First Order Circuits I: Source-Free Circuits, the Natural Response

EGR 220, Chapter 7 March 3, 2020

Overview

- First Order, Source-free circuits
 - One storage element = 1st order circuit
 - Source-free = Natural response
- Analysis method
 - Three time periods of interest
- Solution expression, v(t) and i(t)
 Time constant
- Examples

4

Applets: <u>http://www.falstad.com/circuit/e-index.html</u>

1

Capacitors Review

- Stored charge, Q =
- V-I relationship: i_c =
- What does this tell us about the voltage across a capacitor?
 - Think about calculus and taking a derivative
 - What is the steady-state behavior?

Inductors and Stored ${\bf B}$

Inductors and Stored B

* Inductance *

- How is energy stored?
- Property of inductance experimental observation:
 - A changing current (not a constant DC value)...
 - "induces" a _____
- V-I expression observed $v_L \sim v_L =$
- Restrictions on current flowing through an inductor?
 - Think about calculus
 - What is the steady-state behavior?

Equivalent Inductance

The 'Constituent Relations' for R, C and L

- (*i.e.*, What is the V-I relationship?)
- R: V_R = ____; I_R = _____;
- C: V_c = ____; I_c = _____;
- L: V_L = _____; I_L = ______
 (the dual of the expression for C)
- 8

Equivalent Inductance

				9
9				

Series Inductors: L_{eq} ?

Equivalent Inductance

12

12

Natural Response of *First Order Circuit*

Charging and Discharging

Steady-State Behavior

- 1) The storage element charges, from a DC power supply
- 2) <u>Steady-state behavior</u>: After charging "for a long time," the storage element becomes fully charged
 - "For a long time" is defined relative to the _____
- 3) The switch is opened and the power supply is disconnected
 - As time goes to infinity...

Steady-State Behavior

- After charging "for a long time," the storage element becomes fully charged (typically the initial condition).
 - "For a long time" is defined relative to the ______
- Fully charged behavior is <open/short> circuit:
 - Capacitor: $i_C =$

Behaves as _____

• Inductor: $v_L =$

Behaves as _____

.

16

Circuit Response

Derive the Natural Response Expression

Derive the Natural Response Expression

21

Derive the Natural Response Expression

• With the current equal to:

• How do we find $v_{R}(t)$ and $v_{L}(t)$?

 $i(t) = I_0 e^{-tR/L} = I_0 e^{-t/\tau}$

 $v_R(t) =$

$$v_L(\mathbf{t}) = -v_R(t) =$$

* Time Constant *

- Time constants for RC and RL circuits are defined as τ = RC and τ = L/R
- A time constant is the time required for the response (v(t) and i(t)) to decay by a factor of ______ of its initial value

$$v(t) = V_0 e^{-t/\tau}$$

$$i(t) = I_0 e^{-t/\tau}$$

Exponential Response: Voltage Response of RC Circuit

Switches: with Math and in a Circuit Diagram

RL Circuit • Find i(t) • I_o for t < 0 • τ for t > 0, with R = R_{Th} at L

- Find i(t)
- I_o for t < 0
- τ for t > 0, with R = R_{Th} at L

29

4 H

i_o

 $\leq 8 \Omega$

 20Ω

35

RC Circuit

- At t=0s, the switch is moved from position *a* to *b*.
- How do we find $v_c(t)$, $i_c(t)$, $i_R(t)$, and $v_R(t)$ at t=10s

33

Lab this week \succ Time Constants • Chapter 7 – Use capacitors, not inductors, for lab • Select R and C values for a time constant that you can use to watch and measure the capacitor charging. • Work on charging and then repeat with discharging. • Start with the DC power supply and multimeters, and then use the oscilloscope and function generator if you have time and experiments Experiment with capacitors • (In series with a resistor for equipment safety) • Think of something you could time and use the RC circuit as a timer. • Explore why exponential charging and decay explain all the natural dynamic behavior in the universe.

Lab Memo and Graphs

- Graphs and figures for the memo read lab handout.
- Be sure to include, and explain, graphs of your circuit behavior in your lab memo.
 - If you will use the oscilloscope this week, then...
 - Bring a USB drive, save oscilloscope images and use the saved .png files in your memo
 - (If not this week, then definitely next week)

Self-Review: Interpret RL & RC Response

- Be comfortable with the answering the following
 - What is the time constant?
 - What is the graph of *i*_L(t)? Of *v*_c(t)
 - What are the graphs of i_R(t), v_R(t), v_L(t) and i_c(t)?
 - What happens to the response as L changes?
 - ... As R changes? ... as C changes?
- Be comfortable finding power and energy for these circuits
 - What does the power represent? The energy?

Summary

- Source-free circuits
 - RC and RL circuits
 - Both are *first order* circuits
- Solving differential equations • Exponential and natural logs
- Natural response
- Time constant
- Step functions and switches

41

Questions?

