Introduction to the
Link Layer

Smith College, CSC 249
March 22, 2018

Link Layer Services & Protocols

- Link layer services
- Principles for multiple access protocols
- Categories of multiple access protocols
- Example of link layer technology
  - Ethernet & CSMA/CD
**Link Layer Vocabulary**

- **Node**: hosts and routers
- **Link**: communication channels that connect adjacent nodes
  - wired & wireless links
- **Frame**
  - A Layer-2 packet is a 'frame'
- **“MAC” addresses**
  - Media Access Control address
  - In 'frame' headers to identify source and destination
  - Different from IP address

**Link Layer** *(all wired and wireless lines below)*

data-link layer has responsibility of transferring a frame from one node to an adjacent node over a link
Link Layer Services 1

1. Framing, link access:
   - Encapsulate datagram into frame, adding header, trailer (with MAC addresses)
   - Coordinate access to the communication channel, if it is a shared medium

2. Reliable delivery between adjacent nodes
   - Seldom used on low bit-error links (fiber optic, some twisted pair)
   - But wireless links have high error rates
   - Why have both link-level and end-end reliability?

Adaptors Communicating

- Sending side:
  - Encapsulates datagram in frame
  - Adds error checking bits, flow control, etc.

- Receiving side:
  - Looks for errors, flow control, etc
  - Extracts datagram, passes to upper layer at receiving side
Where is the link layer implemented?

- In every host
- Link layer implemented in "adaptor," the network interface card, NIC
  - Ethernet card, 802.11 card
  - Implements link & physical layer
- Attaches into host’s system buses
- Combination of hardware, software, firmware

Link Layer Services 2 (more)

3. Error Detection:
   - errors caused by signal attenuation, noise.
   - receiver detects presence of errors:
     - signals sender for retransmission or drops frame

4. Error Correction:
   - receiver identifies and corrects bit error(s) without resorting to retransmission

5. Half-duplex and full-duplex
   - with half duplex, nodes at both ends of link can transmit, but not at same time

6. Flow Control:
   - pacing between adjacent sending and receiving nodes
Error Detection: Parity

Single Bit Parity:
Detect single bit errors

Two Dimensional Bit Parity:
Detect and correct single bit errors

Parity Problem

- Suppose a packet contains 10101010101011
  - An even parity scheme is used, so the total number of '1' bits in the row/column is an even number

- What would the value of the field containing the parity bits be, for the case of a 2D parity scheme?
Parity Problem

- For the previous question, show an example of
  - 1-bit error detected and corrected
  - 2-bit error detected but not corrected
    - Note row 2, columns 2 and 3

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Error Detection

- Parity - typically applied to individual bytes
- Checksum
  - Applied to a packet, a packet header...
  - Is moderately robust
- CRC can detect more errors
  - A single bit of the packet affects the CRC in a more complex manner than for checksum
    - Each bit feeds into the CRC in three places
    - Each bit then cycles through and interacts with remaining bits
Multiple Access Links and Protocols

Two types of "links":
- **point-to-point**
  - point-to-point link between Ethernet switch and host
- **broadcast** (shared wire or medium)
  - traditional Ethernet
  - 802.11 wireless LAN

Multiple Access Protocols

**Problem:** Single shared transmission link
- All nodes receive all frames
- There is 'collision' if more than one node transmits at the same time

**Solution:** Multiple access protocol
- Coordinate access to the shared link
- Establish rules for dealing with collisions
**Ideal Multiple Access Protocol**

**Principles for a shared link of rate R**

1. When one node wants to transmit, it can send at rate R (R bits/second)
2. When M nodes want to transmit, each can send at average rate R/M
3. Fully decentralized:
   - no special node to coordinate transmissions
   - no synchronization of clocks, slots
4. Simple

**MAC Protocols: Three Categories**

1) **Channel Partitioning**
   - Divide link bandwidth into smaller "pieces" (time slots, frequency, code)
   - Allocate piece to node for exclusive use
2) **Random Access (most used today)**
   - The link bandwidth is not divided, allow collisions
   - “Recover” from collisions
3) **“Taking turns”**
   - Nodes take turns, but nodes with more to send can take longer turns
MAC Protocols: Three Types

- Volunteers
  - To 'send' (read) text
  - To 'receive' (hear and decipher) text

Channel Partitioning MAC protocols: TDMA

**TDMA**: time division multiple access
- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets, slots 2,5,6 are idle
Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access
- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle
- Example: 6-station LAN, 1,3,4 bands have packets, frequency bands 2,5,6 idle

Random Access Protocols

- When node has packet to send
  - Transmit at full channel data rate R.
  - No a priori coordination among nodes
- Two or more transmitting nodes “collide”
- Random access MAC protocol specifies:
  - How to detect collisions
  - How to recover from collisions (e.g., via delayed retransmissions)

- Examples of random access MAC protocols:
  - CSMA, CSMA/CD, CSMA/CA – Ethernet and 802.11 wireless protocol
CSMA (Carrier Sense Multiple Access)

**CSMA:** listen before transmitting:
- If channel is sensed to be idle, transmit entire frame
  - Sense the voltage level on the cable or fiber
- If channel is sensed to be busy, delay transmission

**CSMA collisions**

Collisions can occur:
Propagation delay means two nodes may not hear each other's transmission initially

Collision:
Entire packet transmission time wasted

*Note* the role of distance & propagation delay in determining the collision probability
CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA
- Collisions detected within short time
- Colliding transmissions aborted, reducing channel wastage

Collision Detection:
- Easy in wired LANs: measure signal strengths, compare transmitted, received signals
- Difficult in wireless LANs: receiver shut off while transmitting
- csma/cd applet:
“Taking Turns” MAC protocols

Channel partitioning MAC protocols:
- Share channel efficiently and fairly at high load
- Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node

Random access MAC protocols
- Efficient at low load: single node can fully utilize channel
- High load: collision overhead

“Taking turns” protocols
- Polling protocols, and token ring protocols

Polling Protocols

- A master node coordinates which node uses the channel
- Efficient, but...
  - Single point of failure possible
  - Polling process and latency
“Taking Turns” MAC protocols

Token passing:
- control token passed from one node to next sequentially.
- token message
- concerns:
  - token overhead
  - latency
  - single point of failure (token)

Summary

- New link layer vocabulary
- Link layer services
  - Parity for error detection and correction
- Multiple access protocol principles
- Three categories of MAC protocols