
1

1

The Application Layer: 
Sockets Wrap-Up

CSC 249
February 8, 2018

slides mostly from J.F Kurose and K.W. Ross,copyright 1996-2012

2

Socket Overview
q Examples with socket-API 

programming
q Differences between TCP and UDP 

sockets
q Outline SMTP server program



2

3

Socket Programming
qSockets are used to send data from one 

host to another
vSockets provide an interface between the 

application and the Internet
qSocket programming is analogous to 

simple file I/O
qIn UNIX, all devices are file abstractions

vOpen, close, read, write
vSockets are simply one more file 

abstraction

4

Sockets
q The API is used for communicating between a 

Client and a Server
q Client 

v Active participant in communication
v Initiates conversations and sends data

q Server
v Passively listens and waits for data

qSocket
vProtocol to use?
vIdentifier of the other machine (IP + port)?
vClient or server?



3

5

Socket-programming using TCP
Socket: an interface between application process and 

the transport protocol (UCP or TCP)
TCP service: reliable transfer of bytes from one 

process to another

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

TCP: define/reserve
variables and buffers

6

TCP 
Flow 
Chart

 

socket() 

bind() 

listen() 

accept() 

recv() 

send() 

socket() 

bind() 

connect
() 

send() 

recv() 

SERVER 

CLIENT 



4

7

UDP 
Flow 
Chart

 

socket() 

bind() 

recvfrom() 

sendto() 

socket() 

bind() 

sendto() 

recvfrom() 

SERVER CLIENT 

8

Creating a Socket()

q descriptor = socket(protoFamily, type)
v Creates a socket and returns an integer 

descriptor
v ProtoFamily – refers to Family of protocols that 

this protocol belongs to, for TCP/IP use 
AF_INET

v Type – SOCK_STREAM, SOCK_DGRAM
• SOCK_STREAM – Connection Oriented (TCP)
• SOCK_DGRAM – Connectionless (UDP)



5

9

A first, simple socket example
Client-server simple application:
1) The client reads a line from 

standard input (inFromUser
stream), sends it to server via 
socket (outToServer stream)

2) The server reads the line from its 
socket

3) The server converts the line to 
uppercase, and sends it back to the 
client

4) The client reads the modified line 
from its socket (inFromServer
stream) and prints it to standard 
output

* Identify application vs. socket 
programming tasks *

ou
tT

oS
er

ve
r

to network from network

in
F

ro
m

S
er

ve
r

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP 
socket

Client/server socket interaction: TCP

10

1) Client contacts server
q server process must first be 

running
q server must have created 

socket (door) that accepts 
client’s contact

2) Client contacts server by:
q Creating TCP socket, 

v Reserve required memory
v Specify server IP address and 

port number

q Client TCP layer establishes 
a connection to server TCP 
layer (via TCP handshaking, 
chapter 3)

3) Server creates new socket
q when contacted by client, for 

server process to communicate 
with that particular client
v allows server to talk with 

multiple clients
v source port numbers used to 

distinguish clients (more in 
Chapter 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”) 
between client and server

Application viewpoint:



6

11

Client/server socket interaction: TCP

wait for incoming
connection request

create socket,
port=x, for
incoming request:
serverSocket = socket()

create socket,
connect to hostid, port=x

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP 
connection setup

connectionSocket =
serverSocket.accept()

clientSocket = socket()

2-12

Example  app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket 
for server, remote 
port 12000

No need to attach 
server name, port 
(compare to UDP 
client… to come)



7

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServercreate TCP 
welcoming
socket

server begins listening 
for  incoming TCP 
requests

loop forever

server waits on accept()
for incoming requests, 
new, dedicated socket 
created on return
read bytes from socket 
(but not address as in 
UDP)
close connection to this 
client (but not welcoming 
socket)

