

# Chapter 6: Summary

Data link layer services:

- error detection and correction
- sharing a broadcast channel: multiple access
- link layer addressing
- Plug-and-play for ARP and switch table learning
- Link layer technologies
  - Ethernet
  - switched LANS (switches v. hubs)

2



Four sources of packet delay



#### **Sockets**

process sends/receives messages to/from its socket

- sending process sends message through the socket
- sending process relies on transport infrastructure, UDP or TCP as programmed into the operating system, to deliver the message to the socket at the receiving host & process



Application Layer 2-5

#### DNS: a distributed, hierarchical database



#### a host, or client, wants the IP address for www.google.com

- 1) Client (local server) queries root server to find the .com DNS server
- 2) Client queries .com DNS server to get google.com DNS server
- Client queries google.com DNS server to get the IP address for www.google.com

## TCP: slow start & congestion avoidance

#### Implementation:



Transport Layer 3-7

8

### DHCP client-server scenario



**broadcast** address,  $255.255.255.255 \rightarrow$  sent to every host *in the subnet* 

## Router architecture overview



## Routing: Dijkstra's algorithm

| Step | N'       | D(v),p(v) | D(w),p(w) | D(x),p(x) | D(y),p(y) | D(z),p(z)                               |
|------|----------|-----------|-----------|-----------|-----------|-----------------------------------------|
| 0    | u        | 2,u       | 5,u       | 1,u       | ∞         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 1    | ux 🔶     | 2,u       | 4,x       |           | 2,x       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 2    | uxy      | 2,u       | З,у       |           |           | 4.1                                     |
| 3    | uxyv 🗸   |           | -3,y      |           |           | 4,y                                     |
| 4    | uxyvw 🛩  |           |           |           |           | <u>4,y</u>                              |
| 5    | uxyvwz ← |           |           |           |           | - <del>-</del> ,y                       |



Network Layer

## CSMA/CD (collision detection)



Link Layer

#### Slide Example: Creating an ARP Table

#### For the same LAN segment:

- 'A' wants to send datagram to 'B,' and B's MAC address not in A's ARP table.
- 'A' broadcasts ARP query packet, containing B's IP address
  - Dest MAC address = FF-FF-FF-FF-FF
  - All machines on LAN receive ARP query
  - \* ARP Packets contain IP & MAC address for source and destination
  - \* A caches (saves) IP-to-MAC address pair in its ARP table
- B receives ARP packet, responds to A with its (B's) MAC address
  - Why does only 'B' respond?
  - frame sent directly to A's MAC address (not broadcast)
- □ ARP is "plug-and-play":
  - nodes create their ARP tables without intervention from net administrator

# Switch table example

Suppose C sends frame to B



| Layer       | Protocols, and their<br>main features | Happens TO Packet | Action caused BY packet | Action/Event happens on<br>own |
|-------------|---------------------------------------|-------------------|-------------------------|--------------------------------|
| Application |                                       |                   |                         |                                |
| Transport   |                                       |                   |                         |                                |
| Network     |                                       |                   |                         |                                |
| Link        |                                       |                   |                         |                                |