
1

 1

The Transport Layer: TCP
& Reliable Data Transfer

Smith College, CSC 249
February 15, 2018

 2

Chapter 3: Transport Layer
q TCP Transport layer services:

v Multiplexing/demultiplexing
v Connection management
v Reliable data transfer

•  SEQ and ACK numbers

v Congestion control
v Flow control

2

 3

TCP Connection Management: Set up
Recall: TCP senders and receivers establish a “connection”

before exchanging data segments

Three way handshake:
Step 1: client host sends TCP SYN segment to server

v  “SYN” for “synchronize” (set SYN bit to 1)
v  Specifies (random) initial sequence #
v  No data is sent

Step 2: server host receives SYN, replies with SYNACK segment
v  Set both SYN and ACK bits to 1
v  Server allocates buffers and variables
v  Specifies its own, server initial sequence #

Step 3: client receives SYNACK, replies with ACK segment
v  Client allocates buffers and variables
v  This packet may contain data

TCP segment structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointer checksum
F S R P A U head

len
not
used

options (add to the basic
20 byte header length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

Header length,
Usually 20 bytes

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept
(flow control)

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

 4

3

 5

Set Up:

 Step 1: client sends TCP SYN
segment

q  Actions at self?
q  Sends data?

Step 2: server receives SYN and
replies with SYNACK

q  Actions at self?
q  Sends data?

Step 3: client receives SYNACK
and replies with ACK

q  Actions at self?
q  Sends data?

client

SYN

server

SYNACK

ACK

setup

setup

Connection!

TCP Connection Management: Set up

 6

Closing a connection:

How many steps?

What are they?

client server

closed

TCP Connection Management: Close

4

 7

Closing a connection:

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

FIN

close

close

closed
ti

m
ed

 w
ai

t

TCP Connection Management: Close

 8

TCP Connection Management (cont.)

Step 3: client receives
FIN, replies with ACK.
v  Enters “timed wait” –

client able to resend
final ACK in case it is
lost

v  Why??

Step 4: server, receives
ACK. Connection
closed.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

5

 9

TCP possible sender events:
(1) Data received from application:

1.  Create a segment and assign a SEQ number
v  SEQ # is byte-stream number of first data byte in segment

2.  Start timer if it is not already running
v  Timer is for the oldest un-acked segment
v  Expiration interval: TimeOutInterval

3-10

TCP: SEQ and ACK numbers

Host A

time

Host B

Seq=92, 8 bytes data

source port # dest port #

application
data
(variable length)

sequence number
acknowledgement number

receive window F S R P A U head
len

source port # dest port #

application
data
(variable length)

sequence number
acknowledgement number

receive window F S R P A U head
len

checksum

checksum

6

3-11

TCP: Cumulative ACK
Host A

Seq=92, 8 bytes data

ACK=100

loss
tim

er

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

time

3-12

TCP: retransmission from timeout
Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

lost ACK scenario

Host B

X

time

7

 13

TCP possible sender events:
(1) Data received from application:

1.  Create a segment and assign a SEQ number
v  SEQ # is byte-stream number of first data byte in segment

2.  Start timer if it is not already running
v  Timer is for the oldest un-acked segment
v  Expiration interval: TimeOutInterval

(2) Timeout (ACK not received):
1.  Retransmit segment that caused the timeout
2.  Restart the timer

 (3) ACK received for previously unacked segments
1.  Update what is known to be acked
2.  Start timer if there are outstanding segments

Students’ as Transport Layer…
q Working in pairs, send Haiku to each other

v Let each letter and space represent one byte
q Using blank TCP segments

v Define and use ACK and SEQ numbers for
sending the segments

q Once we see the time involved for our
person-transport-layer, define an amount of
time for a timer, and have some timeout
events

q Communicate with your sending/receiving
pairs to be able to dramatize TCP
successfully

 14

8

 15

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time

premature timeout

Host B

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut

SendBase
= 100

Sendbase
= 100

1) What is/was ‘A’s next step?
2) What does ‘B’ then do?

 16

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

What does ‘A’ do next?

9

17

Host A

tim
eo

ut

Host B

time

X

seq # x1
seq # x2
seq # x3
seq # x4
seq # x5

ACK x1

ACK x1
ACK x1
ACK x1

triple
duplicate

ACKs

What does ‘A’ do next, and when does it do it?

Fast retransmit,
before the timer

times out

 18

Discussion Question 1
q  Suppose Host A sends two TCP segments back to

back to Host B over a TCP connection.
v  What might be the first sequence number?
v  If 20 bytes are sent, what is the second sequence number?
v  Suppose that the first segment is lost but the second

segment arrives at B. In the acknowledgment that Host B
sends to Host A, what will be the acknowledgment number?

10

 19

Discussion Question 2
q  Consider a reliable protocol that uses only NAKs (no

unnecessary ACKs, since most often, things work well!)
Suppose the sender sends data infrequently. Would a
NAK-only protocol be preferable to a protocol that
uses ACKs? Why?

 20

Discussion Question 3
q  Now suppose the sender has a lot of data to send

and the end-to-end connection experiences few
losses. In this second case, would a NAK-only
protocol be preferable to a protocol that uses
ACKs? Why?

11

 21

Discussion Question 4:
Why Wait for 3 Duplicate ACKs
before retransmission?
q  Why did the TCP designers choose to have TCP

wait until it has received three duplicate ACKs
before performing a fast retransmit, rather than
performing a fast retransmit after the first
duplicate ACK for a segment is received?

 22

Discussion Question 4:
Why Wait for 3 Duplicate ACKs?
q  Suppose packets n, n+1, and n+2 are sent, and that

packet n is received and ACKed.
q  2-duplicate ACK policy: If packets n+1 and n+2

are reordered along the end-to-end-path then the
receipt of packet n+2 will generate a duplicate
ACK for n and would trigger a retransmission.

q  3 duplicate ACK scheme: Trades-off waiting for
more packets (rather than just 1) to avoid
retransmitting prematurely in the face of packet
reordering.
v  This policy could slow things down of course if packet n+1

is lost rather than reordered.

12

Summary
q Multiplexing and demultiplexing
q Error checking - checksum
q Connection Management

v SYN and SYNACK packets
q TCP segment header format
q Reliable data transfer

v Sequence and acknowledgement numbers
v Discuss use of “NAK”
v Discuss the purpose of 3 duplicate ACKs

 23

