client server
| socket) | | socket) |

CSC 249
February 13, 2018

(

_ bind)

sendto() I—-I recvfrom() |
!

recvrom() |~—| sendto() l

Overview

OReview the Socket APT
< Defined for UNIX
+Used by most operating systems

QOReview TCP and UDP examples and
flow charts

OMethods for socket programming
QOutline an SMTP server

Socket programming

Al B controlled by
application
developer

controlled by Ayl I
applicationt [
developer‘I

process

process
socket

socket i

controlled by | |TCP with TCP with| | controlled by
operating | |buffers, buffers, operating
system variables variables system

host with host with
client and/or client and/or
server process server process

Socket Programming

0O Sockets are used to send data from one
host to another

<+ Sockets provide an interface between the
application and the Internet

0 Socket programming is analogous to
simple file I/0
OIn UNIX, all devices are file abstractions
« Open, close, read, write
+Sockets are simply one more file
abstraction

Sockets

Q The APT is used for communicating between a
Client and a Server

Q Client
<« Active participant in communication
« Initiates conversations and sends data

a Server
+ Passively listens and waits for data
QO Socket
«Protocol to use?
« Identifier of the other machine (IP + port)?
+ Client or server?

Connection-Oriented - TCP

0 The message is only transferred after a
connection has been made

« Connection creates a virtual pipe between the
client and the server such that each knows the
other's IP address and protocol port number

0 Both parties know that a message will be
communicated

O No need to tell destination (IP address and
port number) in subsequent messages
+ Because there is a connection!

Connectionless > UDP

0 Send Individual Messages
< as opposed to a continuous byte stream

O Socket has to be told where to send the
message every time
< Destination IP address and Port number

0 Overhead data flow can get excessive if a
large number of messages need to be sent
between the same hosts

Socket Flowcharts
0 TCP vs. UDP

SERVER

socket() CLIENT

L SERVER CLIENT
) 3 socket()
bde ,L socket() socket()
A

connect

send()

A 4

bind()

recv()

Review Server steps

0 All servers begin by making a function call
to “socket()” to create a socket and
“bind()” to specify a protocol port number

0 UDP: the server is now ready to accept
messages

0O TCP: additional steps to become ready are

« Server calls listen() to place the socket in
passive mode

« Server calls accept() to accept a connection
request if it comes in

Socket programming with TCP

The order of steps for using sockets with TCP
0 Server process must be running first

0O Then the client can create a socket, which
causes...
1) DNS lookup for server IP address
2) TCP to establish connection between the client
and server
3) Which causes the server process to create a new,
dedicated socket for this specific client process

Socket programming with TCP

a Client
1) Creates message - as a byte stream
2) Sends the message into its socket

O TCP takes over and delivers the message
<« Guarantees delivery
« With bytes delivered in the original order

0 Server process performs its application
duties and sends a response message through
its sockef...

Example to connect to google
from socket import *

print ("Creating Socket...”)
s = socket (AF_INET, SOCK_ STREAM)
print ("done.”)

print ("Looking up port number...”)
port = getservbyname ('http', 'tcp')
print ("done.”)

print ("Connect to remote host on port %d" $port),
s.connect (("www.google.com", port))
print ("done.”)

print "Connected from", s.getsockname ()
print "Connected to", s.getpeername ()

Client example 2: client2.py
Run the client after the server is running

from socket import * # Import socket module
Create a socket object

Get local machine name
Assign a port

s = socket()
host = gethostname ()
port 12345

H H= H

print ("Client host is ", host)

s.connect ((host, port))
print (s.recv(1024))

s.close # Close the socket when done

Example 2: Server2.py
from socket import *

s = socket ()
host = gethostname ()
port = 12345

Create a socket object
Get local machine name
Assign a port number

s.bind ((host, port))
print ("Server host i
s.listen (1)

Bind to the port
", host)
Wait for client conx

= = =

while True:
c, addr = s.accept() # conx to client
print ('Got connection from', addr)
c.send ('Thank you for connecting')
c.close() # Close the connection

Example 3: client3.py
from socket import *

HOST = 'localhost'
PORT = 29876

ADDR = (HOST, PORT)
BUFSIZE = 4096

cli = socket (AF_INET,SOCK_STREAM)
cli.connect ((ADDR))

data = cli.recv (BUFSIZE)
print (data)

cli.close()

Example 3: server3.py
from socket import *

HOST = '"! # Use the local host

PORT = 29876 # Assign a port number

ADDR = (HOST,PORT) # define a tuple for the address
BUFSIZE = 4096 # Define buffer for data

Create a new socket object (serv)
serv = socket (AF INET, SOCK_STREAM)

Bind our socket to the address

serv.bind ((ADDR)) # Define an address 'tuple'
serv.listen (5) # Allow 5 connections
print ('listening...’)

conn,addr = serv.accept()

print ('...connected!’)

conn.send ('TEST’)
conn.close ()

HW: Web Server

ODevelop a web server that handles one
HTTP request at a time.

<« Accept and parse the HTTP request
message,

<+ Get the requested file from the server's
file system

<« Create an HTTP response message
consisting of the requested file and the
appropriate header lines

+ Send the response directly to the client.
<+ Use any web browser for the client

HW: Web Server Due Dates
QOFeb 15

« The HTML code that your web server will serve
up to your requesting web browser

« A first draft of your Python server code

QFeb 22

« Python (or other) working server code

+ Beautifully commented with meaningful variable and
object names

+ Screen shots of output