14

Socket programming with UDP

UDP: no “connection” between client and server
q no handshaking
q sender explicitly attaches IP address and port of 

destination to each packet
q server must extract IP address, port of sender from 

received packet

UDP: transmitted data may be received out of order, 
or lost application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server



8

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying 
client address,
port number

server (running on serverIP) client

2-16

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET, 

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))
modifiedMessage, serverAddress = 

clientSocket.recvfrom(2048)
print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s 
socket library

create UDP socket 
for server

get user 
keyboard input 

Attach server name, 
port to message; 
send into socket

print out received 
string and close 
socket

read reply 
characters from
socket into string

Example: UDP client



9

2-17

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local 
port number 12000

loop forever

Read from UDP 
socket into message, 
getting client’s 
address (client IP and 
port)

send upper case 
string back to this 
client

Example: UDP server

18

Connection-Oriented à TCP
q The message is only transferred after a 

connection has been made
v Connection creates a virtual pipe between the 

client and the server such that each knows the 
other’s IP address and protocol port number

q Both parties know that a message will be 
communicated

q No need to tell destination (IP address and 
port number) in subsequent messages
v Because there is a connection!



10

19

Connectionless à UDP

q Send Individual Messages
v as opposed to a continuous byte stream

q Socket has to be told where to send the 
message every time
v Destination IP address and Port number

q Overhead data flow can get excessive if a 
large number of messages need to be sent 
between the same hosts

Class Example: SMTP Client (5 minutes 
now, to come back to toward end of class)

q Develop a simple mail client that sends 
email to any recipient  à a first attempt
1) Recall the telnet practice with SMTP
2) Connect to a mail server, dialogue with the mail 

server using the SMTP protocol
3) Send an email message to the mail server. 

• Python provides smtplib, with built in methods, but this 
hides the details of SMTP and socket programming à
so do not use this

q To limit spam, mail servers do not accept 
TCP connections from arbitrary sources. 

20



11

21

Socket Flowcharts
q TCP vs. UDP
 

socket() 

bind() 

listen() 

accept() 

recv() 

send() 

socket() 

bind() 

connect
() 

send() 

recv() 

SERVER 

CLIENT  

socket() 

bind() 

recvfrom() 

sendto() 

socket() 

bind() 

sendto() 

recvfrom() 

SERVER CLIENT 

23

Review Server steps

q All servers begin by making a function call 
to “socket()” to create a socket and 
“bind()” to specify a protocol port number

q UDP:  the server is now ready to accept 
messages

q TCP:  additional steps to become ready are
v Server calls listen() to place the socket in 

passive mode
v Server calls accept() to accept a connection 

request if it comes in



12

24

# Example to connect to google
from socket import *

print ("Creating Socket...”)
s = socket(AF_INET, SOCK_STREAM)
print ("done.”)

print ("Looking up port number...”)
port = getservbyname('http', 'tcp')
print ("done.”)

print ("Connect to remote host on port %d" %port),
s.connect (("www.google.com", port))
print ("done.”)

print "Connected from", s.getsockname()
print "Connected to", s.getpeername()

25

# Client example 2: client2.py 
# Run the client after the server is running

from socket import * # Import socket module 

s = socket()  # Create a socket object 
host = gethostname() # Get local machine name 
port = 12345 # Assign a port 

print ("Client host is ", host) 

s.connect((host, port)) 
print (s.recv(1024))

s.close # Close the socket when done



13

26

# Example 2: Server2.py 
from socket import *

s = socket() # Create a socket object 
host = gethostname() # Get local machine name 
port = 12345 # Assign a port number 

s.bind((host, port)) # Bind to the port 
print ("Server host is ", host)
s.listen(1) # Wait for client conx

while True: 
c, addr = s.accept() # conx to client 
print ('Got connection from', addr)    
c.send('Thank you for connecting') 
c.close() # Close the connection

