
4/26/18

1

MULTIMEDIA I
CSC 249

APRIL 26, 2018

§ Multimedia
§ Classes of Applications
§ Services
§ Evolution of protocols

§ Streaming from web server

§ Content distribution networks

§ VoIP

§ Real time streaming protocol

4/26/18

2

video server
(stored video) client

Internet

Classes of multimedia applications:
1) Stored streaming

2) Live streaming

3) Interactive, real-time

§ Packet Loss?
§ Tolerant?
§ Intolerant?

§ Variable delay between packets (jitter)?
§ Tolerant?
§ Intolerant?

4/26/18

3

§ Best effort, Laissez-faire approach
§ No major changes, no guarantees for delay or loss
§ Works with historical/existing Internet architecture

§ Server sends at rate appropriate for client
§ Often: send rate = encoding rate = constant rate
§ Transmission rate can be oblivious to congestion levels
§ Short playout delay (2-5 seconds) to remove jitter

§ UDP might not get through firewalls
§ Requires RTP – real time transport protocol

video server
(stored video) client

Internet

4/26/18

4

variable fill
rate, x(t)

client application
buffer, size B

playout rate,
e.g., CBR r

buffer fill level, Q(t)

video server

client

1. Initial fill of buffer until playout begins at tp

2. Playout begins at tp,

3. Buffer fill level varies over time as fill rate x(t) varies and
playout rate r is constant

§ Differentiated services
§ Implemented via HTTP with evolution toward DASH

§ Few changes to Internet infrastructure
§ Provide 1st and 2nd class service
§ 1st Class
§ Limit the number of 1st class packets
§ These receive priority in router queues

§ Net neutrality?

4/26/18

5

§Use of HTTP (TCP) is overtaking use of UDP
§ Fill rate fluctuates due to TCP congestion control, retransmissions
(in-order delivery)

§But… HTTP/TCP passes more easily through firewalls

§Multimedia file retrieved via HTTP GET
§ Sent at maximum possible rate under TCP

variable rate,
x(t)

TCP send buffervideo
file

TCP receive
buffer

application playout
buffer

server client

• audio, video not streamed!
• no, “pipelining,” long delays until playout

1.Audio or video stored in a file
2.Files transferred as HTTP object

§ Received in entirety at client
§ Then passed to player

4/26/18

6

1. Browser requests metafile
2. Browser launches media player, passing the metafile

3. Player contacts web server

4. Server streams audio/video to player

<title>Twister</title>
<session>

<group language=en lipsync>
<switch>

<track type=audio
e="PCMU/8000/1"
src = "rtsp://audio.example.com/twister/audio.en/lofi">

<track type=audio
e="DVI4/16000/2" pt="90 DVI4/8000/1"
src="rtsp://audio.example.com/twister/audio.en/hifi">

</switch>
<track type="video/jpeg"

src="rtsp://video.example.com/twister/video">
</group>

</session>

4/26/18

7

7-16

1. Allows for non-HTTP protocol between the server & the media player

2. Uses RTSP (real-time streaming protocol)

§ First implementation is “DASH”
§ Dynamic, Adaptive Streaming over HTTP

§ Fundamental changes for the Internet
§ Protocols to reserve link bandwidth for entire path, from sender

to receiver
§ Modify router queues so reservations can be honored
§ To identify honored packets, applications must be able to label

packets as such
§ Network must be able to determine if there is sufficient

bandwidth

§ Requires new & complex software in hosts & routers

4/26/18

8

§DASH: Dynamic, Adaptive Streaming over HTTP
§Addresses problem of varying bandwidth available to client

§Server:
§Multiple copies of video are stored and encoded at different rates
§ Server divides video file into multiple chunks
§Manifest file: provides URLs for the different copies

§Client:
§Periodically measures server-to-client bandwidth
§Consulting manifest, requests one chunk of video at a time

