TCP Congestion Control

1. How does a sender sense congestion?
 -

2. How does a sender determine its sending rate?
 -
 -

3. What algorithm is used to change the send-rate?
 - Many phases and alternatives...
Reaction to Loss Events

- Exponential increase switches to linear increase when CongWin gets to the ‘threshold’ value (size)
Identify everything on this graph

TCP Congestion Control Algorithm

Increase Sending Rate Phase Options:
1. When CongWin is below Threshold, sender in slow-start phase, window grows exponentially.
2. When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly.

Decrease Sending Rate Phase Options:
1. When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold.
2. When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS.
TCP Congestion Control Algorithm

Three major phases / mechanisms:

1) Slow start - at 1 max segment size
 - But increase __________

2) Congestion Avoidance phase
 - AIMD = additive incr, multiplicative decr
 - Using cwnd and ssthresh

3) Fast Recovery
 - Increase of cwnd each round trip time
 - Slow start: __________
 - Congestion avoidance: __________

Summary TCP reaction to loss

- Loss indicated by timeout
 - cwnd set to 1 MSS
 - ssthresh set to cwnd/2
 - Window (cwnd) grows exponentially (slow start) to the threshold, then grows linearly

- Loss indicated by 3 duplicate ACKs
 - Network capable of delivering some segments, so...
 - cwnd is cut in half (=ssthresh)
 - Window grows linearly
Transport Layer Review

- The transport layer services are:
 -
 -
 -
 -
 -
 -
 -
 -
 -

Transport Layer Review

- The transport layer *does not* provide:
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
Transport Layer Review

- Compare TCP and UDP (pros and cons?)
- ...
- ...
- ...
- ...
- ...
- ...
- ...
- ...
- ...
- ...

Transport Layer Review

- TCP Connection Management includes
 - ...
 - ...
 - ...
 - ...
 - ...
 - ...
 - ...
 - ...
 - ...
 - ...
 - ...
Transport Layer Review

- Elements of TCP reliability:
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

Transport Layer Review

- Elements of congestion control algorithm
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
TCP Flow Control

- URG: urgent data (generally not used)
- ACK: ACK # valid
- PSH: push data now (generally not used)
- RST, SYN, FIN: connection estab (setup, teardown commands)
- Internet checksum (as in UDP)
- Sequence number
- Acknowledgement number
- Head len
- URG data pointer
- Receive window
- Options (variable length)
- Application data (variable length)
- Source port #
- Dest port #
- Checksum
- # of bytes rcvr willing to accept
- Counting by bytes of data (not segments)

TCP flow control (quick & easy)

- **Receiver** “advertises” free buffer space by including rwnd value in TCP header of receiver-to-sender segments
 - **RcvBuffer** size set via socket options (typical default is 4096 bytes)
 - Many operating systems auto-adjust **RcvBuffer**
- **Sender** limits amount of un-ACKed (“in-flight”) data to receiver’s **rwnd** value
 - Guarantees receive buffer will not overflow
TCP flow control

The application may remove data from the TCP socket buffers....

... slower than the TCP receiver is delivering it into the buffers (sender is sending)

flow control to the rescue!

receiver controls sender, so sender won’t overflow receiver’s buffer by transmitting too much, too fast

Transport Layer Review

- Other questions?
A fun tangent...
Finite State Machines

Finite State Machines

![Diagram of a finite state machine with states On and Off, and transitions labeled with actions 'Flip switch down' and 'Flip switch up'.]

![Diagram of a finite state machine with states q_0, q_1, q_2, and q_3, and transitions labeled with inputs 0 and 1. The start state is q_0.]

21

22
TCP sender events:

(1) data received from application:
1. Create a segment and assign a SEQ number
 v SEQ # is byte-stream number of first data byte in segment
2. Start timer if it is not already running
 v Timer is for the oldest un-acked segment
 v Expiration interval: TimeOutInterval

(2) timeout:
1. Retransmit segment that caused the timeout
2. Restart the timer

(3) ACK received:
 q For previously unacked segments
 1. update what is known to be acked
 2. start timer if there are outstanding segments

TCP Congestion Control
TCP Congestion Control: FSM

Transport Layer Summary

- TCP and UDP Services
- Encapsulation (create and attach header)
- Multiplexing and demultiplexing
- Checksum
- Connection management
- Reliable transport service
- Congestion control
- Detect loss and retransmit
 - Detect out-of-order and reorder
- Flow Control
Transport services and protocols

- Provide logical communication, a virtual connection...

...between application processes running on different hosts.

This is not a physical path including routers.

Introduction to the Network Layer

- Desired network layer services...
 - Actual network layer services
- Implemented in hosts and routers
- Two main network layer functions
- Three main network layer protocols
Network Layer Services of IP?

- Guaranteed delivery?
- Guaranteed minimum delay?
- In-order datagram delivery?
- Guaranteed minimum bandwidth to flow?
- Restrictions on changes in inter-packet spacing?

- **IP Provides?** → “Best-effort service”

Key Network-Layer Functions

1. **routing:** determine route taken by packets from source to destination
 - Network-wide routing algorithms

2. **forwarding:** move packets from router's input link to appropriate output link
 - Internal to a single router
Network Layer: Routing and Forwarding

Create versus use the forwarding table

Network Layer, Chapter 4

- Router ‘switching fabric’
 - Hardware / electrical pathways within a router
- Forwarding - use the forwarding table to transmit, or forward, each packet to the correct output link, based on the destination IP address
- Routing - Create the forwarding tables
 - Decentralized vs. Centralized algorithms
 - Within an ISP vs. between ISPs
- Software Defined Networks, SDN