
1

1

The Application Layer:
Sockets Wrap-Up

CSC 249
February 13, 2018

slides mostly from J.F Kurose and K.W. Ross,copyright 1996-2012

2

Overview
qReview the Socket API

vDefined for UNIX
vUsed by most operating systems

qReview TCP and UDP examples and
flow charts

qMethods for socket programming
qOutline an SMTP server

2

3

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host with
client and/or

server process

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
systeminternet

Socket programming

host with
client and/or

server process

4

Socket Programming
qSockets are used to send data from one

host to another
vSockets provide an interface between the

application and the Internet
qSocket programming is analogous to

simple file I/O
qIn UNIX, all devices are file abstractions

vOpen, close, read, write
vSockets are simply one more file

abstraction

3

5

Sockets
q The API is used for communicating between a

Client and a Server
q Client

v Active participant in communication
v Initiates conversations and sends data

q Server
v Passively listens and waits for data

qSocket
vProtocol to use?
vIdentifier of the other machine (IP + port)?
vClient or server?

6

Connection-Oriented à TCP
q The message is only transferred after a

connection has been made
v Connection creates a virtual pipe between the

client and the server such that each knows the
other’s IP address and protocol port number

q Both parties know that a message will be
communicated

q No need to tell destination (IP address and
port number) in subsequent messages
v Because there is a connection!

4

7

Connectionless à UDP

q Send Individual Messages
v as opposed to a continuous byte stream

q Socket has to be told where to send the
message every time
v Destination IP address and Port number

q Overhead data flow can get excessive if a
large number of messages need to be sent
between the same hosts

8

Socket Flowcharts
q TCP vs. UDP

socket()

bind()

listen()

accept()

recv()

send()

socket()

bind()

connect
()

send()

recv()

SERVER

CLIENT

socket()

bind()

recvfrom()

sendto()

socket()

bind()

sendto()

recvfrom()

SERVER CLIENT

5

9

Review Server steps
q All servers begin by making a function call

to “socket()” to create a socket and
“bind()” to specify a protocol port number

q UDP: the server is now ready to accept
messages

q TCP: additional steps to become ready are
v Server calls listen() to place the socket in

passive mode
v Server calls accept() to accept a connection

request if it comes in

10

Socket programming with TCP
The order of steps for using sockets with TCP
q Server process must be running first
q Then the client can create a socket, which

causes…
1) DNS lookup for server IP address
2) TCP to establish connection between the client

and server
3) Which causes the server process to create a new,

dedicated socket for this specific client process

6

11

Socket programming with TCP
q Client

1) Creates message – as a byte stream
2) Sends the message into its socket

q TCP takes over and delivers the message
v Guarantees delivery
v With bytes delivered in the original order

q Server process performs its application
duties and sends a response message through
its socket…

12

Example to connect to google
from socket import *

print ("Creating Socket...”)
s = socket(AF_INET, SOCK_STREAM)
print ("done.”)

print ("Looking up port number...”)
port = getservbyname('http', 'tcp')
print ("done.”)

print ("Connect to remote host on port %d" %port),
s.connect (("www.google.com", port))
print ("done.”)

print "Connected from", s.getsockname()
print "Connected to", s.getpeername()

7

13

Client example 2: client2.py
Run the client after the server is running

from socket import * # Import socket module

s = socket() # Create a socket object
host = gethostname() # Get local machine name
port = 12345 # Assign a port

print ("Client host is ", host)

s.connect((host, port))
print (s.recv(1024))

s.close # Close the socket when done

14

Example 2: Server2.py
from socket import *

s = socket() # Create a socket object
host = gethostname() # Get local machine name
port = 12345 # Assign a port number

s.bind((host, port)) # Bind to the port
print ("Server host is ", host)
s.listen(1) # Wait for client conx

while True:
c, addr = s.accept() # conx to client
print ('Got connection from', addr)
c.send('Thank you for connecting')
c.close() # Close the connection

8

15

Example 3: client3.py
from socket import *

HOST = 'localhost'
PORT = 29876
ADDR = (HOST,PORT)
BUFSIZE = 4096

cli = socket(AF_INET,SOCK_STREAM)
cli.connect((ADDR))

data = cli.recv(BUFSIZE)
print (data)

cli.close()

16

Example 3: server3.py
from socket import *

HOST = '' # Use the local host
PORT = 29876 # Assign a port number
ADDR = (HOST,PORT) # define a tuple for the address
BUFSIZE = 4096 # Define buffer for data

Create a new socket object (serv)
serv = socket(AF_INET,SOCK_STREAM)

Bind our socket to the address
serv.bind((ADDR)) # Define an address 'tuple'
serv.listen(5) # Allow 5 connections
print ('listening...’)

conn,addr = serv.accept()
print ('...connected!’)
conn.send('TEST’)
conn.close()

9

HW: Web Server
qDevelop a web server that handles one

HTTP request at a time.
vAccept and parse the HTTP request

message,
vGet the requested file from the server’s

file system
vCreate an HTTP response message

consisting of the requested file and the
appropriate header lines

vSend the response directly to the client.
vUse any web browser for the client

17

HW: Web Server Due Dates
qFeb 15

v The HTML code that your web server will serve
up to your requesting web browser

v A first draft of your Python server code

qFeb 22
v Python (or other) working server code

• Beautifully commented with meaningful variable and
object names

v Screen shots of output

18

