Overview

ORouting Algorithms
& Link-state - From last week
<+ Distance-vector - TODAY

Overview of Routing so far

+ Routing algorithms
+ Find the 'best’ path through a network
+ Create forwarding tables
« Routing occurs between routers (not hosts)
« Differences between centralized (global) and
decentralized algorithms
+ What are examples of each
< Amount of information known initially
+How information is shared/spread
<+ Synchronous or asynchronous?

Algorithm 2: Distance Vector

Rather than using global information, a
distance vector algorithm is:

Q distributed:
+each node communicates only with directly-
attached neighbors

Qiterative:
<+ continues until no nodes exchange info.
<+ self-terminating: no “signal” to stop

Q asynchronous:
+nodes need not exchange information or
iterate in lock step!

Distance Vector Algorithm

Bellman-Ford Equation

Define
d,(y) := cost of least-cost path from x toy

Then

d.(y) = min {c(x,v) + d,(y) }

where min is taken over all neighbors v of x

Bellman-Ford Equation

L

Clearly, d(z)= ,d(2)= ,d,(2)=

B-F equation says:

d,(2) = min { c(uv) + d(2),
c(u,x) + dy(2),
c(uw) +d,(2)}

= min {

} =

The node that achieves the minimum, is the next hop
in the shortest path < forwarding table

Distance Vector Routing Algorithm

Distance Table data structure

0 each node has
« A row for each possible destination
% A column for each directly-attached neighbor

O example: in node X, for destination Y via neighbor Z:

_ distance from X to Y,
DX(Y,Z) via Z as next hop

= ¢(X,2) + min D% (Y,w)}

Distance Table: example with
complete information

E cost to destination via

D ()

E
D (C,D) = c(ED)+ minW{DD(C,w)}

destination

E D
D (A,D) = ¢(E.D) + min {D"(A,w)}

E
D (A,B) = c(E.B)+min {D(Aw)

Distance table to forwarding table

cost to destination via
DE() Outgoing link
to use, cost

destination
destination

Distance table — Forwarding Table

Distance vector algorithm

Asynchronous Iterations:

O Each node begins with D, (y)
+ An estimate of the cost of the least-cost path from
itself to nodey, for all nodes in N
O Each node periodically sends its own distance
vector estimate to neighbors
« =» A vector of least costs from itself to all routers
0 When a node x receives new DV estimate from
neighbor, it updates its own DV using B-F equation,
and sends any update to its neighbors
D (y) < min{c(x,v) + D (y)} for each nodey € N

0 Under normal conditions, the estimate D,(y)
converges to the actual least cost d,(y)

Distance Vector Algorithm: example for

obtaining complete information

cost via
DX Y 4
d
e Y
[]
t 2

e

cost via

-0 oo

N > |O,
x
N

cost via
DZ X Y
d
e X
s
tyY

cost via
I:?(Y Z

~®n oo

Y
z

D¥(v.2) = c(X.2) + min (D (Y.w))

D*ZY) = c(X,Y) + min, (D' (Zw)}

Distance Vector Algorithm: obtaining info

cost via
I:?(Y 2z

cost via
DZ X Y

cost via
E?(Y 2z

cost via

cost via
DZ X Y

Distance Vector Routing Activity

A B

Distance Vector Routing Activity

A——B
3 6

2

C 8 D

* Review actual graph — does it match activity results?
* What happens if/when c¢(A,D) =4 & ¢(C,D) = 1?

Distance Vector Routing Activity

B C

Distance Vector Routing Activity

B|l——|C

\EzD

* Review actual graph — does it match your results?
* What happens if/when c(A,B)=2 and/or if c¢(C,D)=5?

16

Comparison of LS and DV algorithms

Information requirements
Message complexity
Convergence time varies

Robustness: what happens if router
malfunctions?

0 Oscillations possible?
QO Loops possible?

(U N i

Summary

Forwarding:

0 Leads to questions of addressing
+ Assignment of IP addresses
« NAT, IPv6 ..

Routing:

0 Routing objectives

0 Routing notation

0 Routing classification

QLink state v. Distance Vector
0 Hierarchical structure

