The Network Layer: Routing 2: Distance Vector

Smith College, CSC 249 March 6, 2018

<u>Overview</u>

Routing Algorithms

- Link-state From last week
- Distance-vector TODAY

Overview of Routing so far

- Routing algorithms
 - Find the 'best' path through a network
 - Create forwarding tables
- Routing occurs between routers (not hosts)
- Differences between centralized (global) and decentralized algorithms

3

4

- What are examples of each
- Amount of information known initially
- How information is shared/spread
- Synchronous or asynchronous?

Algorithm 2: Distance Vector

Rather than using global information, a distance vector algorithm is:

distributed:

 each node communicates only with directlyattached neighbors

iterative:

continues until no nodes exchange info.
self-terminating: no "signal" to stop

asynchronous:

* nodes need not exchange information or iterate in lock step!

Distance Vector Algorithm

Bellman-Ford Equation

Define d_x(y) := cost of least-cost path from x to y

Then

 $d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$

where min is taken over all neighbors v of x

Bellman-Ford Equation

The node that achieves the minimum, is the next hop in the shortest path \rightarrow forwarding table

Distance Vector Routing Algorithm

Distance Table data structure

- each node has
 - A row for each possible destination
 - * A column for each directly-attached neighbor
- example: in node X, for destination Y via neighbor Z:

 $D^{X}(Y,Z) = \frac{\text{distance from X to Y,}}{\text{via Z as next hop}}$ $= c(X,Z) + \min_{W} \{D^{Z}(Y,W)\}$

7

Distance Table: example with complete information

Distance table to forwarding table

Distance vector algorithm

Asynchronous Iterations:

- \Box Each node begins with $D_x(y)$
 - An estimate of the cost of the least-cost path from itself to node y, for all nodes in N
- Each node periodically sends its own distance vector estimate to neighbors
 - ♦ → A vector of least costs from itself to all routers
- When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation, and sends any update to its neighbors

 $D_x(y) \leftarrow \min_y \{c(x,v) + D_y(y)\}$ for each node $y \in N$

Under normal conditions, the estimate D_x(y) converges to the actual least cost d_x(y)

Distance Vector Algorithm: example for obtaining complete information

Distance Vector Algorithm: obtaining info

Distance Vector Routing Activity

Distance Vector Routing Activity

- Review actual graph does it match activity results?
- What happens if/when c(A,D) = 4 & c(C,D) = 1?

Distance Vector Routing Activity

Distance Vector Routing Activity

- Review actual graph does it match your results?
- What happens if/when c(A,B) = 2 and/or if c(C,D) = 5?

Comparison of LS and DV algorithms

- Information requirements
- Message complexity
- Convergence time varies
- Robustness: what happens if router malfunctions?
- Oscillations possible?
- □ Loops possible?

Summary

Forwarding:

Leads to questions of addressing

- Assignment of IP addresses
- NAT, IPv6 ...

<u>Routing:</u>

- Routing objectives
- Routing notation
- Routing classification
- Link state v. Distance Vector
- Hierarchical structure