Introduction to the Link Layer

Smith College, CSC 249 March 22, 2018

Link Layer Services & Protocols

- Link layer services
- Principles for multiple access protocols
- Categories of multiple access protocols
- Example of link layer technology * Ethernet & CSMA/CD

Link Layer Vocabulary

- □ Node: hosts and routers
- Link: communication channels that connect adjacent nodes wired & wireless links
- Frame
 - A Layer-2 packet is a 'frame'

MAC" addresses

- Media Access Control address
- In 'frame' headers to identify source and destination

3

4

Different from IP address

Link Layer (all wired and wireless lines below)

data-link layer has responsibility of transferring a frame from one node to an adjacent node over a link

Link Layer Services 1

1. Framing, link access:

- Encapsulate datagram into frame, adding header, trailer (with MAC addresses)
- Coordinate access to the communication channel, if it is a shared medium
- 2. Reliable delivery between adjacent nodes
 - Seldom used on low bit-error links (fiber optic, some twisted pair)
 - But wireless links have high error rates
 - Why have both link-level and end-end reliability?

Adaptors Communicating

Sending side:

- Encapsulates datagram in frame
- Adds error checking bits, flow control, etc.

Receiving side

- Looks for errors, flow control, etc
- Extracts datagram, passes to upper layer at receiving side

6

Where is the link layer implemented?

- In every host
- Link layer implemented in "adaptor," the network interface card, NIC
 - * Ethernet card, 802.11 card
 - Implements link & physical layer
- Attaches into host's system buses
- Combination of hardware, software, firmware

Link Layer Services 2 (more)

- 3. Error Detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- 4. & Error Correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- 5. Half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time
- 6. Flow Control:
 - pacing between adjacent sending and receiving nodes

Error Detection: Parity

Parity Problem

- □ Suppose a packet contains 101010101010101
 - An even parity scheme is used, so the total number of '1' bits in the row/column is an even number
- What would the value of the field containing the parity bits be, for the case of a 2D parity scheme?

			0	
1	0	1	0	
1	0	1	0	
1	0	1	1	
				Г

Parity Problem

- □ For the previous question, show an example of
 - o 1-bit error detected and corrected
 - o 2-bit error detected but not corrected
 - Note row 2, columns 2 and 3

 $\begin{array}{c}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}$

Error Detection

Parity - typically applied to individual bytes

Checksum

- Applied to a packet, a packet header...
- Is moderately robust

□ CRC can detect more errors

- A single bit of the packet affects the CRC in a more complex manner than for checksum
 - $\boldsymbol{\cdot}$ Each bit feeds into the CRC in three places
 - Each bit then cycles through and interacts with remaining bits

Multiple Access Links and Protocols

Two types of "links":

point-to-point

- * point-to-point link between Ethernet switch and host
- broadcast (shared wire or medium)
 - traditional Ethernet
 - 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

13

Multiple Access protocols

<u>Problem</u>: Single shared transmission link

- □ All nodes receive all frames
- There is 'collision' if more than one node transmits at the same time

Solution: Multiple access protocol

- Coordinate access to the shared link
- Establish rules for dealing with collisions

Ideal Multiple Access Protocol

Principles for a shared link of rate R

- 1. When one node wants to transmit, it can send at rate R (R bits/second)
- 2. When M nodes want to transmit, each can send at average rate R/M
- 3. Fully decentralized:
 - * no special node to coordinate transmissions
 - * no synchronization of clocks, slots
- 4. Simple

MAC Protocols: Three Categories

- 1) Channel Partitioning
 - Divide link bandwidth into smaller "pieces" (time slots, frequency, code)
 - Allocate piece to node for exclusive use
- 2) Random Access (most used today)
 - The link bandwidth is not divided, allow collisions
 - Recover from collisions
- 3) "Taking turns"
 - Nodes take turns, but nodes with more to send can take longer turns

MAC Protocols: Three Types

Volunteers

- To 'send' (read) text
- To 'receive' (hear and decipher) text

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets, slots 2,5,6 are idle

18

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle
- Example: 6-station LAN, 1,3,4 bands have packets, frequency bands 2,5,6 idle

Random Access Protocols

- When node has packet to send
 - Transmit at full channel data rate R.
 - No a priori coordination among nodes
- Two or more transmitting nodes "collide"
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - CSMA, CSMA/CD, CSMA/CA Ethernet and 802.11 wireless protocol

CSMA (Carrier Sense Multiple Access)

<u>CSMA</u>: listen before transmitting:

- If channel is sensed to be idle, transmit entire frame
 - Sense the voltage level on the cable or fiber
- If channel is sensed to be busy, delay transmission

CSMA collisions

Collisions *can* occur:

Propagation delay means two nodes may not hear each other's transmission initially

Collision:

Entire packet transmission time wasted

Note the role of distance & propagation delay in determining the collision probability

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- Collisions detected within short time
- Colliding transmissions aborted, reducing channel wastage

Collision Detection:

- Easy in wired LANs: measure signal strengths, compare transmitted, received signals
- Difficult in wireless LANs: receiver shut off while transmitting

csma/cd applet:

http://wps.aw.com/aw_kurose_network_3/0,9212_1406346-_00.html http://wps.aw.com/aw_kurose_network_5/111/28536/7305312.cw/ index.html

CSMA/CD collision detection

²³

"Taking Turns" MAC protocols

Channel partitioning MAC protocols:

- * Share channel efficiently and fairly at high load
- Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node

Random access MAC protocols

- Efficient at low load: single node can fully utilize channel
- * High load: collision overhead

"Taking turns" protocols

Polling protocols, and token ring protocols

Polling Protocols

- A master node coordinates which node uses the channel
- Efficient, but...
 - Single point of failure possible
 - Polling process and latency

26

"Taking Turns" MAC protocols

Token passing:

<u>Summary</u>

- New link layer vocabulary
- Link layer services
 - * Parity for error detection and correction
- Multiple access protocol principles
- Three categories of MAC protocols