Course Overview

- **Fundamental Question:**
 - How is data transferred through the Internet?
- **Principles to develop**
 - Reliable data transfer, to the correct recipient
 - Fast & error-free data transfer
 - Security and privacy safeguards
- **Implementation**
 - Network layers & Protocols

Internet Layers: Services (first glimpse)

- **Application layer:**
 - User interface
- **Transport layer:**
 - Reliable data transfer
- **Network layer:**
 - Find the best path through the network
- **Link layer:**
 - Transfer frames along shared links
- **Physical layer:**
 - Transfer bits along one link

Network Applications

Programs that
- run on different end systems and
- communicate over a network.
Transport services and protocols

- Logical communication between application processes running on different hosts

Network Layer

- Routing (path selection)
- Find the 'best' path through the network for each packet

Data Link Layer

- Tasks:
 - Sharing a broadcast channel
 - Multiple access → All laptops and phones in one room access the internet via the same access point
- Examples
 - Ethernet
 - Wireless, 802.11

Four sources of packet delay

Find an analogy for each category below in the caravan example.
Moving Fast Through Lines!

 - Still Image
 - Video (4’ 30")

Caravan analogy

- car~bit; caravan ~ packet
- Toll booth takes 8 sec to service car (processing time)
- Cars “propagate” at 100 km/hr
- Q: How long until the caravan is lined up before 2nd toll booth?

\[\text{Time for entire caravan to pass thru toll booth plaza onto highway} = 8 \times 10 = 80 \text{ sec} \]

\[\text{Time for last car to “propagate” from 1st to 2nd toll both?} \]

\[\text{A: 61 minutes, 20 sec} \]

Queuing Delay & Packet Loss

- A queue, a buffer in a router, has finite capacity
- A packet arriving to a full queue is dropped (aka lost)
- A lost packet may be retransmitted, or not → Reliability

Four sources of packet delay

1. nodal processing
 - Read & interpret packet header
 - Error checking
 - Determine which output link to use

2. queuing
 - Time waiting at a router for transmission
 - Depends on congestion level of router (how many packets are already in the router RAM)
Nodal packet delay

\[d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}} \]

- \(d_{\text{proc}} \) = processing delay
 - typically a few microsecs or less
- \(d_{\text{queue}} \) = queuing delay
 - depends on congestion
- \(d_{\text{trans}} \) = transmission delay
 - \(= L/R \), significant for low-speed links
- \(d_{\text{prop}} \) = propagation delay
 - a few microsecs to hundreds of msecs
 - \(= d/s \)

Packet Switching: store-and-forward

- takes \(L/R \) seconds to transmit (push out) packet of \(L \) bits on to link at \(R \) bps
- Store and Forward: entire packet must arrive at router before it can be transmitted on next link
- delay = \(3L/R \) (assuming zero propagation delay)

Example:
- \(L = 7.5 \) Mbits
- \(R = 1.5 \) Mbps
- transmission delay = ? seconds

Delay in packet-switched networks

3. Transmission delay:
 - \(R = \) link bandwidth (bps)
 - \(L = \) packet length (bits)
 - time to send bits into link = \(L/R \)

4. Propagation delay:
 - \(d = \) length of physical link
 - \(s = \) propagation speed in medium (~2x10^8 m/sec)
 - propagation delay = \(d/s \)

Note: \(s \) and \(R \) are very different quantities!

Packet delay: The life of a packet

1. A packet arrives at a router, and...
2. If other packets got there first and are waiting in the output buffer, there is:
3. The rate at which the router can unload the bits onto the physical link =
4. The time to travel from one router to the next router =

Which of these delays are constant and which are variable?
Discussion Question

- Text problem: Exploring propagation delay and transmission delay.
- Consider 2 hosts, A and B, connected by a single link of rate R bps. Suppose that the two hosts are separated by d meters and the propagation speed is s m/s. Host A sends a packet of size L to Host B.
 - Find d_{prop} (using what information?)
 - Find d_{trans} (using what information?)
 - Ignoring d_{proc} and d_{queue}, what is the total end-to-end delay

Chapter 1 - what to read

- Read through entire chapter, but...
- Section 1.3
 - Emphasize 1.3.1 over 1.3.2
- Section 1.4 - Delay, Loss
 - Know this in detail, including the calculations
 - ... In order to really know the various sources of delay, and some causes of packet loss
- Section 1.5 - the Layers
 - We will spend all semester on these layers
 - Be sure to start internalizing this structure

Office Hours

- Monday
- Thursday

Summary

- Review
 - New terms and definitions, including
 - Message; packet; frame; bit ...
- Begin internalizing “the layers”
 - How do the layers communicate with each other?
 - How do they work together to become the Internet?
- What are the sources of delay?
 - How do we determine and/or calculate these?