

TODAY: Domain Name System

- The directory system for the Internet
 - Used by other application layer protocols
 - * ... via socket programming
- Maps a hostname to an IP address
 - Host names use natural, human, language
 - $\boldsymbol{\cdot}$ URL such as www.google.com
 - IP addresses are numerical locators used by computers (more detail later)

Application Layer Task

- □ You want your host (laptop, phone...) to
 - Send an email message
 - Retrieve a web page
- How do you find the equivalent of the actual, physical 'street address' of the destination host (the IP address)?
- DNS nested, hierarchical loop-up system

3

4

Domain Name Servers

Your computer looking for an IP address

DNS: a distributed, hierarchical database

a host, or client, wants the IP address for www.google.com

- 1) Client (local server) queries root server to find the .com DNS server
- 2) Client queries .com DNS server (TLD) for google.com DNS server
- 3) Client queries google.com DNS server (authoritative) to get the IP address for www.google.com

2-5

DNS: root name servers

- The root name server is contacted by local name server in order to start finding the IP address
- □ root name server:
 - * contacts TLD name server if name mapping not known
 - gets mapping and returns mapping to local name server (which will continue seeking)

2-6

DNS: root name servers

There are many logical root name "servers" worldwide, each "server" replicated many times (not shown: Russia, India, Australia, S. Africa, Brazil...)

http://www.root-servers.org/

Interactive map:

8

TLD & Authoritative Servers

top-level domain (TLD) servers:

- responsible for maintaining records mapping IP addresses for the DNS servers for .com, .org, .net, edu, and all toplevel country domains, e.g.: uk, fr, ca, jp
- For example
 - Verisign Global Network Services maintains servers for .com TLD
 - Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- * can be maintained by organization or service provider

2-9

Local DNS name server

- (does not strictly belong to hierarchy)
- Each ISP (residential ISP, company, university) has its own local DNS server
 - * also called "default name server"
- When a host makes a DNS query, the query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date)
 - * acts as proxy, forwards query into hierarchy
 - When you connect to network, your host is given the IP address of the local DNS server

2-10

2-11

DNS protocol, messages

Application Layer 2-12

DNS protocol, messages

Application Layer 2-13

HTTP request message: format

Mail message format

Dessage header lines, e.g.,

15

DNS protocol, messages

[ford352-r10578:~ jcardell\$ dig root-servers.org

; <<>> DiG 9.8.3-P1 <<>> root-servers.org ;; global options: +cmd ;; Got answer: ; >> HEADER<< opcode: QUERY, status: NOERROR, id: 63593

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 6

;; QUESTION SECTION: ;root-servers.org. IN A

;; ANSWER SECTION: root-servers.org. 120 IN A 193.0.6.136

;; AUTHORITY SECTION: root-servers.org. 3388 IN NS sns-pb.isc.org. root-servers.org. 3388 IN NS sec2.authdns.ripe.net. root-servers.org. 3388 IN NS ns.maxgigapop.net.

;; ADDITIONAL SECTION: sec2.authdns.ripe.net. 11896 IN A 193.0.9.4 sec2.authdns.ripe.net. 11896 IN AAAA 2001:67c:e0::4 ns.maxgigapop.net. 87 IN A 206.196.176.2 ns.maxgigapop.net. 87 IN AAAA 2001:468:c00:6:225:90ff:fe72:119c sns-pb.iscorg. 5939 IN A 192.5.4.1 sns-pb.iscorg. 5939 IN AAAA 2001:500:2e::1

;; Query time: 15 msec
 ;; SERVER: 131.229.64.2#53(131.229.64.2)
 ;; WHEN: Mon Feb 5 13:41:52 2018
 ;; MSG SIZE rcvd: 270

"IN" is a rarely used 'class' field, and indicates "Internet" #s indicate TTL

17

[ford352-r10578:~ jcardell\$ dig root-servers.org

; <<>> DiG 9.8.3-P1 <<>> root-servers.org

;; QUESTION SECTION:

;root-servers.org. IN A

;; ANSWER SECTION:

root-servers.org. 120 IN A 193.0.6.136

;; AUTHORITY SECTION:

root-servers.org. 3388 IN NS sns-pb.isc.org. root-servers.org. 3388 IN NS sec2.authdns.ripe.net. root-servers.org. 3388 IN NS ns.maxgigapop.net.

"IN" is a rarely used 'class' field, and indicates "Internet"

ford352-r10578:~ jcardell\$ dig smith.edu

; <<>> DiG 9.8.3-P1 <<>> smith.edu

;; global options: +cmd ;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31681 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 5

;; QUESTION SECTION: ;smith.edu. IN A

;; ANSWER SECTION: smith.edu. 21600 IN A 131.229.64.19

;; AUTHORITY SECTION:

smith.edu. 21600 IN NS ns1.smith.edu. smith.edu. 21600 IN NS ns1.umass.edu. smith.edu. 21600 IN NS babel.smith.edu. smith.edu. 21600 IN NS ns2.umass.edu. smith.edu. 21600 IN NS ns3.umass.edu.

