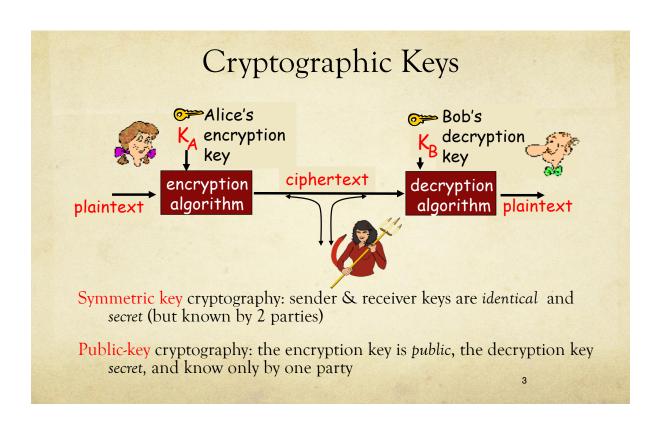


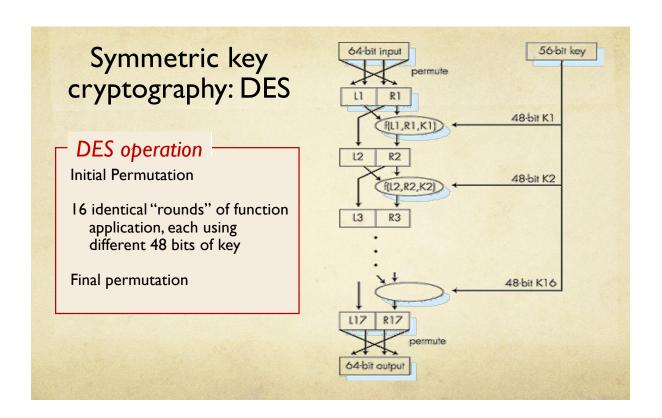
Network Security

- O Symmetric Key Cryptography
 - Caesar cipher
 - O DES and AES
- Public Key Cryptography



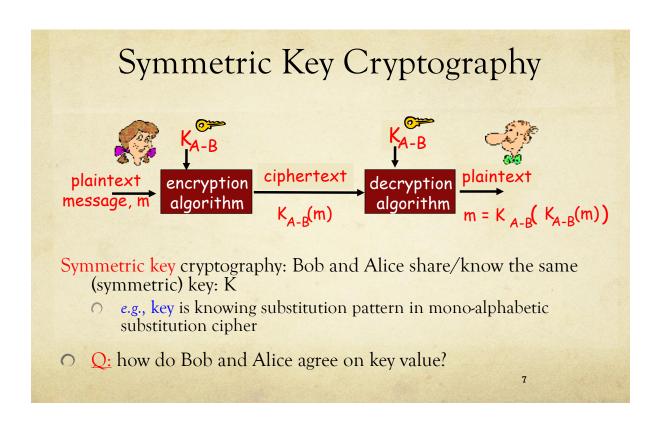
Symmetric Key Cryptography

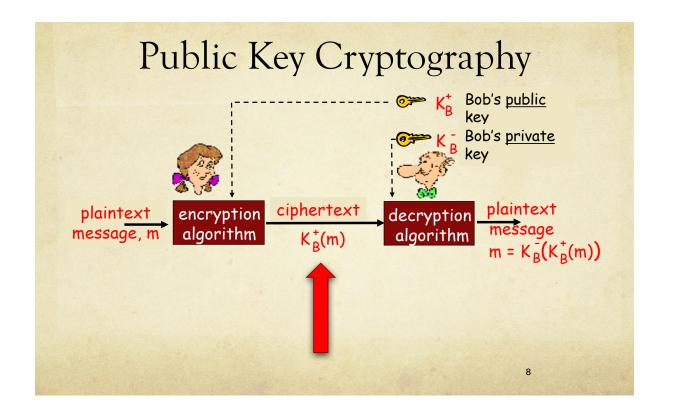
- O Both parties have the same key
- O Use this key to both encrypt and decrypt the message
 - → The actions are symmetric
- O Early Caesar Cypher
- Now, two dominant algorithms
 - O DES data encryption standard
 - O AES advanced encryption standard



