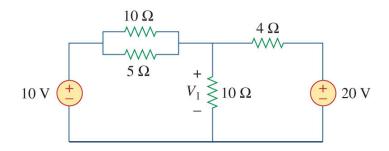
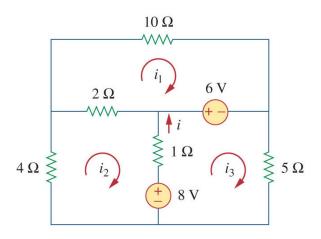
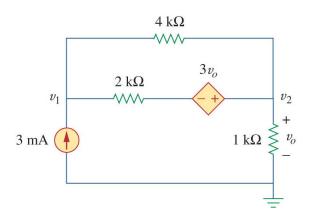

EGR 220

HW 3

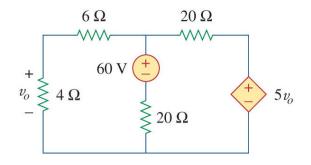

You Do NOT need to hand this homework in – but be able to do the problems. These concepts will be on Exam 1 (Feb 19th during Lab Time)

Chapter 3 Problems

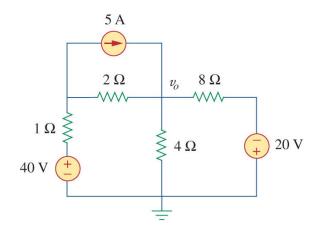

1) Find i_x in the circuit below. You must select R values (select simple values, but not all = 1Ω)


- **2)** Solve for V₁ in the circuit below (circuit for problems 2 & 3), using *nodal* analysis
- **3)** Solve for V₁ in the same circuit below, using **mesh** analysis

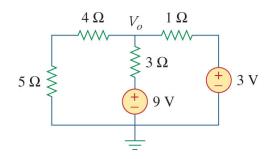
4) Solve for *i* in the circuit below using **mesh** analysis.



5) Find v_1 and v_2 in the circuit below, using nodal analysis.



6) Using Nodal Analysis, find v_0 . Things to notice about this circuit:


- There is a dependent source a voltage source that depends upon a different voltage value for its own value. This occurs in real circuits where there are transistors in the circuit
- The 60V source is not connected to ground, which means it contributes a 60V increase in voltage potential, with respect to the voltage that is at the node shared with the 20Ω resistor.

7) Using Mesh Analysis, find *v*^o in the circuit below.

8) Use *superposition* to find Vo in the circuit below.

Extra

Use **source transformation** to find Vo in the circuit above (from problem 8)