TODAY: Domain Name System

- The directory system for the Internet
 - Used by other application layer protocols
 - ... via socket programming
- Maps a hostname to an IP address
 - Host names use natural, human, language
 - URL such as www.google.com
 - IP addresses are numerical locators used by computers (more detail in chapter 4)
 - 32 bits, 4 bytes, in "dot" notation

Domain Name Servers

- Root Name Server
- Top Level Domain
- Authoritative Server
- Local Name Server
 - Your computer looking for an IP address

DNS: a distributed, hierarchical database

...
DNS: root name servers
- The root name server is contacted by local name server in order to start finding the IP address of interest
- root name server:
 - contacts TLD name server if name mapping not known
 - gets mapping and returns mapping to local name server (which will continue seeking)

TLD & Authoritative Servers

top-level domain (TLD) servers:
- responsible for maintaining records mapping IP addresses for the DNS servers for .com, .org, .net, .edu, and all top-level country domains, e.g.: uk, fr, ca, jp
- Verisign Global Network Services maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:
- organization’s own DNS server(s), providing authoritative hostname to IP mappings for organization’s named hosts
- can be maintained by organization or service provider

Local DNS name server
- (does not strictly belong to hierarchy)
- Each ISP (residential ISP, company, university) has its own local DNS server
 - also called “default name server”
- When a host makes a DNS query, the query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date)
 - acts as proxy, forwards query into hierarchy
 - When you connect to network, your host is given the IP address of the local DNS server

DNS name resolution example
- host at www.smith.edu wants IP address for gaia.cs.umass.edu

iterated query:
- contacted server replies with name of server to contact
- “I don’t know this name, but ask this server”
DNS protocol, messages

- **query** and **reply** messages, both with same **message format**

 Message header
 - **identification**: 16 bit # for query, reply to query uses same #
 - **flags**:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

 Identification
 - 16 bit #

 Flags
 - # questions
 - # answer RRs
 - # authority RRs
 - # additional RRs
 - questions (variable # of questions)
 - answers (variable # of RRs)
 - authority (variable # of RRs)
 - additional info (variable # of RRs)

HTTP request message: format

- **request line**
 - method
 - URL
 - version
 - request line

- **header lines**
 - header field name
 - value
 - cr if

- **Entity Body**

Mail message format

- Example of the actual message - NOT part of the SMTP handshaking process
- **header** lines, e.g.,
 - To:
 - From:
 - Subject: different from SMTP commands!

- **body**
 - the “message”, ASCII characters only
DNS protocol, messages

- Name, type fields for a query
- RRs in response to query
- Records for authoritative servers
- Additional "helpful" info that may be used

DNS record format

The distributed database stores resource records (RR)

RR format: \((\text{name}, \text{value}, \text{type}, \text{ttl})\)

- **Type=NS**
 - `name` is domain (e.g. smith.edu)
 - `value` is hostname of authoritative name server for this domain

- **Type=A**
 - `name` is hostname
 - `value` is IP address

- **Type=CNAME**
 - `name` is alias name for some "canonical" (the real) name
 - `value` is canonical name

- **Type=MX** (mail server)
 - `name` is name of mailserver associated with `value`

DNS records

DNS: distributed db storing resource records (RR)

RR format: \((\text{name}, \text{value}, \text{type}, \text{ttl})\)

- (hostname, IP address, A, ttl)
- (domain, hostname-DNS-author-server, NS, ttl)
- (alias hostname, canonical name, CNAME, ttl)
- (alias hostname, mail server cname, MX, ttl)
* Act out the DNS process *

DNS protocol: query and reply messages, both with same message format

Message header
- **identification:** 16 bit # for query, reply to query uses same #
- **flags**
- **Number of records in the message itself**

<table>
<thead>
<tr>
<th>identification</th>
<th>flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of questions</td>
<td>number of answer RRs</td>
</tr>
<tr>
<td>number of authority RRs</td>
<td>number of additional RRs</td>
</tr>
</tbody>
</table>

questions	(variable number of questions)
answers	(variable number of resource records)
authority	(variable number of resource records)
additional information	(variable number of resource records)

Summary of Application Design Elements

nslookup with Mac OS

Enter an internet address to lookup:
andrew.cmu.edu -> 128.2.42.9