AES: Advanced Encryption Standard

- Symmetric-key NIST standard
 - Replaced DES (Nov 2001)
- O Processes data in 128 bit blocks
 - 128, 192, or 256 bit keys
- O Brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES





RSA Important Property

The following property defines this method:

$$K_{B}(K_{B}^{+}(m)) = m = K_{B}^{+}(K_{B}(m))$$

by private key by public key

use public key use private key first, followed first, followed

Public key encryption algorithm

Requirements:

1) need $K_B^-(\bullet)$ and $K_B^+(\bullet)$ such that

$$K_B^-(K_B^+(m)) = m$$

(2) given public key $K_{\rm B}^+$, it should be impossible to compute private key

$$K_B^-$$

RSA: Rivest, Shamir, Adelson algorithm

RSA: Choosing keys (an art)

- 1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. Compute n = pq, z = (p 1)(q 1)
- 3. Choose e (with $e \le n$) that has no common factors with z. (e, z are "relatively prime").
- 4. Choose d such that ed-1 is exactly divisible by z. (in other words: $ed \mod z = 1$).
- 5. Public key is (n,e). Private key is (n,d). K_B^+

11

RSA: Encryption, Decryption

- 0. Given (n,e) and (n,d) as computed above
- 1. To encrypt bit pattern, m, compute $c = m^e \mod n \quad (i.e., remainder when <math>m^e$ is divided by n)
- 2. To decrypt received bit pattern, c, compute $m = c^d \mod n$ (i.e., remainder when c^d is divided by n)

Number
$$m = (m^e \mod n)^d \mod n$$
 result

RSA Example:

Bob chooses
$$p = 5$$
, $q = 7$. Then $n = 35$, $z = 24$.
 $e = 5$ (so e , z relatively prime).
 $d = 29$ (so $ed-1$ exactly divisible by z)

encrypt: $\frac{\text{letter}}{1}$ $\frac{\text{m}}{12}$ $\frac{\text{m}^e}{12}$ $\frac{\text{c} = \text{m}^e \mod n}{12}$

decrypt: $c c^d m = c^d mod n letter$

13

* Activity *

- O Using RSA, choose p = 3, q = 11. Encode a letter of your choice and send it to a different host to decode.
- O Suggestion for e? ... choose e =
- O Then z = (p-1)(q-1) =
- Also choose d =

00

O Thus n =

* Activity *

- O So we have
 - n = 33, e = 9, d = 9
 - (n,d) & (n, e)
- Encrypt a LETTER and pass it across the room to be decrypted

15

RSA in practice: session keys

- Exponentiation in RSA is computationally intensive
- O DES/AES is at least 100 times faster than RSA
- O Use public key crypto to establish secure connection, then establish second key symmetric session key for encrypting data

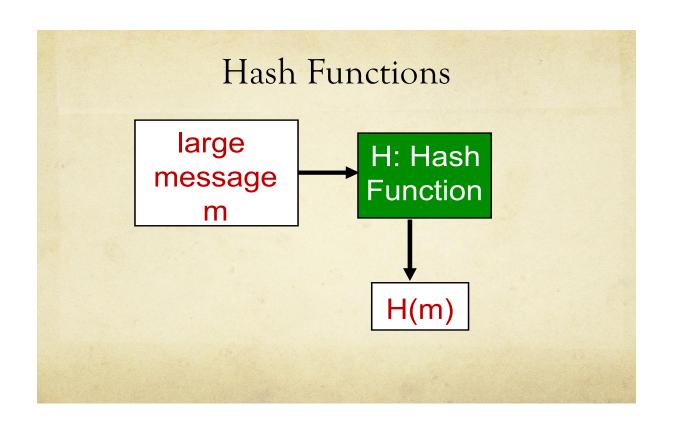
session key, K_S

- O Bob and Alice use RSA to exchange a symmetric key K_S
- Once both have K_s, they use symmetric key cryptography

