

Overview

- New challenges: wireless links and mobile hosts
- Cellular networks for Internet access
- Introduction to mobility

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: receiver shut off while transmitting

Outline for Wireless (& Mobility)

- Two new challenges at the link layer...

3

1

- Characteristics of Wireless Links and Wireless Networks
- 802.11, WiFi, architecture and protocol
 - CSMA/CA
 - 802.11 frames

Elements of wireless network

5

7

Elements of wireless network: Base Station

"Modes" of Operation

- Infrastructure mode
- Ad hoc mode

9

10

Hypothesize strengths and weaknesses of each option?

Elements of wireless network: Mode 1

Elements of wireless network: Mode 2

Wireless network taxonomy

	single hop	multiple hops
Infrastructure (e.g., APs)	Host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	Host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>
No infrastructure Ad Hoc Networks	No base station, no connection to larger Internet (Bluetooth)	No base station, no connection to larger Internet. May need to relay for reach other (MANET, VANET)

* Wireless Link Characteristics *

Differences from wired link

- Decreasing signal strength: EM signal attenuates as it propagates through matter (path loss)
- Interference from other sources: wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone, microwave)
- Multipath propagation: EM signal reflects off objects, arriving at destination at slightly different times (like echoing)

... make communication across (even a point to point) wireless link much more error-prone

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

IEEE 802.11 Wireless LAN

- **802.11** has 11 channels
- Protocol: CSMA/CA
- Architecture: BSS
- Association with an AP
 - ♦ Hosts scan channels, listening for beacon frames with AP's name
 ♦ SSID - service set identifier
 - \diamond MAC address
 - ♦ Selects AP
 - Then typically run DHCP to get IP address in AP's subnet

Our familiar "Wifi" 802.11: passive/active scanning

Passive Scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent: H1 to selected AP

Active Scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probes response frame sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent: H1 to selected AP

IEEE 802.11 Wireless LAN

Some Details:

- 11 partially overlapping channels, within the 85MHz available
 Up to 11 Mbps for each channel
- Uses CSMA/CA for multiple access
 - CA = Collision Avoidance
- Architecture
 - wireless host communicates with base station
 - base station = access point (AP)
 - Basic Service Set (BSS) a.k.a. "cell" contains:
 - wireless hosts
 - access point (AP): base station

```
18
```

19

802.11: "Association"

- Each host must associate with an AP
 - scans channels, listening for *beacon frames* containing AP's name (SSID - service set identifier) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

Competing ISPs in a WiFi Cafe

- Problem: Suppose two ISPs provide WiFi access in a café, and by chance each ISP configures its AP to operate over channel 11.
- Will the 802.11 protocol function?
- What will happen when the two stations associated with the different ISPs attempt to transmit simultaneously?
- What happens if one ISP switches to channel 1?

IEEE 802.11 Questions

- Question Compare and contrast:
 - Path loss

20

- Multipath propagation
- Interference
- Question As a node gets further from a base station, what two actions might a base station take to minimize the probability of frame loss?

IEEE 802.11: multiple access

- Avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - Do not collide with ongoing transmission by other node
- 802.11: no collision detection! → Why?
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - cannot sense all collisions: hidden terminal, fading
- Goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

22

1) if sense channel idle then transmit entire frame (no CD)

2) if sense channel busy then

- start random backoff time
- timer counts down while idle
- transmit when timer expires
- if no ACK, increase random backoff interval, repeat

802.11 receiver

1) if frame received OK then return ACK

Avoiding collisions: RTS & CTS

New Idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- Sender first transmits *small* request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they are small)
- AP broadcasts clear-to-send (CTS) in response to RTS
- RTS heard by all nodes (& CTS received by all)
 - sender transmits data frame

24

25

other stations defer transmissions

Avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

Collision Avoidance Question

 Question - What might an RTS threshold be? How would it work? Why would we use one?

802.11 frame: addressing

Components of cellular network architecture

Cellular networks: the first hop

Two techniques for sharing mobile and base station radio spectrum

- combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots
- CDMA: code division multiple access

CDMA vs. GSM - Multiple Access Technologies

- 4G is somewhat replacing this technology split of 3G
- CDMA (Code Division Multiple Access)
 - Owned by Qualcomm
 - Sprint, Verizon, US Cellular us CDMA
 - Difficult to transmit voice and data simultaneously

GSM (Global System for Mobiles)

- Uses 'time division'
- Created by an industry consortium
- AT&T and T-Mobile use
- And the technology most of the world uses
- Simultaneous voice and data is defined as part of the technology

Discussion

- 1) What are important differences between 3G and 4G cellular networks?
 - In 3G architecture, there are separate network components and paths for voice and data, i.e., voice goes through public telephone network, whereas data goes through public Internet. 4G architecture is a unified, all-IP network architecture, i.e., both voice and data are carried in IP datagrams to/from the wireless device to several gateways and then to the rest of the Internet.
 - The 4G network architecture clearly separates data and control plane, which is different from the 3G architecture.

Discussion

- 2) What is the role of the "core network" in the 3G cellular data architecture?
 - The 3G core cellular data network connects (radio) access networks to the public Internet. The core network interoperates with components of the existing cellular voice network (in particular, the MSC)

3G (voice+data) network architecture

3G versus **4G** LTE network architecture

4G: differences from 3G

- All IP core: IP packets tunneled (through core IP network) from base station to gateway
- No separation between voice and data all traffic carried over IP core to gateway

Cellular Service + Tunneling:

Mobility...

 \bigcirc

What is mobility?

47

Spectrum of mobility, from the network perspective:

Wireless: 802.11 frame: addressing

802.11 frame: addressing

802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address will remain same
- How does the switch find H1 as it changes association from AP1 to AP2?
 - self-learning: switch will see frame from H1 and update switch table with the port to be used to reach H1

Same-Subnet Mobility Question

- Assume a subnet with two access points (AP) that are connected by a switch
- A wireless station moves from one BSS to another
- Why does the newly associated AP need to send a frame with a "spoofed MAC address" to the switch in order for the switch to properly forward subsequent frames?

Same-Subnet Mobility Question

50

- Initially the switch has an entry in its forwarding table which associates the wireless station with the earlier AP.
- When the wireless station associates with the new AP, the new AP creates a frame with the wireless station's MAC address ('spoofing' the address) and broadcasts the frame.
- The frame is received by the switch. This forces the switch to update its forwarding table, so that frames destined to the wireless station are sent via the new AP.

Mobility: vocabulary

Mobility: more vocabulary

Summary

- Wireless issues
 - Link characteristics
 - Network characteristics
 - Association with Access Point (AP)
 - •csma/ca
 - Collision Avoidance
 - RTS/CTS
 - Framing addresses used
- Cellular networks
- Introduction to mobility