Link Layer: CSMA/CD, MAC addresses, ARP

Smith College, CSC 249 March 27, 2018

Thursday Recap

- Link layer services
- Principles for multiple access protocols
- Categories of multiple access protocols

Recap: Random Access Protocols

Random Access MAC Protocol specifies:

- how to detect collisions
- how to recover from collisions (e.g., via delayed retransmissions)
- U When a node has a packet to send
 - * transmit at full channel data rate R.
 - * no a priori coordination among nodes
- □ two or more transmitting nodes → "collision"

Recap: CSMA/CD (Collision Detection)

3

Ethernet CSMA/CD Algorithm

Ethernet details

- Ethernet algorithm for CSMA/CD
- Sensing delay
- Jam signal
- Examples
 - Indicate impact of length of links
 - Hubs vs. Switches introduction

Ethernet

- Connectionless: No handshaking between sending and receiving adapter
- Unreliable: receiving adapter does not send ACKs or NAKs to sending adapter
 - stream of frames passed to network layer can have gaps
 - * gaps will be filled if application is using TCP
 - otherwise, application will see the gaps
- Ethernet's MAC protocol: CSMA/CD

5

Ethernet CSMA/CD Features

- Adapter does not transmit if it senses that some other adapter is transmitting, that is, carrier sense
- Transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection
- Before attempting a retransmission, adapter waits a random time, that is, random access

Ethernet CSMA/CD algorithm

- 1. Adaptor receives datagram from network layer & creates frame
- 2. If adapter senses channel idle (senses for 96 bit-times), it starts to transmit frame. If it senses channel busy, it waits until channel is idle.
- 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame.
- 4. If adapter detects another transmission while transmitting, it aborts and sends jam signal
- 5. After aborting, adapter enters exponential backoff:
 - 1. After the mth collision, adapter chooses a K at random from {0,1,2,..., 2^{m} -1}.
 - 2. Adapter waits K.512 bit times and returns to Step 2

7

Ethernet's CSMA/CD (more)

Jam Signal: make sure all other

- transmitters are aware of collision
- Ensure there was/is enough energy to be detected
- 48 bits long
- Bit time: For typical 10 Mbps Ethernet, (10x10⁶)⁻¹ = 0.1µs

If K=1023, the wait time is about 50 msec

csma/cd applet:

<u>nttp://wps.aw.com/</u> aw kurose network 5/111/28536/7305312_cw/index.html <u>http://wps.aw.com/aw kurose network 3/0.9212_1406346-</u> <u>00.html</u>

Exponential Backoff:

- Goal: adapt retransmission attempts to estimated current load
 - heavy load = more collisions so the random wait will be longer
- first collision: choose K from {0,1}; delay is K· 512 bit transmission times
- after second collision: choose K from {0,1,2,3}...
- after ten collisions, choose K from {0,1,2,3,4,...,1023}

<u>Question 1a</u>

- □ In CSMA/CD, after the fifth collision
 - What is the probability that a node chooses K=4?
 - How long will the adapter wait to retransmit on a 10 Mbps Ethernet?

Question 1 (on handout)

- Nodes A and B are on a 10Mbps link with d_{prop} = 225 bit-times between nodes. If A transmits, and before it is done B begins to transmit:
 - Can A finish before it detects that B has begun?
 - (* If yes, then A believes its transmission was successful and collision-free, so will not retransmit *)
- Ethernet frame (next slides)
 - Size of Frame:
 - Header + CRC = 26 bytes
 - Data field minimum = 46 bytes (up to 1500 bytes maximum for Ethernet)

11

<u>What is a bit-time</u>

- Bit time is a concept in computer networking. It is defined as the time it takes for one bit to be ejected from a Network Interface Card (NIC) operating at some predefined standard speed, such as 10 Mbit/s.
- The time is measured between the time the logical link control layer 2 sublayer receives the instruction from the operating system until the bit actually leaves the NIC.
- The bit time has nothing to do with the time it takes for a bit to travel on the network medium, but has to do with the internals of the NIC

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble = 8 bytes:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver & sender clocks
- Addresses: 6 bytes each
 - if adapter receives frame with matching destination address, or with broadcast address (e.g., ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- Type = 2 bytes (higher layer protocol: IPv4, IPv6, ARP ...)
- CRC = 4 bytes, checked at receiver

13

Question 1 con't

- Nodes A and B are on a 10Mbps link with d_{prop} = 225 bit-times. If A transmits, and before it is done B begins to transmit:
 - Can A finish before it detects that B has begun?
 - (What is the worst case scenario?)
- Ethernet frame = 26 bytes + 46 bytes = 576 bits

16

Ethernet Connections: Hubs

Hubs are physical-layer repeaters:

- * bits coming from one link go out all other links
- ...at the same rate
- ...no buffering (no store-and-forward)
- …no CSMA/CD at hub
- □ A physical layer device examines no headers
 - Extends max distance between nodes good
 - Creates one large collision domain bad

Question 2 (parts 1 and 2)