;; ADDITIONAL SECTION:

ns1.smith.edu. 21600 IN A 198.101.218.79 ns1.umass.edu. 6636 IN A 128.119.10.27 ns2.umass.edu. 6636 IN A 128.119.10.28 ns3.umass.edu. 6636 IN A 128.103.38.68 babel.smith.edu. 21600 IN A 131.229.64.2

;; Query time: 0 msec ;; SERVER: 131.229.64.2#53(131.229.64.2) ;; WHEN: Mon Feb 5 13:44:14 2018 ;; MSG SIZE rcvd: 221

19

ford352-r10578:~ jcardell\$ dig mail.smith.edu

; <<>> DiG 9.8.3-P1 <<>> mail.smith.edu ;; global options: +cmd ;; Got answer: ; >>HEADER<< opcode: QUERY, status: NOERROR, id: 4657 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 8

;; QUESTION SECTION: ;mail.smith.edu. IN A

;; ANSWER SECTION: mail.smith.edu. 21600 IN CNAME ghs.google.com. ghs.google.com. 204 IN A 172.217.9.243

;; AUTHORITY SECTION: google.com. 1415 IN NS ns2.google.com. google.com. 1415 IN NS ns3.google.com. google.com. 1415 IN NS ns4.google.com. google.com. 1415 IN NS ns1.google.com.

;; ADDITIONAL SECTION: ns2.google.com. 17146 IN A 216.239.34.10 ns2.google.com. 285318 IN AAAA 2001:4860:4802:34:a ns1.google.com. 106901 IN A 216.239.32.10 ns1.google.com. 285318 IN AAAA 2001:4860:4802:32:a ns3.google.com. 17146 IN A 216.239.36.10 ns3.google.com. 17146 IN A 216.239.38.10 ns4.google.com. 17145 IN A 216.239.38.10 ns4.google.com. 17151 IN AAAA 2001:4860:4802:38:a

;; Query time: 0 msec ;; SERVER: 131.229.64.2#53(131.229.64.2) ;; WHEN: Mon Feb 5 13:45:28 2018 ;; MSG SIZE rcvd: 324

DNS record format

The distributed database stores resource records (RR)

name

21

DNS records

DNS: distributed db storing resource records (RR)

DNS Records

* Investigate the DNS process *

<u>DNS protocol</u>: *query* and *reply* messages, both with same *message format*

Message header

- identification: 16 bit # for query, reply to query uses same #
- □ flags
- Number of records in the message itself

Try:

>> dig <...>

>> nslookup <...>

nslookup at terminal prompt

ford352-r10578:~ jcardell\$ nslookup mail.smith.edu

Server: 131.229.64.2 Address: 131.229.64.2#53

mail.smith.edu canonical name = ghs.google.com. Name: ghs.google.com Address: 172.217.9.243

ford352-r10578:~ jcardell\$ nslookup science.smith.edu Server: 131.229.64.2 Address: 131.229.64.2#53

Name: science.smith.edu Address: 131.229.64.139

25

nslookup with Mac OS

		N	etwork Utility				
Info	Netstat Ping	Lookup	Traceroute	Whois	Finger	Port Scan)
an interne	et address to loc	okup.					
		.cmu.edu	(ex. 10	0.0.2.1 or ww	w.example.o	com)	
Macintos	h HD 🔸 📉 Systen	n 🕨 🛅 Library	> 📄 CoreServi	ces 🕨 🚞 Ap	oplications	🕨 🥝 Network l	Jtility
						Loc	kup
up has st	arted						
-	u -> 128.2.42.9	2					
ew.cmu.eu	u -> 120.2.42.:	2					

Summary of Application Design Elements

- Message format
 - ASCII? Binary?
 - How handle (send) multiple objects?
- □ Number of connections
 - Persistent? Parallel connections?
- □ State information? Stateless?
- □ TCP or UDP used (Transport Layer)?
- Push or pull protocol?
- □ How to find the server? client? peer?
- Handshaking in the protocol?
- Centralized? Decentralized? (peer-to-peer)

27

First View of Sockets

Sockets - analogous to file I/O

□ Three steps in file I/O

- open the file associate a file on your disk with a variable in your program
- 2) read and write set of operations to manipulate the file contents - the file associated with your file variable
- 3) close the file ensure changes actually written to the disk, ensure other programs can access and use the file, dissociate the file and the variable

29

Sockets - analogous to file I/O

- Python File I/O Syntax
 - *<filevar> = open(<filename>, <mode>)
 - open() returns a file object
 - mode = 'r', 'w', 'a'

Sockets - file I/O (EM)

```
# Example of Python file I/O
outFile = open("myFile.txt", 'w')
outFile.write("Hello CSC111!\n")
outFile.write("Files are fun!!\n")
outFile.close()
```

```
infile = open('myFile.txt', 'r')
text = infile.read()
infile.close()
```

print text

Sockets - file I/O (DT)

```
# Example of Python file I/O
# write some variables to file
# your unique input:
name = "Smith College"
address = "Elm st., Northampton, MA 01063"
# Python file I/O commands
file = open( "college.txt", "w" )
file.write( "%s\n" % name )
file.write( "%s\n" % address )
file.close()
```

32

31

Sockets - file I/O (DT)

```
# Example of Python file I/O
# read a file back and print all the lines
file = open( "college.txt", "r" )
allLines=file.readlines() # allLines is a list of strings
file.close()
```

your "application" separate from the files oneString = "" . join(allLines) Print(repr(oneString)) # repr() makes special chars visible Print(oneString) # print it normally

33

File I/O Programming

- Your CS1 program communicates with your computer's operating system to access memory, keyboard input & writing output to the monitor.
- * This is an *approximate* analogy

Socket Programming

Application layer communication via the transport layer goal: learn how to build client/server applications that communicate using sockets

socket: door between application process and end-end-transport protocol

Socket API Overview

- TCP Socket Programming Procedures
 - Socket()
 - * Bind()
 - \$ Listen()
 - * Accept()
 - Connect()
 - * Send and receive procedures
 - Close()
- □ And for DNS...
 - ✤ getHostByName
 - ✤ getServByName
 - ✤ getProtoByName