§ chooses maximum coding rate sustainable given current bandwidth
§ can choose different coding rates at different points in time (depending on available

bandwidth at time)

§“Intelligence” is implemented at client: client
determines
§When to request chunk (so that buffer starvation, or
overflow does not occur)

§What encoding rate to request (higher quality when more
bandwidth available)

§Where to request chunk (can request from URL server that is
“close” to client or has high available bandwidth)

4/26/18

9

1. video
recorded (e.g., 30
frames/sec)

2. video
sentC

um
ul

at
iv

e
da

ta

streaming: at this time, client
playing out early part of video,
while server still sending later
part of video

network delay
(fixed in this

example)
time

3. video received,
played out at client
(30 frames/sec)

constant bit
rate video

transmission

C
um

ul
at

iv
e

da
ta

time

variable
network
Delay
(jitter)

client video
reception constant bit

rate video
playout at client

client playout
delay

bu
ffe

re
d

vi
de

o

§client-side buffering and playout delay: compensate
for network-added delay, delay jitter

4/26/18

10

§Suppose that the client begins playout as soon as the first block
arrives at t1. In the figure, how many blocks of video (including the
first block) will have arrived at the client in time for their playout?
Discuss.

§Suppose that the client begins playout now at t1 + Δ. How many
blocks of video (including the first block) will have arrived at the
client in time for their playout? Discuss.

§In the same scenario as above, what is the largest number of blocks
that is ever stored in the client buffer, awaiting playout? Discuss.

§What is the smallest playout delay at the client, such that every
video block has arrived in time for its playout?

4/26/18

11

§ Challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

§ Store/serve multiple copies of videos at multiple geographically
distributed sites (CDN)
§ Use DNS to determine location of client

Bob (client) requests video http://netcinema.com/6Y7B23V
§ Video is stored in CDN at http://KingCDN.com/NetC6y&B23V
§ Netcinema is the company contracting with KingCDN for distribution

netcinema.com

KingCDN.com

1

1. Bob gets URL for video
http://netcinema.com/6Y7B23V
from netcinema.com web page

2
2. resolve http://netcinema.com/6Y7B23V
via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns URL
http://KingCDN.com/NetC6y&B23V

4
4&5. Resolve
http://KingCDN.com/NetC6y&B23
via KingCDN’s authoritative DNS,
which returns IP address of KingCDN
server with video

56. request video from
KINGCDN server,
streamed via HTTP

KingCDN
authoritative DNS

Bob’s local DNS server

4/26/18

12

1

1. Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2
2. Bob browses
Netflix video

3

3. Manifest file
returned for
requested video

4. DASH
streaming

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

HTTP
§ Was not designed for multimedia content
§ No commands for fast forward, etc.

RTSP
§ Real-time streaming protocol
§ Client-server application layer protocol
§ User control
§ rewind, fast forward, pause, resume, repositioning, etc…

4/26/18

13

Chapter 2 FTP:

file transfer
FTP

server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

The Server:

§Listens on port 21 for an incoming connection request

§Performs file transfer over TCP data connection via
port 20

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

4/26/18

14

FTP uses “out-of-band” control
channel:

§ Control info (directory
changes, file deletion,
rename) is sent over one TCP
connection

§ File transfer occurs over a
second TCP connection.

§ “Out-of-band” & “in-band”
channels use different port
numbers

RTSP uses “out-of-band”
message channel:

§ RTSP control messages use
different port numbers than
media stream

§ The actual media stream is
considered “in-band”

1. Allows for non-HTTP protocol between the server & the media
player

2. Uses RTSP

4/26/18

15

§ Speaker�s audio: alternating “talk spurts,” silent periods.

