

Circuit Topology & Kirchhoff's Laws

EGR 220, Chapter 2 Jan 30, 2020

Recap: Electricity Concepts

- Define in words and with an equation/expression
- Current
 - Symbol and unit:
 - •
- Resistance
 - Symbol and unit:

•

Class Concepts

- Understanding circuit topology
 - Identifying nodes, branches & loops in circuits
- Open & Short circuits
 - Implied resistance for the branch
 - V across & I through for the branch
- Kirchhoff → Conservation laws
 - Current law, KCL (conservation of charge)
 - Voltage law, KVL (conservation of energy)

.

Recap: Electricity Concepts

- Define in words and with an equation/expression
- Current
 - · Symbol and unit:
 - •
- Resistance
 - · Symbol and unit:
 - •
- Voltage
 - Symbol and unit:
- Power
 - · Symbol and unit:
 - · How is power related to energy?

5

Defining a Circuit

- What elements can be in a circuit?
 - Energy source independent and dependent
 - Energy dissipating element
 - Energy storage elements
 - A "load"
- Give examples of each element

New Concepts: Open & Short Circuits

Tasks:

- Draw an example of each type of branch
- Relate each to Ohm's Law (V = IR)
- What are V and I in each example? **>**(0? <0? >0? ∞?)

Open & Short

 $R_2 = 0$ Circuits Find (a)

V & I for resistors $R_1 \& R_2$

 $i_1 = 0$

 $i_2 = i$

- * Open & Short Circuits *
- If there is no current, can there be a voltage drop?
 - Examples?
- If there is no voltage drop, can there be current?
 - Examples?
- Power Sources
 - What is the difference between a current source and a voltage source?

New Concepts & Laws

- Node, Branch & Loop
- Series resistors
 - Series elements; series branches
 - Shared: nodes? current? voltage?
- Parallel resistors
 - Parallel elements; parallel branches
 - Shared: nodes? current? voltage?
- KVL: Kirchhoff's voltage law
- KCL: Kirchhoff's current law

10

Identify nodes, branches & loops

- How many of each and where are they?
- Which elements are in parallel and which are in series?

Discuss: Nodes & Branches

- <u>A branch</u> represents a single element such as a voltage source or a resistor.
- A node is the point of connection between two or more branches.

Identify nodes, branches & loops; series and || elements

13

Nodes, Branches, Loops, Series & Parallel

Kirchhoff's Current and Voltage Laws:

KVL & KCL

Nodes, Branches, Loops, Series and Parallel

Kirchhoff's Current Law, KCL

- Current flowing in = current flowing out.
- Principle of conservation of _____?
- The math expression is:

. . .

Kirchhoff's Current Law

- Find i_1 , i_2 and i_3
 - Label nodes
 - Write KCL eqn's
 - Solve
 - We will use Ohm's law when there are resistors in the circuit diagram

Kirchhoff's Current Law

1.0

Kirchhoff's Voltage Law, KVL

For EVERY loop: $\Sigma V_{loop} = 0$

Kirchhoff's Voltage Law, KVL

Draw and label an electrical circuit that is consistent with the graph shown below.

Kirchhoff's Voltage Law, KVL

- The conservation of _____
- Combine Ohm's law with KVL to solve for _____?

Kirchhoff's Voltage Law

- Apply KVL
 - Label voltages
 - Write KVL eqn's
 - We will solve later with mesh analysis

New Terminology

- Node
- Branch
- Loop
- Series
- Parallel

25

New Analysis Tools

- Ohm's law
- KVL: Kirchhoff's voltage law
- KCL: Kirchhoff's current law
- Current divider
- Voltage divider
- Equivalent resistance

Summary

- New Concepts
 - · Kirchhoff's current and voltage laws
 - Series and parallel combinations
 - Open and short circuits
 - Nodes, branches and loops
- Labs
 - Pre-lab due before lab
 - One per team for 'design your own lab' days
 - Lab memo completed with partner, one memo per team

Office & Tutor Hours

Office Hours

• Monday: 10:15 – 11:45 • Tuesday: 1:30 - 2:30

Master Tutor

- Sunday Thursday evenings there will always be 3 or so master tutors in the Playground
- https://www.smith.edu/qlc/tutoring.html?colEGR=open#PanelEGR
- Tani Somolu point person for EGR 220

Questions?