The Network Layer: Routing 2: Distance Vector

Overview

- Routing Algorithms
 - Link-state - From last week
 - Distance-vector - TODAY
Overview of Routing so far

- Routing algorithms
 - Find the 'best' path through a network
 - Create forwarding tables
- Routing occurs between routers (not hosts)
- Differences between centralized (global) and decentralized algorithms
 - What are examples of each
 - Amount of information known initially
 - How information is shared/spread
 - Synchronous or asynchronous?

Algorithm 2: Distance Vector

Rather than using global information, a distance vector algorithm is:

- distributed:
 - each node communicates only with directly-attached neighbors
- iterative:
 - continues until no nodes exchange info.
 - self-terminating: no “signal” to stop
- asynchronous:
 - nodes need not exchange information or iterate in lock step!
Distance Vector Algorithm

Bellman-Ford Equation

Define
\[d_x(y) := \text{cost of least-cost path from } x \text{ to } y \]
Then
\[d_x(y) = \min_v \{ c(x,v) + d_v(y) \} \]
where \(\min \) is taken over all neighbors \(v \) of \(x \)

Bellman-Ford Equation

\[\begin{array}{c}
\text{Clearly, } d_v(z) = \\
\text{, } d_x(z) = \\
\text{, } d_w(z) = \\
\end{array} \]

B-F equation says:
\[d_u(z) = \min \{ \begin{array}{l}
c(u,v) + d_v(z), \\
c(u,x) + d_x(z), \\
c(u,w) + d_w(z) \\
\end{array} \} \]
\[= \min \{ \begin{array}{l}
\end{array} \} = \]

The node that achieves the minimum, is the next hop in the shortest path \(\rightarrow \) forwarding table
Distance Vector Routing Algorithm

Distance Table data structure
- each node has
 - A row for each possible destination
 - A column for each directly-attached neighbor
- example: in node X, for destination Y via neighbor Z:

\[D^X(Y,Z) = \text{distance from } X \text{ to } Y, \]
\[\text{via } Z \text{ as next hop} \]
\[= c(X,Z) + \min_w \{D^Z(Y,w)\} \]

Distance Table: example with complete information

\[D^E(C,D) = c(E,D) + \min_w \{D^D(C,w)\} \]
\[= \]
\[D^E(A,D) = c(E,D) + \min_w \{D^D(A,w)\} \]
\[= \]
\[D^E(A,B) = c(E,B) + \min_w \{D^B(A,w)\} \]
\[= \]
Distance table to forwarding table

Distance vector algorithm

Asynchronous Iterations:

- Each node begins with $D_x(y)$
 - An estimate of the cost of the least-cost path from itself to node y, for all nodes in N

- Each node periodically sends its own distance vector estimate to neighbors
 - A vector of least costs from itself to all routers

- When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation, and sends any update to its neighbors

 \[D_x(y) \leftarrow \min_{v \in N} \{ c(x,v) + D_v(y) \} \quad \text{for each node } y \in N \]

- Under normal conditions, the estimate $D_x(y)$ converges to the actual least cost $d_x(y)$
Distance Vector Algorithm: example for obtaining complete information

\[D^X(Y,Z) = c(X,Z) + \min_w \{D^Z(Y,w)\} \]

\[= 7 + 1 = 8 \]

\[D^Y(Z,Y) = c(X,Y) + \min_w \{D^Y(Z,w)\} \]

\[= 2 + 1 = 3 \]

Distance Vector Algorithm: obtaining info
Distance Vector Routing Activity

A B

C D

Distance Vector Routing Activity

A B

C D

- Review actual graph – does it match activity results?
- What happens if/when \(c(A, D) = 4 \) & \(c(C, D) = 1 \)?
• Review actual graph – does it match your results?
• What happens if/when \(c(\text{A,B}) = 2 \) and/or if \(c(\text{C,D}) = 5 \)?
Comparison of LS and DV algorithms

- Information requirements
- Message complexity
- Convergence time varies
- Robustness: what happens if router malfunctions?
- Oscillations possible?
- Loops possible?

Summary

Forwarding:
- Leads to questions of addressing
 - Assignment of IP addresses
 - NAT, IPv6 ...

Routing:
- Routing objectives
- Routing notation
- Routing classification
- