
1

1

Introduction to the
Transport Layer

CSC 249 Feb 13, 2018

2

Transport Layer Overview
q Tasks performed by the transport layer

v Services provided to the application layer
v Services expected from the network layer

q Multiplexing and demultiplexing
q Error checking – the checksum
q Connection management
q Reliability

2

3

qThe transport layer (TCP) provides
reliability over an unreliable network

qWhat can go wrong?
v Bit errors

• original data as well as ACKs
v Lossy channel (with bit errors)

• Stop-and-wait v. pipelining
v Out-of-order packets
v Noticeable delay

Transport Layer Tasks

4

The Actual Transport Layer
q Basic transport layer services:

v Connection management
v Reliable data transfer
v Multiplexing/demultiplexing
v Some error checking
v Flow control & Congestion control

q Services not available:
v delay guarantees
v bandwidth guarantees
v security

q Internet transport protocols:
v UDP: Connectionless transport
v TCP: Connection-oriented transport & Reliability

3

7

qMultiplexer
vSelects input from one of many input

lines (processes) and directs the
information to a single output line

vMany sockets to one network connection
qDemultiplexer

vDirect a single input to one of many
possible processes that are running

vSingle network connection to many
sockets (processes)

Multiplexing/demultiplexing

8

Multiplexing/demultiplexing

process

socket

v use header info to deliver
received segments to correct
socket

demultiplexing at receiver:
v handle data from multiple sockets
v add transport header (later used

for demultiplexing)

multiplexing at sender:

transport

application

physical
link
network

P2P1

transport

application

physical
link
network

P4
transport

application

physical
link
network

P3

4

9

Connectionless demultiplexing
DatagramSocket
serverSocket = new
DatagramSocket(6428);

transport

application

physical
link
network

P3
transport

application

physical
link
network

P1

transport

application

physical
link
network

P4

DatagramSocket
mySocket1 = new
DatagramSocket(5775);

DatagramSocket
mySocket2 = new
DatagramSocket(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

10

Connectionless demultiplexing
q UDP socket is bound to the local host port #
q recall: when creating datagram to send into a UDP

socket, the socket must specify
v destination IP address
v destination port #

q when host receives UDP
segment:
1) check destination port #

in segment header
2) direct UDP segment to

socket with that port #

IP datagrams with same
dest. port #, but different
source IP addresses
and/or source port
numbers will be directed
to same socket at
destination

5

11

q UDP is a “best effort” service. Segments
may be:
v lost
v delivered out of order

SO why is there a UDP?
q Better control over what is sent and when
q Simple: no connection state at sender,

receiver
q Fast(er):

v no connection establishment (can add delay)
v small segment header
v no congestion control: UDP can blast away as fast as

desired

UDP: User Datagram Protocol

12

Connection-oriented demux: example

transport

application

physical
link
network

P3
transport

application

physical
link

P4

transport

application

physical
link
network

P2

source IP,port: A,9157
dest IP, port: B, 80

source IP,port: B, 80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: C, 5775
dest IP,port: B, 80

source IP,port: C, 9157
dest IP,port: B, 80

Three segments all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP address B

6

13

Connection-oriented demux

q TCP socket identified
by 4-tuple:
v source IP address
v source port number
v dest IP address
v dest port number

q demux: receiver uses
all four values to direct
segment to appropriate
socket

q server host may support
many simultaneous TCP
sockets:
v each socket identified by

its own 4-tuple

q web servers have
different sockets for
each connecting client
v non-persistent HTTP will

have different socket for
each request

14

TCP Socket & Segment

qTCP: Server host has simultaneous TCP
sockets, one for each connection:
v each socket identified by its own 4-tuple

qTCP segment includes data, and source &
destination port and IP addresses
(+ length & checksum)

7

16

Error Checking: Checksum

Sender:
q treat segment contents

as sequence of 16-bit
integers

q checksum: 1’s complement
of the sum of (16-bit)
segment contents

q sender puts checksum
value into UDP checksum
field

Receiver:
q compute checksum of

received segment – including
the sender’s checksum 16-bit
word in the sum

q If receiver’s sum is all ‘1’s
then there were no errors
(probably)
v If a bit is 0 then the

packet has errors

* Practice in HW * – straightforward calculation

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

17

Internet Checksum Example
q Note

v When adding numbers, a carryout from the
most significant bit needs to be added to the
result, for 1’s complement

q Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

8

Summary

q Transport layer services
v Desired services
v Actual protocol services
v What can go wrong?

q Multiplexing and demultiplexing
q Connection Management
q Error checking – checksum

v Transport layer provides end-to-end error
checking v. link layer single link error checking

18

