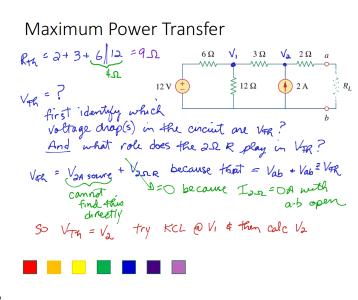
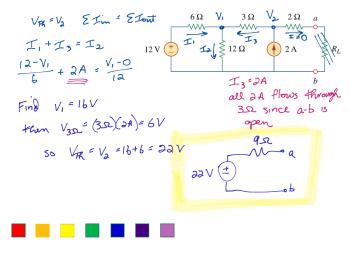


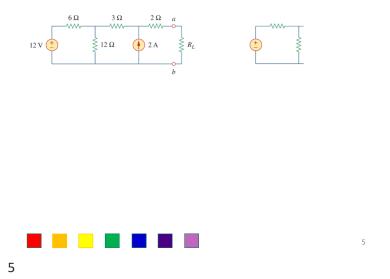
Capacitors & Inductors: Energy Storage & Release


EGR 220, Chapter 6 February 28, 2020

Finish Maximum Power Transfer (ch 4)


- Useful application of the Thevenin Equivalent Circuit theory.
- Use the simplified, equivalent circuit with one voltage source and a series resistor to determine the maximum power **any circuit** with the equivalent characteristics can supply.
- ... the maximum power a given circuit can supply to a load.

2 2


1

Maximum Power Transfer

Maximum Power Transfer

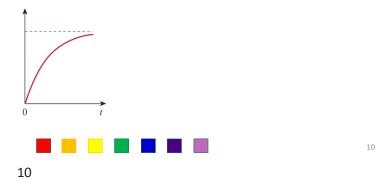
Filling a Bucket with Water \rightarrow Time

Overview: Energy Storage Elements

- Our questions of understanding:
 - V; I; conservation laws
- Energy storage and dynamics
 - Transient behavior & time constant
 - Steady-state behavior
- Introduction to capacitors
 - Matter can store electric charge
 - Create and support an electric field, **E**
- Introduction to inductors
 - Matter responds to moving charge (current) by inducing a voltage drop
 - Create and support a magnetic field, **B**

Heating/Cooling a Room → Time

7

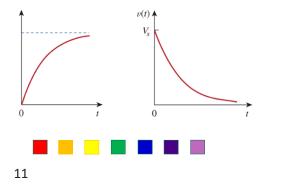

Natural Response \rightarrow Charge & Discharge

9

11

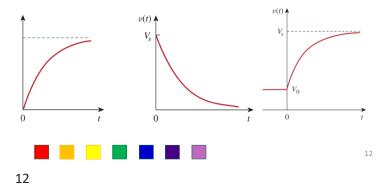
Natural Response + Steady-State of Dynamic Circuits

- No initial stored energy, charging
- Initial stored energy, discharging
- Initial stored energy, charging

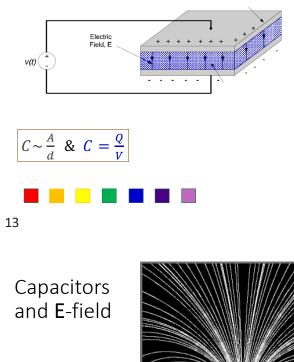


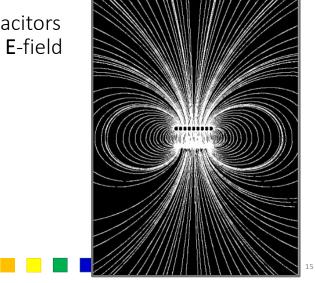
Natural Response + Steady-State of Dynamic Circuits

• No initial stored energy, charging

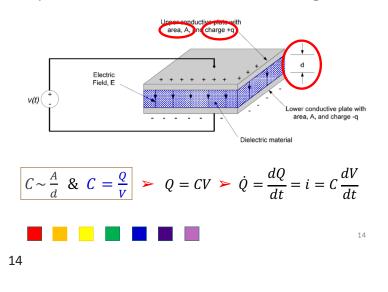

9

- Initial stored energy, discharging
- Initial stored energy, charging




Natural Response + Steady-State of Dynamic Circuits

- No initial stored energy, charging
- Initial stored energy, discharging
- Initial stored energy, charging