§ 64 kbps during “talk spurt”

§ Packets generated only during talk spurts

§ Example: 20 msec chunks at 8 Kbytes/sec = 160 bytes of data for
each voice data chunk created

§ Application-layer header added to each chunk

§ Chunk+header encapsulated into UDP or TCP segment

§ Application sends transport segment into socket every 20
msec during a talk spurt

4/26/18

16

§ Network loss: IP datagram lost due to network
congestion (router buffer overflow)

§ Delay loss: IP datagram arrives too late for playout
at receiver
§ delays: processing, queueing in network; end-system

(sender, receiver) delays
§ typical maximum tolerable delay: 400 ms

§ Loss tolerance: depending on voice encoding, loss
concealment, packet loss rates between 1% and 10%
can be tolerated

constant bit
rate

transmission

C
um

ul
at

iv
e

da
ta

time

variable
network
delay
(jitter)

client
reception constant bit

rate playout
at client

client playout
delay

bu
ffe

re
d

da
ta

§ End-to-end delays of two consecutive packets: difference can
be more or less than 20 msec (transmission time difference)

4/26/18

17

§ Receiver attempts to playout each chunk exactly q msecs after
a chunk is generated.
§ Chunk has time stamp t: play out chunk at t+q
§ Chunk arrives after t+q: data arrives too late for playout: data
�lost�

§ A delay of q < 150 msec is not detectable by the human ear
§ A delay of q > 400 msec becomes in tolerable for an interactive

conversation

§ Tradeoff in choosing q:
§ Large q: less packet loss
§ Small q: better interactive experience

packets

time

packets
generated

packets
received

loss

r
p p'

playout schedule
p' - r

playout schedule
p - r

§ Sender generates packets every 20 msec during talk spurt.
§ First packet received at time r
§ First playout schedule: begins at p
§ Second playout schedule: begins at p�

4/26/18

18

packets

time

packets
generated

packets
received

loss

r
p p'

playout schedule
p' - r

playout schedule
p - r

4/26/18

19

Challenge: recover from packet loss given small tolerable
delay between original transmission and playout
§Send enough bits to allow recovery without retransmission

Simple Forward Error Correction (FEC)
§ For every group of n media chunks, create a redundant chunk by

exclusive OR-ing the n original chunks
§ Send n+1 chunks, increasing bandwidth by factor 1/n
§ Can reconstruct the original n chunks
§ If at most there is one lost chunk from the n+1 chunks sent
§ Yet we incur playout delay while waiting to reconstruct the lost

chunk

another FEC scheme:
§ Piggyback lower

quality stream
§ Send lower resolution

audio stream as
redundant information

§ e.g., nominal
stream at 64 kbps
and redundant stream
at 13 kbps

§ Non-consecutive loss: receiver can conceal loss
§ Generalization: can also append (n-1)st and (n-2)nd low-bit rate

chunk

4/26/18

20

interleaving to conceal loss:

§ Audio chunks divided into smaller units,
e.g. four 5 msec units per 20 msec audio chunk

§ Packet contains small units from
different chunks

§ If packet lost, still have most of
every original chunk

§ No redundancy overhead, but
increases playout delay

Discussion Question
For the 2 redundant FEC schemes (next slide):
a) How much additional bandwidth does each scheme

require? How much playback delay does each scheme
add?

b) How do the two schemes perform if the first packet is
lost in every group of five packets? Which scheme will
have better audio quality?

c) How do the two schemes perform if the first packet is
lost in every group of two packets? Which scheme will
have better audio quality?

4/26/18

21

Discussion Question
1) Simple Forward Error Correction

• For every group of n chunks, create
a redundant chunk by exclusive
OR-ing n original chunks

• Send n+1 chunks, increasing
bandwidth by factor 1/n

• Can reconstruct the original n

chunks if at most there is one lost
chunk from the n+1 chunks sent,
with playout delay

2) Piggyback low quality audio

§ Evolution: UDP à HTTP à DASH
§ Streaming stored video
§ Three scenarios for transferring

§ As HTTP object
§ From web server
§ From streaming server

§ Compare RTSP to FTP
§ Content distribution networks
§ Voice Over IP

