

TCP Congestion Control

- How does a sender sense congestion?
 *
- 2. How does a sender determine its sending rate?
 - * *
- 3. What algorithm is used to change the send-rate?
 - Many phases and alternatives...

Reaction to Loss Events

Exponential increase switches to linear increase when CongWin gets to the 'threshold' value (size)

Identify everything on this graph

TCP Congestion Control Algorithm

Increase Sending Rate Phase Options:

- 1. When Congwin is below Threshold, sender in slow-start phase, window grows exponentially.
- When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly.

Decrease Sending Rate Phase Options:

- When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold.
- 2. When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS.

TCP Congestion Control Algorithm <u>Three major phases / mechanisms:</u>

- 1) Slow start at 1 max segment size
 - But increase _____
- 2) Congestion Avoidance phase
 - AIMD = additive incr, multiplicative decr
 - Using cwnd and ssthresh
- 3) Fast Recovery
 - Increase of cwnd each round trip time

8

9

- Slow start: _____
- Congestion avoidance: _____

Summary TCP reaction to loss

- Loss indicated by timeout
 - cwnd set to 1 MSS
 - ssthresh set to cwnd/2
 - Window (cwnd) grows exponentially (slow start) to the threshold, then grows linearly
- Loss indicated by 3 duplicate ACKs
 - Network capable of delivering some segments, so...
 - cwnd is cut in half (=ssthresh)
 - Window grows linearly

Transport Layer Review

□ The transport layer services are:

- *
- *
- *
- *
- *
- *
- *

Transport Layer Review

□ The transport layer *does not* provide:

- *
- *
- *
- *
- *
- *
- *
- .
 - *

Transport Layer Review

Compare TCP and UDP (pros and cons?)

- * *
- *
- *
- *
- *
- *
- *

Transport Layer Review

TCP Connection Management includes

- *
- *
- *
- *
- *
- *
- *
- *
- *

Transport Layer Review

Elements of TCP reliability:

- *
- *
- *
- *
- *
- *
- *

Transport Layer Review

Elements of congestion control algorithm

- *
- *
- *
- *
- *
- *
- *
- *

16

TCP Flow Control

TCP flow control (quick & easy)

- Receiver "advertises" free buffer space by including rwnd value in TCP header of receiver-to-sender segments
 - **RcvBuffer** size set via socket options (typical default is 4096 bytes)
 - Many operating systems auto-adjust RcvBuffer
- Sender limits amount of un-ACKed ("in-flight") data to receiver's rwnd value
 - * Guarantees receive buffer will not overflow

TCP flow control

receiver protocol stack

19

Transport Layer Review

Other questions?

- *
- *
- *
- *
- *
- .
- *
- *
 - *

<u>A fun tangent...</u> <u>Finite State Machines</u>

21

Finite State Machines

TCP sender events:

(1) data received from application:

- 1. Create a segment and assign a SEQ number
 - SEQ # is byte-stream number of first data byte in segment

23

- 2. Start timer if it is not already running
 - Timer is for the oldest un-acked segment
 - Expiration interval: TimeOutInterval

(2) timeout:

- 1. Retransmit segment that caused the timeout
- 2. Restart the timer

(3) ACK received:

- For previously unacked segments
 - 1. update what is known to be acked
 - 2. start timer if there are outstanding segments

TCP Congestion Control

TCP Congestion Control: FSM

3-25

Transport Layer Summary

- TCP and UDP Services
- Encapsulation (create and attach header)
- Multiplexing and demultiplexing
- Checksum
- Connection management
- Reliable transport service
- Congestion control
- Detect loss and retransmit
 - Detect out-of-order and reorder
- Flow Control

Transport services and protocols

- Provide logical communication, a virtual connection
 - ...between application processes running on different hosts

This is not a physical path including routers

application Tetwork data link physical

27

<u>Introduction to the Network</u> <u>Layer</u>

Desired network layer services...
 > Actual network layer services
 Implemented in hosts and routers
 Two main network layer functions
 Three main network layer protocols

Network Layer Services of IP?

- Guaranteed delivery?
- Guaranteed minimum delay?
- In-order datagram delivery?
- Guaranteed minimum bandwidth to flow?
- Restrictions on changes in interpacket spacing?
- □ IP Provides? → "Best-effort service"

Key Network-Layer Functions

- routing: determine route taken by packets from source to destination
 Network-wide routing algorithms
- 2. *forwarding:* move packets from router's input link to appropriate output link
 - Internal to a single router

Network Layer: Routing and Forwarding

Network Layer, Chapter 4

- Router 'switching fabric'
 - Hardware / electrical pathways within a router
- Forwarding use the forwarding table to transmit, or forward, each packet to the correct output link, based on the destination IP address
- Routing Create the forwarding tables
 - Decentralized vs. Centralized algorithms
 - Within an ISP vs. between ISPs
- Softward Defined Networks, SDN