Introduction to Circuit Theory

EGR 220 January 28, 2020 Judith Cardell

Course URL: <u>http://www.science.smith.edu/~jcardell/Courses/EGR220</u>

Overview

- Circuit theory's big questions
- Basic concepts
- Ohm's Law
- Course administration
 - Homework
 - Passing the course
 - Labs
- Questions of Understanding

							2
2							

1

Questions to Understand This Field

- Everyone, pair or solo, write down some **big questions** for this field.
- What do you need to ask and learn to begin addressing these big questions?
- What do you anticipate using from EGR 220 in other courses, internships, career?

3

• What will you use from other courses in EGR 220?

Big Questions for Circuit Theory

4

Knowledge to Transfer <u>In</u> and <u>Out</u>

• Transfer in from previous courses

• Transfer out to other courses

5

Basic Concepts

- What is
 - Electricity
 - Electrical charge

Current

What do you hope to learn from this course?

- What curiosity do you have about electricity?
- How to use electricity for fun and make our lives better.
- The language of electrical circuits
 - Diagrams, graphs and math... & observation of our world
 - To understand the role of basic circuit elements
 - How to read a circuit diagram
 - How to predict circuit behavior
 - How to apply equations and analysis techniques for circuit analysis

						6

Basic Concepts

• What is

6

8

5

7

- Electricity
- Electrical charge
- Current
 - What is the relationship (mathematical) between charge and current?
- Energy
- Voltage
 - Always a potential difference
- How does a *voltage drop* relate to energy and work?

\square	\square	\square		

Basic Concepts

- What is power?
 - Expression for power:
 - P = dw/dt → A time rate of change
 - P = V*I
 - Unit of the 'Watt'

Basic Concepts

- What is power?
 - Expression for power:
 - P = dw/dt \rightarrow A time rate of change
 - P = V*I
 - Unit of the 'Watt'
 - Power is either generated or absorbed by an element.
 - If 'absorbed' it can be either dissipated as heat energy or stored in electric or magnetic fields
 - Find, read, know and use the "passive sign convention"

9		10
	10	

12

9

First Basic Law: Ohm's Law

- *Experiment*: Current *I* is measured as the voltage *V* across resistor R is changed.
- What is the relationship between V and I?

Ohm's Law

- Ohm's Law: V = _____
 - What is the value of R?
 - What is R, resistance?

4

16

Ohm's Law

- Ohm's Law: V = _____
 - What is the value of R?
 - What is R, resistance?

13

Summary of Terminology

Basic terminology

Term Expression Units

- Charge
- Current
- Voltage
- Resistance
- Power
- Units always know and use the units

15

13

Voltage DROP; Voltage ACROSS

- Ohm's Law: V = IR
- Think of this as:
 - V_{drop} = IR
 - ΔV = IR
 - The drop or change in voltage potential as current moves through the resistor
- A voltage value at one node is <u>always</u> with respect to a value at a second node
 - for example, V from one side of a resistor to the other

			1

14

Summary of Terminology

Basic terminology

Term	Expression	<u>Units</u>
Charge	Q	Coulomb, C
Curront	1 - 40 /4+	Amporo A

- Current I = dQ/dt Ampere, A
 Voltage V = Work/Q Volts, V = J/C V = IR (Ohm's Law)
- Resistance R Ohm, Ω

• Power P = VI Watt, W=(J/C)(C/s) = J/s

 Units – always know and use the units

16				

Chapter 1 Summary

- Basic concepts for circuit theory
- Review basic terminology in text
 - Current
 - Voltage
 - Resistance
 - Charge
 - Energy (work)
 - Power
- Read Chapter 1
 - Find on own: Passive sign convention

17

Course Admin

- Read the text book
- Problem solving and homework
- Labs
- Exams
- Course webpage & syllabus
 www.science.smith.edu/~icardell/Courses/EGR220
- Lab 1 & Prelab DUE tomorrow

- Concepts of nodes and branches
- Concepts of voltage & current
 - Current is a *flow*, a time rate of change (voltage is not)
 - Voltage is a voltage *drop across* an element (or group)
 - Open and short circuits
- Kirchoff's circuit laws
 - Current law sum of current flowing into a node = sum of current flowing out of a node
 - Voltage law voltage summed around a loop = 0V
 - Combining with Ohm's Law

Course Admin

- Print out slides before class to bring to class
 - Computer or tablet use ok, but only for working on class slides
- ... For solving circuit problems together.

