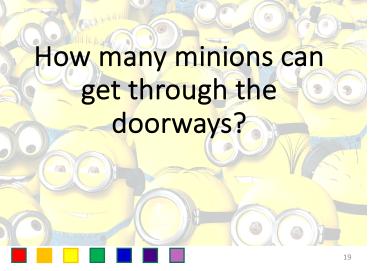
Kirchhoff's Voltage Law

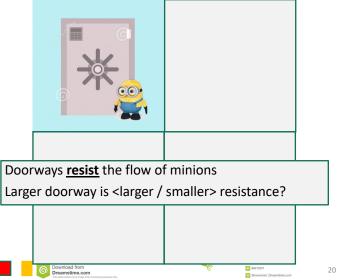
- Apply KVL
 - Label voltages
 - Write KVL eqn's
 - We will solve later with mesh analysis

New Concept: **Equivalent Resistance**

15



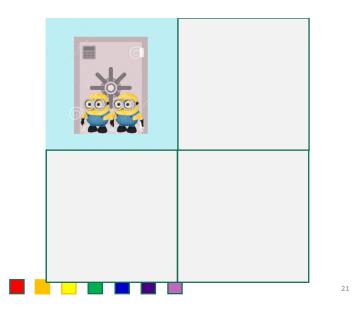

 $\geq R_2$

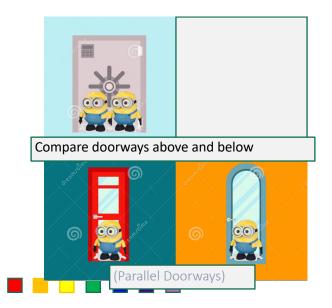

 v_2

i

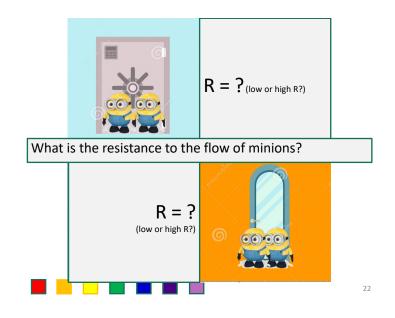
Series Resistors

 I_1


R₁


 I_2

 R_2


18

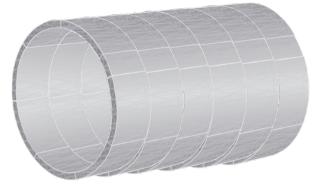
Parallel Resistors

23

Resistance = 1 piece

Resistance = 2 pieces in series

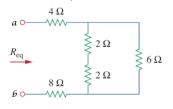
Resistance Increasing

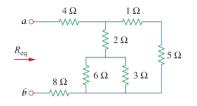


26

Resistance Increasing More

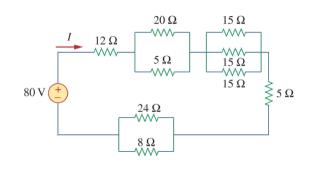
Equivalent Resistance

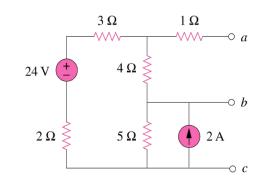

- Combinations of series and parallel resistors
- The same current flows through...
 - Series / parallel resistors?
 - (And the voltage across is divided)
- The same voltage drop is across..
 - Series / parallel resistors?
 - (Current through is divided)

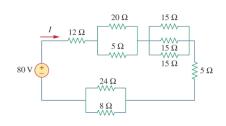

Equivalent Resistance – Draw ...Series & Parallel (text def)Image: state of the state of th

Identify Series and ||Elements, and Find R_{eq}

31


Identify Series and ||Elements, and Find R_{eq}

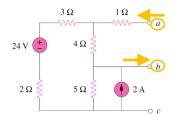

Identify Series and ||Elements, and Find R_{eq}

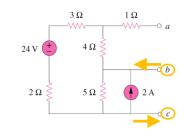

33

Different R_{eq} for Different Terminals

35

Equivalent Resistance


+ Equivalent resistance is terminal-dependent $V_{drop \ a-b} = I_{a-b} * R_{eq} \label{eq:Vdrop}$


$$R_{eq} = \frac{V_{\mathrm{drop}\,a-b}}{I_{a-b}}$$

• The ratio of voltage to current for **specific** terminals in a circuit

38

37

New Terminology

- Series elements
 - Share one node exclusively
 - Carry the same current
- Parallel elements
 - Share the same two nodes
 - Have the same voltage drop across
- Equivalent resistance
 - The ratio of voltage to current for the terminals (nodes) of interest

Questions?

