Capacitors \& Inductors:
Energy Storage \& Release

EGR 220, Chapter 6

February 28, 2020

Maximum Power Transfer

$$
\begin{aligned}
& R_{\text {th }}=2+3+\underbrace{6 / 12}_{4 \Omega}=9 \Omega \\
& \text { voltage drap(s) in the cinciut are } V_{F h} \text { ? } \\
& \text { And what role does the } 2 \Omega R \text { play in } V_{\text {TR }} \text { ? }
\end{aligned}
$$

Maximum Power Transfer

Maximum Power Transfer

5

Filling a Bucket with Water \rightarrow Time

7

Overview: Energy Storage Elements

- Our questions of understanding:
- V; I; conservation laws
- Energy storage and dynamics
- Transient behavior \& time constant
- Steady-state behavior
- Introduction to capacitors
- Matter can store electric charge
- Create and support an electric field, E
- Introduction to inductors
- Matter responds to moving charge (current) by inducing a voltage drop
- Create and support a magnetic field, B

Heating/Cooling a Room \rightarrow Time

Natural Response \rightarrow Charge \& Discharge

9

Natural Response + Steady-State of Dynamic Circuits

- No initial stored energy, charging
- Initial stored energy, discharging
- Initial stored energy, charging

11

Natural Response + Steady-State of Dynamic Circuits

- No initial stored energy, charging
- Initial stored energy, discharging
- Initial stored energy, charging

10

Natural Response + Steady-State of

 Dynamic Circuits- No initial stored energy, charging
- Initial stored energy, discharging
- Initial stored energy, charging

Capacitors and Stored E \rightarrow Voltage

$$
C \sim \frac{A}{d} \& C=\frac{Q}{V}
$$

13

Capacitors
and E-field

Capacitors and Stored E \rightarrow Voltage

$$
C \sim \frac{A}{d} \& C=\frac{Q}{V} \Rightarrow Q=C V>\dot{Q}=\frac{d Q}{d t}=i=C \frac{d V}{d t}
$$

14

* Capacitors *
- Charge is stored How? Where?
- Expression: $q=$ \qquad
- V-I relationship: $\frac{d}{d}=i_{c}=$
- Restrictions on the voltage across a capacitor?
- Think about calculus and taking a derivative
- What is the steady-state behavior?

16

The 'Constituent Relations' for R, C and L

- (i.e., What is the V-I relationship?)
- $\mathrm{R}: \mathrm{V}_{\mathrm{R}}=$ \qquad ; $I_{R}=$ \qquad
- $\mathrm{C}: \mathrm{V}_{\mathrm{c}}=$ \qquad ; $I_{c}=$ \qquad
- $\mathrm{L}: \mathrm{V}_{\mathrm{L}}=$ \qquad ; $\mathrm{I}_{\mathrm{L}}=$ \qquad (the dual of the expression for C)

17

Capacitors in Parallel: $\mathrm{C}_{\mathrm{eq}}=$?

$$
C=\varepsilon A / d
$$

Equivalent Capacitance

- Property of 'capacitance' $C=\varepsilon A / d$
- If plate area, A, increases, what happens to the capacitance?
- If the distance between the plates, d, increases, what happens to capacitance?

18

Capacitors in Series: $\mathrm{C}_{\mathrm{eq}}=$?
$C={ }^{\varepsilon A} / d$

20

Inductors and Stored B

21

* Inductance *

- How is energy stored?
- Property of inductance - experimental observation:
- A changing current (not a constant DC value)...
- "induces" a \qquad
- V-I expression $v_{L}=$
- What are the restrictions on the current flowing through an inductor?
- Think about calculus again
- What is the steady-state behavior?

Inductors and Stored B

mor

Equivalent Inductance

Equivalent Inductance

26

Parallel Inductors: Leq?

28

Series Inductors: $L_{\text {eq }}$?

27

Natural Response + Steady-State of Dynamic Circuits

No initial stored energy, charging
Initial stored energy, discharging

Next Lab: Explore "time constant"

30

Capacitor \& Inductor Concepts

- Know the v-i relationship for
- Resistors
- Inductors
- Capacitors
- Know the expressions for series and parallel
- Resistors
- Inductors
- Capacitors

Next Lab: Explore "time constant" $\boldsymbol{\tau}$

$$
\tau=R C \quad \text { (Measured in seconds) }
$$

31

* Chapter 6 Recap *
- Capacitors and inductors, * table 6.1 *
- Definition and properties
- Circuit analysis: v-i relationship
- Series and parallel combinations
- Form of v and i are exponential (more in chapter 7)
- When behavior is as a short or open circuit
- Physical, conservation laws
- Know whether instantaneous changes in voltage and current are allowed or are impossible across/through elements

Questions?

