

Network Security

- Recap Message Integrity and Authentication
- Trusted Intermediaries
- Secure email pretty good privacy (PGP)

* End point authentication *

- 1) State "I am Alice"
 - Anyone can do this
- 2) Provide IP address along with statement
 - Easy to get and use someone else's IP address: "IP spoofing"
- 3) Provide password, IP address and name
 - Playback attack
 - Provide encrypted password, IP address and name → Playback attack still works
- 4) Use 'nonce' (think about Apple Pay)
 - A '<u>n</u>umber' used only '<u>once</u>'
 - Allows for "woman-in-the-middle" attacks

Authentication: avoid playback attack

Nonce: Select a number (R) used only once -in-a-lifetime

<u>To prove</u> Alice is "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

* Trusted Intermediaries *

Symmetric key problem:

 How do two entities establish shared secret key over network?

Solution:

• Trusted Key Distribution Center (KDC) acting as intermediary between entities

Public key problem:

 How do you know you are getting the actual public key and not the public key of an intruder?

17

Solution:

• trusted Certification Authority (CA)

KDC Question - on Handout

- Explore how the session key can be distributed- without public key cryptographyusing a Key Distribution Center (KDC).
- The KDC is a server that shares a unique secret symmetric key with each registered user.
- \cap For Alice and Bob, denote these keys by K_{A-KDC} and K_{B-KDC} .
- \cap Design a scheme that uses the KDC to distribute K_s to Alice and Bob.
- Use three messages to distribute the session key:
 (i) a message from Alice to the KDC
 (ii) a message from the KDC to Alice
 (iii) a message from Alice to Bob.

21

22

KDC Question Continued

- \cap Design a scheme that uses the KDC to distribute K_s to Alice and Bob.
- Use three messages to distribute the session key:

(i) a message from Alice to the KDC

- (ii) a message from the KDC to Alice
- (iii) a message from Alice to Bob.
- The first message is K_{A-KDC} (A, B).
 - \cap Using the notation, K_{A-KDC}, K_{B-KDC}, K_s, A and B
 - Diagram the following questions.
 - 'A' and 'B' denote identifiers IP addr? for Alice & Bob
 - Show the second message on the diagram
 - Show the third message on a diagram

Public Key Certification

public key problem:

When Alice obtains Bob's public key (from website, e-mail ...), how does she *know* it is Bob's public key, not Trudy's?

solution:

• trusted certification authority (CA)

Certification Authorities

- When Alice wants Bob's public key:
 - get Bob's certificate (Bob or elsewhere).
 - apply CA's public key to Bob's certificate, get Bob's public key

Discussion Question

- If a <u>Key Distribution Center</u> goes down, what is the impact on the ability of parties to communicate securely. Who can and cannot communicate?
- If a <u>Certification Authority</u> goes down, what is the impact on the ability of parties to communicate securely. Who can and cannot communicate?

Recap so far...

28

Security mechanisms

Cryptography

- Keys symmetric and public/private
- Key distribution & Certificates
- Hash function + Authentication key
- Nonce

To provide

- Secure access to resources
- Confidentiality
- Message integrity
- Authentication

Security Mechanisms									
REAL PROPERTY.	Identify elements	Define how it works	Identify weaknesses						
Password									
Symmetric key cryptography									
Public key cryptography									
Message Authentication Code, MAC	the second s								
Digital signature									
Nonce									
Key distribution center									
Certificate authority									

T	Which	mechanisms	address	which	principles	?

Data/Message Integrity Authentication	n

Review: Network Security

- The field of network security is about:
 - How computer networks can be attacked
 - How to defend networks against these attacks
 - How to design protocols and hardware that are immune to attacks
 - Security considerations are in all layers
 - Internet protocol designers are trying to catch up

Chapter 8 So Far

• Defining network security

 confidentiality, authentication, integrity, nonrepudiation (access control)

Cryptography

• Symmetric, public and mixed

∩ Integrity

- Message digest
- Digital signature

O Certification Authority & KDC