19

17

1 1			

20

22

24

Course Admin

- Course webpage & syllabus www.science.smith.edu/~jcardell/Courses/EGR220
- Homework
 - Homework assigned, and then due, each Thursday.
 - Use EGR homework paper.
 - Self-correct your homework each week. • Solutions posted each Monday.
 - Hand in with corrections each Thursday.

```
21
```

Homework Cover Sheet

First Attempt ON YOUR OWN (no consultation with friends, master tutor or others)²

Set up each problem on a new page by doing the following:

- Write a *Problem Statement* that identifies what information is given (including the circuit diagram, well-labeled) and what you need to find.
- Identify the *Problem Type*. What concepts, theories or laws will you apply to solve the problem?
- Outline a Solution Plan that identifies the steps or approach required to solve the problem.

Now solve the problem (if your actual solution varies from your solution plan, make a note of this).

• Be sure to indicate any assumptions you make.

- Work the problem to the end, or as far as you can, and provide a numerical answer with units (unless this is not applicable).
 - Try to reach some answer or solution, even if you think it is not correct.
 - Trying here will help you better identify possible, initial misunderstanding.

Homework Cover Sheet

First Attempt ON YOUR OWN (no consultation with friends, master tutor or others)²

Set up each problem on a new page by doing the following:

- Write a *Problem Statement* that identifies what information is given (including the circuit diagram, well-labeled) and what you need to find.
- Identify the *Problem Type*. What concepts, theories or laws will you apply to solve the problem?
- Outline a Solution Plan that identifies the steps or approach required to solve the problem.

]
22	

21

23

Work with others - friends and/or master tutors

... to the extent that you want to do this.

Self-Correction and revision using posted solutions:

- If your/solution was incorrect, identify error (concept, math, etc.) and where they occurred. Rework the problem from the point of your first error using a different color of ink.
- If your solution was correct, identify any places where it differs significantly from the posted solution

Certification

I collaborated with the following people on this homework:

I affirm (1) my collaboration statement is complete and correct; (2) I did not consult with other students before attempting each problem on my own; and (3) I have accurately delineated initial and final attempts using two different colors of pencil/ink.

Signature:

Self-Grading

- Circle your self-assigned grade: 0 1 2
- 0 = Little or no work completed.
- 1 = A first and second attempt were made on some problems.
- 2 = A full first and second attempt were made on all problems.
- 3 = A full first and second attempt were made on all problems. If major revisions were required on problems, your submission also includes a thoughtful yet brief (a few sentences at the most) reflection indicating your initial ideas; how they changed during the revision process; and what knowledge gaps (if any) still remain to be addressed. Make sure your thoughts are legible and easy to read.

3

¹ To be submitted as a cover page with each homework assignment.

 2 You are encouraged to work together to better understand the concepts in the problem sets. However, you will learn more if you first attempt each problem on your own.

25

Passing the Course

- Each student must complete each lab and hand in a lab memo, with your lab partner, to pass EGR 220
- Each student must have an average exam score >= 60% to pass EGR 220.
 - Average of midterms (2 of them) and the final exam

26

25

27

ABET Books of Evidence

- Accreditation ABET
- Student role in department accreditation...
- Book of Evidence
 - A binder in the EGR main office with your work in each category, or 'outcome'
- Identify, copy and file (in your BoE) course work <u>every</u> <u>semester</u>.

ABET Outcomes for EGR 220

- Student Outcome (1a)
 - (1)a: The student formulates and solves a complex engineering problem that requires mathematical skill and principles from solid mechanics, fluid mechanics, circuit theory and/or thermodynamics...
- Student Outcome (3c)
 - (3)c: The student presents engineering concepts utilizing a graphical representation.

30

32

ABET Outcomes for EGR 220

- Student Outcome (6): an ability to **develop and conduct appropriate experimentation**, analyze and interpret data, and use engineering judgment to draw conclusions
 - (6)a: The student designs an experiment and carries it out.
 - (6)b: The student demonstrates an ability to make quantitative measurements and assess sources of error.
 - (6)c: The student **analyzes data** and **draws conclusions** based on those data.
- Student Outcome (7b): The student demonstrates resilience, adaptability, and **iterative learning**.

29

Questions of Understanding

- 1) How are voltage and current inter-related?
 - What do I understand about the theoretical and practical connections between voltage and current?
- 2) What is voltage?
 - What do I understand about the concept of voltage?
- 3) How do conservation laws apply to circuit theory?
 - What is my understanding of how conservation laws are used in circuit analysis and design?
- 4) What does "equivalent" mean for electrical circuits?
 - What is my understanding of how "equivalence" is used to design and analyze circuits?