27

# Example 3: client3.py
from socket import *

HOST = 'localhost'
PORT = 29876  
ADDR = (HOST,PORT)
BUFSIZE = 4096

cli = socket(AF_INET,SOCK_STREAM)
cli.connect((ADDR))

data = cli.recv(BUFSIZE)
print (data)

cli.close()



14

28

# Example 3: server3.py
from socket import *      

HOST = ''       # Use the local host
PORT = 29876    # Assign a port number
ADDR = (HOST,PORT) # define a tuple for the address
BUFSIZE = 4096  # Define buffer for data

# Create a new socket object (serv)
serv = socket( AF_INET,SOCK_STREAM)    

# Bind our socket to the address
serv.bind((ADDR))    # Define an address 'tuple'
serv.listen(5)       # Allow 5 connections
print ('listening...’)

conn,addr = serv.accept() 
print ('...connected!’)
conn.send('TEST’)
conn.close()

Class Example: SMTP Client
q Develop a simple mail client that sends 

email to any recipient  à a first attempt
1) Recall the telnet practice with SMTP
2) Connect to a mail server, dialogue with the mail 

server using the SMTP protocol,
3) Send an email message to the mail server. 

Python provides smtplib, with built in methods, 
but this hides the details of SMTP and socket 
programming à so do not use this

q To limit spam, mail servers do not accept 
TCP connection from arbitrary sources. 
v You could try connecting both to both the Smith 

mail server and to a popular Webmail server, 
such as an AOL mail server, gmail… 29



15

4-30

Mail message format
* Example of the actual 

message – NOT part of 
the SMTP handshaking 
process

q header lines, e.g.,
v To:
v From:
v Subject:
different from SMTP 

commands!
q body

v the “message”, ASCII 
characters only

header

body

blank
line

4-31

fcapmaster:~ jcardell$ telnet smtp.smith.edu 25
Trying 131.229.64.236...
Connected to baton.smith.edu.
Escape character is '^]'.

220 baton.smith.edu ESMTP Sendmail …

C: HELO jbc.edu
S: 250 baton.smith.edu Hello [131.229.102.128], pleased to meet you

C: MAIL FROM: <judy@jbc.edu>
S: 250 2.1.0 <judy@jbc.edu>... Sender ok
C: RCPT TO: <jcardell@smith.edu>
S: 250 2.1.5 <jcardell@smith.edu>... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: to: Easter@Bunny.hop
C: from: Tooth@Fairy.fly
C: subject: How’s Business?
C:
C: Hello Hoppy
C: Checking in to see how you’re doing.
C: .
S: 250 2.0.0 s8GFb0Q4007216 Message accepted for delivery
C: QUIT
S: 221 2.0.0 baton.smith.edu closing connection



16

32

#Sample SMTP client program -> server refuses contact
from socket import *

# Messages to send
msg = '\r\nHello World!’     endmsg = '\r\n.\r\n'

# Choose a mail server and call it mailserver
mailserver = 'smtp.smith.edu'

# Create socket, establish a TCP conx with mailserver
clientSocket = socket(AF_INET, SOCK_STREAM)

# Port number may change according to the mail server
clientSocket.connect((mailserver, 25))
recv = clientSocket.recv(1024)
print (recv)
if recv[:3] != '220':

print ('220 reply not received from server.’)

33

# Send HELO command and print server response.
heloCommand = 'HELO smith.edu\r\n'
clientSocket.send(heloCommand)
recv1 = clientSocket.recv(1024)
print recv1
if recv1[:3] != '250':

print ('250 reply not received from server.’)
…

# Send DATA command and print server response. 
data = 'DATA\r\n'
clientSocket.send(data)
recv4 = clientSocket.recv(1024)
…