8-16

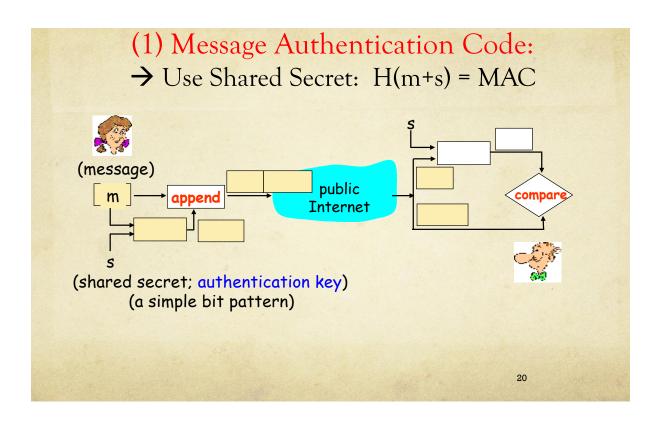
Next Security Tasks

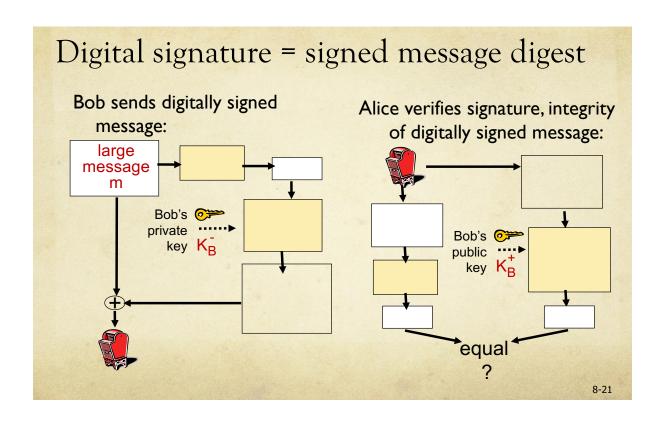
- Encryption keys are public, so anyone could *claim* to be someone else
 - Need more than public key cryptography
- Ensure message is not corrupted
 - Message integrity with Message Authentication Code (MAC)
- O Bind message to sender end-point authentication
 - Digital signature
- ☐ Use: Cryptographic hash function

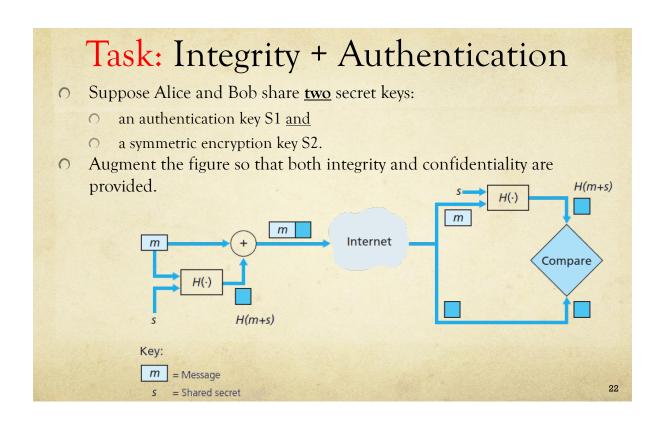


Cryptographic Hash Function

- The ideal cryptographic hash function has four properties:
 - 1. Easy to compute the hash value for any message, H(m)
 - 2. Infeasible to generate the message from the hash
 - 3. Infeasible to modify a message without changing the hash H(m') ≠ H(m)
 - 4. Infeasible to find two different messages with the same hash H(m1) ≠ H(m2)
- The output is called the digest
- Note there is no encryption here





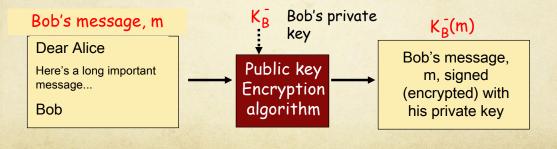


(2) Digital Signature:

Use Public Key Cryptography

23

- Bob signs m by encrypting it with his private key K_B^- , creating "signed" message, K_B^- (m)
- O Binds the message to the sender (stronger than H(m+s))



Digital Signatures (more)

- O Alice verifies m signed by Bob by
 - .
 - 0
- O If $K_B^+(K_B^-(m)) = m$, whoever signed m must have used Bob's private key.

Alice thus verifies that:

- → Bob signed m.
- ➤ No one else signed m.
- **→** Bob signed m and not m'.

Non-repudiation:

✓ Alice can take m, and signature $K_B^{-}(m)$ to court and prove that Bob signed m.