Capacitors and Stored $\mathbf{E} \rightarrow$ Voltage

13

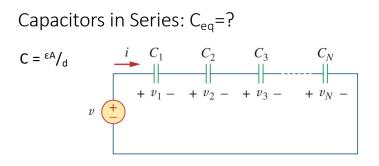
Capacitors and Stored $\mathbf{E} \rightarrow$ Voltage

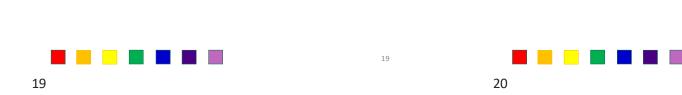
- * Capacitors *
- Charge is stored How? Where?
- Expression: *q* = _____
- V-I relationship: $\frac{d}{d} = i_c =$
- Restrictions on the voltage across a capacitor?
 - Think about calculus and taking a derivative
 - What is the steady-state behavior?

The 'Constituent Relations' for R, C and L • (*i.e.*, What is the V-I relationship?) • R: $V_R =$ _____; $I_R =$ _____ • C: $V_c =$ ____; $I_c =$ _____ • L: $V_L =$ ____; $I_L =$ _____ (the dual of the expression for C)

 $i \bigoplus_{i_1} i_2 \bigoplus_{i_2} i_3 \bigoplus_{i_3} i_N \bigoplus_{i_N} i_N \bigcup_{i_N} i_N \bigcup_$

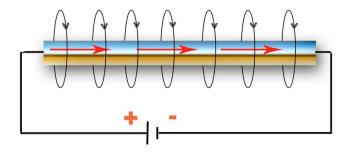
Capacitors in Parallel: C_{eq}=?


17

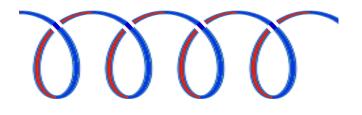

 $C = \epsilon A/d$

Equivalent Capacitance

- Property of 'capacitance' C = $\epsilon A/d$
- If plate area, A, increases, what happens to the capacitance?
- If the distance between the plates, d, increases, what happens to capacitance?



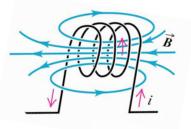
17


22

25

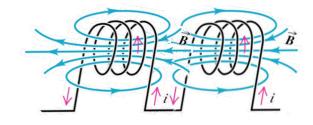
Inductors and Stored B

Inductors and Stored B

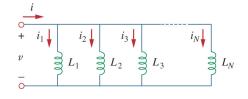

21

- * Inductance *
- How is energy stored?
- Property of inductance experimental observation:
 - A changing current (not a constant DC value)...
 - "induces" a _____
- V-I expression v_L =
- What are the restrictions on the current flowing through an inductor?
 - Think about calculus again
 - What is the steady-state behavior?

24

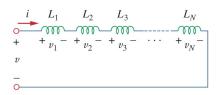

21

Equivalent Inductance



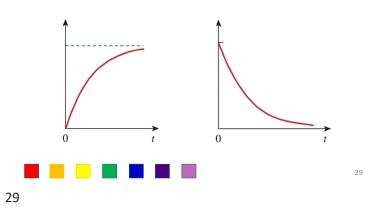
Equivalent Inductance

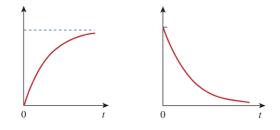
26				



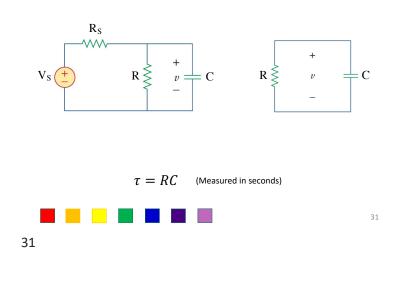
26

28


Series Inductors: L_{eq}?



Natural Response + Steady-State of Dynamic Circuits


No initial stored energy, charging Initial stored energy, discharging

Next Lab: Explore "time constant"

Next Lab: Explore "time constant" τ

- * Chapter 6 Recap *
- Capacitors and inductors, * table 6.1 *
 - Definition and properties
 - Circuit analysis: v-i relationship
 - Series and parallel combinations
 - Form of v and i are exponential (more in chapter 7)
 - When behavior is as a short or open circuit
- Physical, conservation laws
 - Know whether instantaneous changes in voltage and current are allowed or are impossible across/through elements

33

30

32

30

Capacitor & Inductor Concepts

- Know the *v*-*i* relationship for
 - Resistors
 - Inductors
 - Capacitors
- Know the expressions for series and parallel
 - Resistors
 - Inductors
 - Capacitors

2/25/20

Questions?