- Suppose two nodes, A and B, are attached to opposite ends of a 900 m cable, and that they each have one frame of 1,000 bits (including all headers and preambles) to send to each other.
 - Both nodes attempt to transmit at time t=0.
 - There are four hubs between A and B, each inserting a 20-bit delay.
 - Assume the transmission rate is 10 Mbps, and CSMA/CD with backoff intervals of multiples of 512 bits is used.
 - After the 1st collision, A draws K=0 and B draws K=1 in the exponential backoff protocol. Ignore the jam signal and the 96 bit-time delay.
- 1. What is the one-way propagation delay (including hub delays) between A and B in seconds? Assume that the signal propagation speed is 2*10⁸ m/sec.
- 2. At what time (in seconds) is A's packet completely delivered to B?
 - \rightarrow For this problem, recall chapter 1, four sources of delay.
 - \rightarrow Propagation + transmission = d/s + L/R
 - \rightarrow Now we have: (time allocated to collision) + d/s + L/R

1	8

Question 2 (part 3)

- □ A and B, are attached to 900 m cable, each have one frame of 1,000 bits to send.
 - Both nodes attempt to transmit at time t=0.
 - There are four hubs between A and B, each inserting a 20-bit delay.
 - Transmission rate is 10 Mbps, and backoff intervals of multiples of 512 bits are used.
 - After the 1st collision, A draws K=0 and B draws K=1 in the exponential backoff protocol. Ignore the jam signal and the 96 bit-time delay.
- 3. Now only A has a packet to send and the hubs are replaced with switches. Each switch has a 20-bit processing delay in addition to a store-andforward delay. At what time, in seconds, is A's packet delivered at B?

MAC Address

- □ 32-bit IP address:
 - * network-layer address
 - * used to get datagram to destination IP subnet
- □ MAC (or LAN, physical, Ethernet, hardware) address:
 - * function: get frame from one interface to another physically-connected interface (same network)
 - 48 bit MAC address (for most LANs)
 - $\boldsymbol{\cdot}$ burned in NIC ROM
 - Written out as xx-xx-xx-xx-xx in 'hexadecimal,' base 16, so each numeral represents 4 bits
 - e.g., 45-3A-CD-28-5F-40

MAC Addresses in Hexadecimal

1001 1000 0110 1110 1011 1010 in base	2
--	---

	9	8	6	14		in	decimal	for	each	nibble
--	---	---	---	----	--	----	---------	-----	------	--------

□ 9 8 6 E _____ in hexadecimal

MAC v. IP Addresses

- □ MAC address allocation administered by IEEE
- Each manufacturer buys a portion of MAC address space (to assure uniqueness)

□ MAC flat address → portability

- * can move card from one LAN to another
- no hierarchical structure to addresses

□ Note: IP addresses are NOT portable

- * Hierarchical; and geographic significance
- * Depends on IP subnet to which node is attached

22

MAC addresses and ARP

LAN (wired or vireless) 58-23-D7-FA-20-B0 0C-C4-11-6F-E3-98

each adapter on a LAN has unique MAC address

Delivering a datagram: Single Subnet

24

Delivering a datagram: Different Subnet

							_	
isc elds	223.	1.1.1	22	3.1. 2 .	2	data		
art	ina	at	Δ	dee	+ 1	ç.		
un	my	ui	Α,	ues		L•		
Loo	k up	net	wor	'k ad	dre	255 01	fΕ	
Eo	n <i>dif</i>	fer	ent	subr	net			
*	A, E	not	air	ecti	y a	TTACN	ea	
Rou	tina	tab	le:	next	ho	Ø		
rou	tor t	νF	is 2	223	11	4		
i ou			13 1	-20.		т		
Lin	< lay	er s	end	ls da	tag	ram ·	to	
router 223.1.1.4 inside link-							-	
	isc elds Loo E or Rou rou Linl	isc elds 223. carting Look up E on <i>dif</i> & A, E Routing router 1 Link lay	isc elds 223,1,1,1 carting at Look up net E on <i>differ</i> & A, E not Routing tab router to E Link layer s router 223	isc elds 223.1.1.1 22 carting at A, Look up networ E on <i>different</i> * A, E not dir Routing table: router to E is a Link layer send router 223.1.1	isc elds 223.1.1.1 223.1.2. Farting at A, des Look up network ad E on <i>different</i> subr & A, E not directly Routing table: next router to E is 223.1 Link layer sends da router 223.1.1.4 ins	isc elds 223.1.1.1 223.1.2.2 Farting at A, dest. I Look up network addre E on <i>different</i> subnet & A, E not directly a Routing table: next ho router to E is 223.1.1.4 Link layer sends datag router 223.1.1.4 inside	isc elds 223.1.1.1 223.1.2.2 data carting at A, dest. E: Look up network address of E on <i>different</i> subnet * A, E not directly attach Routing table: next hop router to E is 223.1.1.4 Link layer sends datagram router 223.1.1.4 inside link-	

- layer frame
- Datagram arrives at 223.1.1.4
- Process continues.....

Chapter 6: Summary

- Link layer technologies
 - Ethernet
 - MAC addresses
 - switched LANS