# Message ends with a single period.
clientSocket.send(endmsg)
…

# Send QUIT command and get server response.
quitcommand = 'QUIT\r\n'
clientSocket.send(quitcommand)



17

HW: Web Server
qDevelop a web server that handles one 

HTTP request at a time. 
vAccept and parse the HTTP request 

message, 
vGet the requested file from the server’s 

file system 
vCreate an HTTP response message 

consisting of the requested file and the 
appropriate header lines

vSend the response directly to the client. 
vUse any web browser for the client

34

HW: Web Server Due Dates
q Feb 22

v Python (or other) working code in 2 weeks
v Web server code, beautifully commented with 

meaningful variable and object names
v Screen shots of output

q* For Feb 15 *
v The HTML code that your web server will serve 

up to your requesting web browser 
v (you will use a commercial web browser to 

contact your own web server)
v BE SURE to be working on your web server this 

first week as well!
35



18

Appendix – Socket functions

36

37

Socket API Overview –
details in appendix to these slides

q Socket Programming Procedures
v Socket()
v Bind()
v Listen()
v Accept()
v Connect()
v Along with send and receive procedures
v Close()

q And for DNS…
v getHostByName
v getServByName
v getProtoByName



19

38

Procedures:  Socket()

q descriptor = socket(protoFamily, type)
v Creates a socket and returns an integer 

descriptor
v ProtoFamily – refers to Family of protocols that 

this protocol belongs to, for TCP/IP use 
PF_INET

v Type – SOCK_STREAM, SOCK_DGRAM
• SOCK_STREAM – Connection Oriented (TCP)
• SOCK_DGRAM – Connectionless (UDP)

39

Accept() – Server Procedure 
q Newsock = accept(socket, caddr, caddrlen) 

v Accept() fills the fields of the struct caddr 
with the address of the client that formed the 
connection

v Accept() creates a new socket for this 
connection and returns the descriptor of this 
new socket

v The server’s original “listen()” socket remains 
unchanged

q A request has come to the server
v à The phone is ringing

q Accept picks up the connections (only TCP)



20

40

Bind()

q Bind(socket, localAddr, addrLen)
v Call after socket() has been called to bind the 

socket to a protocol port number
v Used to assign the port at which the 

client/server will be waiting for 
connections/messages
• The port number is part of the address structure
• s.bind(('', 80)) specifies that the socket is reachable 

by any address the machine happens to have
v Socket – descriptor
v localAddr – socket address structure à

including the port number
v addrLen – length of the address

41

Close()

q The socket is no longer going to be used
q Close(sock)

v Sock – the descriptor

q Note: For a connection oriented socket, 
connection is terminated before socket is 
closed



21

42

Connect() – Client Procedure

q Connect(socket, saddr, saddrlen)
v Arguments ‘socket’ is the desciptor of a 

socket on the client’s computer to use for the 
connection

v ‘saddr’ and len specify the server’s info
v With TCP, this initiates the connection to the 

specified server

q This is used to make the “phone call”

q Two uses
v Connection-oriented transport – make the call
v Possible use - Connectionless – identify the 

server to send the many, independent messages

43

Listen() – Server Procedure

q Listen(socket, queuesize)
v Called at server 
v socket – descriptor at server
v queueSize – buffering of requests

q This procedure tells the server to leave a 
socket running, in passive mode, at this 
port



22

44

Recv() and Recvfrom()

q Used to receive messages in a connection 
oriented communication
v Recv(socket, buffer, length, flags)

• Buffer – memory location/structure to store the data
• Length – the length of buffer

q Recvfrom() is used in connectionless 
communication
v Recvfrom(socket, buffer, flags, sndraddr, 

saddrlen)
• Sndraddr – sender’s address
• Saddrlen – length of sender’s address

45

Send() and Sendto()
q Used to send packets from one host to 

another
v Send(socket, data, length, flags)

• Socket – descriptor
• Data – pointer to buffer in memory with the data
• Length – of data to be sent
• Flags – for debugging, not general use (typ = 0)

q Sendto() is used with an unconnected 
socket
v Sendto (socket, data, length, flags, 

destAddress, addressLen)