31

29

Master Tutor Hours

- Master tutor structure \rightarrow Community of learners
- Master tutors for all, point-person for EGR 220 is Tani Somolu
- Focus on learning engineering science concepts and principles
- Each evening in the Mechanics Playground
- · Can request individual appointments

30

32

Questions of Understanding

- 1) How are voltage and current inter-related?
 - What do I understand about the theoretical and practical connections between voltage and current?
- 2) What is voltage?
 - What do I understand about the concept of voltage?
- 3) How do conservation laws apply to circuit theory?
 - What is my understanding of how conservation laws are used in circuit analysis and design?
- 4) What does "equivalent" mean for electrical circuits?
 - What is my understanding of how "equivalence" is used to design and analyze circuits?

Questions of Understanding

- 1) How are voltage and current inter-related?
 - What do I understand about the theoretical and practical connections between voltage and current?
- 2) What is voltage?
 - What do I understand about the concept of voltage?
- 3) How do conservation laws apply to circuit theory?
 - What is my understanding of how conservation laws are used in circuit analysis and design?
- 4) What does "equivalent" mean for electrical circuits?
 - What is my understanding of how "equivalence" is used to design and analyze circuits?

33

Circuits Labs

- A chance to deepen your understanding of fundamental engineering, and circuits, concepts
- <u>How does this lab improve your understanding of</u> <u>our Questions of Understanding</u>?
- Building and experimenting with circuits
- · Learning how electricity works
- Learning how to use standard electrical lab equipment
- (Lab time is used for exams also)

Examples for pushing your understanding

- 1) How are voltage and current inter-related?
 - <u>What is my theory</u> to explain these connections?
- 2) What is voltage?
 - What am I unsure about, for the concept of voltage?
- 3) How do conservation laws apply to circuit theory?
 - How can I experiment with conservation laws?
- 4) What does "equivalent" mean for electrical circuits?
 - <u>Can I</u> design and test two circuits to <u>explore my theory</u> of equivalence?

36

Circuits Labs

- Select one or more Question Of Understanding to investigate further in each lab
- Each lab memo explains how your understanding is improving, deepening, ... or getting more confused.
- Map your objectives, experiments, results, learning to the Questions Of Understanding

35

33

		 	_
		1 1	
		1 1	

Wednesday Lab Time

Different uses of lab time

- 1) Everyone doing lab together
- 2) Midterm exams

Everyone must be free each Wednesday 1:20–4:00

37

Lab Memo: What to Hand In

• Your memo must be a stand-alone document

• One Memo Per Team

- Your memo should be one page (of text)
- Your memo will have the following elements
 - Your names
 - Informative title (not "Lab 1")
 - Objective: <u>in your own words</u> including your learning objective(s)
 - Results from the laboratory experiments
 - Concise discussion of what you discovered and how you made progress on your learning goal
 - One concise and elegant statement of <u>what you learned</u> and how your understanding is improving, has improved...

39

37

Pre-Lab Questions

- Read through the entire lab handout
- Identify your <u>learning objective(s)</u> and begin work/plan on how this lab will advance your learning objective(s)
 Include these statements in your pre-lab
- <u>Pre-Lab questions</u> in lab handout • Complete the pre-lab questions
- Be neat and professional
- Submit pre-lab to me at 1:20 (start of lab time)
- Every student must complete her own pre-lab (lab memos are done in teams)

 	 _	
		38

С	ο
Э	0

40

One Page Lab Memo Guidelines

- * Include <u>one statement</u> demonstrating your growing understanding, that <u>goes beyond</u> what is requested directly in the lab handout. *
- Focus on <u>vour</u> Question Of Understanding

	n
-4	U

One Page Lab Memo Guidelines

- * Include <u>one statement</u> demonstrating your growing understanding, that <u>goes beyond</u> what is requested directly in the lab handout. *
- Focus on <u>your</u> Question Of Understanding
 - This is for you to demonstrate <u>you are processing and</u> <u>reflecting on the course material</u> and on your quest to better understand circuit theory.
 - <u>New & improved questions</u> often demonstrate your ongoing learning, and can be used as part of this statement.
- * Note that this statement *must* demonstrate some *independent thinking and learning*. *

41

Lab 1: Equipment and Ohm

- Learn and play with the lab equipment
- Test and verify Ohm's Law
- Measuring voltage and current
 - Measure voltage *across* an element
 - Measure current *through* a branch
 - Break the circuit and insert the ammeter into the flow of the current
- Notice that the lab equipment is part of your circuit

- Note this is NOT Moodle
- <u>http://www.science.smith.edu/~jcardell/Courses/</u> EGR220
- Moodle page will be used:
 - Annotated slides (after class) will be posted on Moodle
 - Homework solutions will be posted on Moodle

4	2

44

Welcome to Circuit Theory!

- Deepen your understanding of electrical circuits and of engineering science
- · Learn about energy and electricity
- Be comfortable building and testing electrical circuits
- Learn how circuit theory can be used in all other engineering disciplines to model and analyze behavior

43

41

1/28/20

Questions?