Introduction to the Link Layer, Chapter 4

Smith College, CSC 249
October 27, 2014

Link Layer (all wired and wireless lines below)

"link"

"link" has responsibility of transferring a frame from one node to an adjacent node over a link

Link Layer Services & Protocols

- Link layer services?
- Types of connections?
- Principles for multiple access protocols?
- Categories of multiple access protocols?
- Example of link layer technology
 - Ethernet & CSMA/CD

Delivering a datagram: Single Subnet

Starting at A, given IP datagram addressed to B:
- Look up IP address of B
- Find B is on same subnet as A
- Link layer will send datagram directly to B inside link-layer frame
 - B and A are directly connected
- Remember definition of SUBNET?
Delivering a datagram: Different Subnet

Starting at A, dest. E:
- Look up network address of E
- E on different subnet
 - A, E not directly attached
- Routing table: next hop router to E is 223.1.1.4
- Link layer sends datagram to router 223.1.1.4 inside link-layer frame
- Datagram arrives at 223.1.1.4
- Continued....

Link Layer Vocabulary

- **Node:** hosts and routers
- **Link:** communication channels that connect adjacent nodes
 - Wired & wireless links
- **Frame**
 - A layer-2 packet is a frame
- **"MAC" addresses**
 - Media Access Control address
 - In frame headers to identify source and destination
 - Different from IP address

Link Layer Services

1. **Framing, link access:**
 - Encapsulate datagram into frame, adding header, trailer (with MAC addresses)
 - Coordinate access to the communication channel, if it is a shared medium

2. **Reliable delivery between adjacent nodes**
 - Seldom used on low bit error link (fiber, some twisted pair)
 - Wireless links: high error rates
 - Q: why both link-level and end-end reliability?

Link Layer Services (more)

3. **Error Detection**
 - Errors caused by signal attenuation, noise.
 - Receiver detects presence of errors:
 - Signals sender for retransmission or drops frame

4. **Error Correction**
 - Receiver identifies and corrects bit error(s) without resorting to retransmission

5. **Half-duplex and full-duplex**
 - With half duplex, nodes at both ends of link can transmit, but not at same time

6. **Flow Control**
 - Pacing between adjacent sending and receiving nodes
Where is the link layer implemented?

- in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC)
 - Ethernet card, PCMCI card, 802.11 card
 - implements link, physical layer
- attaches into host’s system buses
- combination of hardware, software, firmware

Adaptors Communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.
- receiving side:
 - looks for errors, rdt, flow control, etc
 - extracts datagram, passes to upper layer at receiving side

Error Detection: Parity

Single Bit Parity:
- Detect single bit errors
- Parity:
 - Data: 0110001101011100
 - Parity bit: 0

Two Dimensional Bit Parity:
- Detect and correct single bit errors
- Parity:
 - Data: 1010101010101011
 - Parity: 101010101010101011
 - Error: 0
 - Correctable:

Parity Problem

- Suppose a packet contains 1010101010101011
- An even parity scheme is used
- What would the value of the field containing the parity bits be, for the case of a 2D parity scheme?

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Parity Problem
- For the previous question, show an example of
 - 1-bit error detected and corrected
 - 2-bit error detected but not corrected
 - Note row 2, columns 2 and 3

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Error Detection
- **Parity** - typically applied to individual bytes
- **Checksum**
 - Applied to a packet, a packet header...
 - Is moderately robust
- **CRC** can detect more errors
 - A single bit of the packet affects the CRC in a more complex manner than for checksum
 - Each bit feeds into the CRC in three places
 - Each bit then cycles through and interacts with remaining bits

Multiple Access Links and Protocols
Two types of "links":
- **point-to-point**
 - point-to-point link between Ethernet switch and host
- **broadcast** (shared wire or medium)
 - traditional Ethernet
 - 802.11 wireless LAN

Multiple Access protocols
Problem: Single shared broadcast channel
- All nodes receive all frames
- There is 'collision' if more than one node transmits at the same time

Solution: Multiple access protocol
- Coordinate access to a shared broadcast channel
- Establish rules for dealing with collisions
Ideal Multiple Access Protocol

Principles for a broadcast channel of rate R

1. When one node wants to transmit, it can send at rate R.
2. When M nodes want to transmit, each can send at average rate R/M.
3. Fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
4. Simple

MAC Protocols: Three Categories

- **Channel Partitioning**
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- **Random Access**
 - channel not divided, allow collisions
 - "recover" from collisions
- "Taking turns"
 - Nodes take turns, but nodes with more to send can take longer turns

MAC Protocols: Three Types

- **Volunteers**
 - To 'send' (read) text
 - To 'receive' (hear and decipher) text

Channel Partitioning MAC protocols: TDMA

- **TDMA**: time division multiple access
- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

![6-slot frame diagram]
Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access
- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes → "collision"

- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)

Examples of random access MAC protocols:
- CSMA, CSMA/CD, CSMA/CA

CSMA (Carrier Sense Multiple Access)

CSMA: listen before transmitting:
- If channel is sensed to be idle, transmit entire frame
 - Sense the voltage level on the cable or fiber
- If channel is sensed to be busy, defer transmission

CSMA collisions

collisions can still occur:
propagation delay means two nodes may not hear each other’s transmission

collision:
entire packet transmission time wasted

note:
role of distance & propagation delay in determining collision probability
CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA
- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: receiver shut off while transmitting

CSMA/CD applet:
http://wps.aw.com/aw_kurose_network_3/0,9212,1406346-,00.html

"Taking Turns" MAC protocols

Channel partitioning MAC protocols:
- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols
- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"Taking turns" protocols
- Polling protocols, and token ring protocols

Polling Protocols

- A master node coordinates which node uses the channel
- Efficient, but...
- Single point of failure possible
"Taking Turns" MAC protocols

Token passing:
- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Summary
- New link layer vocabulary
- Link layer services
 - Parity for error detection and correction
- Multiple access protocol principles
- Three categories of MAC protocols