

<u>Overview</u>

- Review of theoretical routing algorithms
 - Link state & Dijkstra's algorithm
 - * Distance vector & Bellman-Ford equation
- Routing in the Internet
 - Implementation of Link-state and Distancevector in actual networks
 - Intra-networking & Inter-networking
 - RIP & OSPF
 - Border Gateway Protocol, BGP

Routing Algorithms

The objective of a routing algorithm is to find the least-cost, and loop-free path between all sources and all destinations (routers, not hosts)

3

4

Q: Compare & Contrast Routing

- What is the objective of routing algorithms?
- Compare and contrast Link-State and Distance-Vector
 - What does each do?
 - What does each do the same as the other algorithm?
 - What do they do differently?

- Sumn	narv Table Comba	<u>rina Link-Sta</u>	te and Distar	nce-Vector
Name	Algorithm/Equation Description & Overview	Initial Information, at Start-Up	Message Complexity and Volume	Router Malfunctions? Information that is shared? Router calculates what?
Link State				
Distance Vector				
Open Shortest Path First (OSPF)				
Routing Information Protocol (RIP)				
Borger Gateway Protocol (BGP)				

T 1.1 1.5.1.1 . .

Overview of Routing & Recap...

- The set of routers comprise a distributed database
 - * Routers propagate information to other routers
- Distribute State of Links
 - * Advertise information about each link to which it is connected (the 'state' of the link)
 - Solution Flood the network with this information
- Distribute Vectors
 - Advertise a vector with information on each destination it can 'reach' (entire network)
 - * Communicates only with neighbors

A Link-State Routing Algorithm

Dijkstra's algorithm

- Computes the shortest paths in a graph by using weights on edges as a measure of distance.
- Each node has global information on network topology and edge weights
 - > Starts with complete information

Dijkstra's algorithm: example

Step	• N'	D(v) p(v)	D(w) p(w)	D(x) p(x)	D (y) p(y)	D(z) p(z)
0	u	7,u	3,u	5,u	∞	∞
1	uw	6,w		(5,u)	11,w	~
2	uwx	6,w			11,w	14,x
3	uwxv				(10,v)	14,x
4	uwxvy					(12,y
5	uwxvyz					

notes:

- Construct shortest path tree by tracing predecessor nodes
- Construct the forwarding table by recording the next hop to the destination node
- What is the forwarding table??

Distance vector algorithm

\Box Each node begins with $D_x(y)$

- An <u>estimate</u> of the cost of the least-cost path from itself to node y, for all nodes in N (might be ∞)
- * (Some nodes might not be known to exist at the start)
- Each node periodically sends its own distance vector estimate to neighbors
 - ♦ → A vector of least costs from itself to all other routers

9

When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation, and sends any update to its neighbors

 $D_x(y) = min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$

<u>Hierarchical Routing &</u> <u>Autonomous Systems</u>

- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run the same routing protocol
 "intra-AS" routing protocol
- routers in different AS can run different intra-AS routing protocol

gateway routers-

- special routers in AS
- run intra-AS routing protocol with all other routers in AS
- run inter-AS routing protocol with other gateway routers
 - also responsible for routing to destinations outside AS

16

Internet structure: network of networks

Intra-AS and Inter-AS routing

Internet AS Hierarchy

Intra-AS interior routers

Intra-AS Routing

Also known as interior gateway protocols (IGP)

Most common intra-AS routing protocols:

- RIP: Routing Information Protocol
 - Distance Vector
- OSPF: Open Shortest Path First
 - Link State

Question: RIP vs. OSPF

- Given what we know of LS and DV algorithms, compare the advertisements used by RIP and OSPF
- OSPF (link state) router periodically broadcasts state of its attached links to <u>all</u> other routers in the AS
- RIP (distance vector) information is sent about all the networks in the AS; is only sent to its neighboring routers

Inter-AS routing

Internet inter-AS routing: BGP

BGP (Border Gateway Protocol): the de facto standard

Path Vector protocol:

- similar to Distance Vector protocol
- each Border Gateway broadcasts to neighbors (peers) entire path (i.e., a sequence of ASs) to destination

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising *paths* to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections

Concepts: RIP vs. BGP

- RIP ads announce the number of hops to various destinations while BGP updates announce the ______ to various destinations
 - * The sequence of ASs on the routes
- Describe how loops in paths can be detected in BGP.
 - Since full AS path information is available from an AS to a destination in BGP - if a BGP peer receives a route that contains its own AS number in the AS path, then using that route would result in a loop.

Different Intra- and Inter-AS routing

Policy:

- Inter-AS: admin wants control over how its traffic is routed, and who routes through its network.
- Intra-AS: single administrative staff, so no policy decisions needed

Scale:

hierarchical routing saves table size & reduces traffic with update packets

Performance:

- □ Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

28

Traceroute, Ping and ICMP

Good discussion in text for how Traceroute and Ping work, using ICMP

ICMP: internet control message protocol

used by hosts & routers to communicate networklevel information

- error reporting: unreachable host, network, port, protocol
- echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP messages are carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

TypeCodedescription00echo reply (ping)30dest. network unreachable31dest host unreachable32dest protocol unreachable

- 3 3 dest port unreachable 3 6 dest network unknown 3 7 dest host unknown 4 0 source quench (congestion control - not used) 8 0 echo request (ping)
- 9 0 route advertisement 10 0 router discovery
- 11 0 TTL expired
- 12 0 bad IP header

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

Broadcast Routing

Uses? → Link-state routing algorithms
Deliver packets from source to all other nodes

Multicast Routing

Uses?

- Bulk data (software upgrade) transfer
- Streaming audio-visual media
- Shared data application (teleconference)
- Data feeds (stock quotes)
- ✤ Interactive gaming

Summary for Network Layer

Forwarding:

- Leads to questions of addressing
 - Assignment of IP addresses (& DHCP)
 - ✤ NAT, IPv6 ...

Routing:

- Routing objectives
- Routing notation
- Link state v. Distance Vector
- Hierarchical structure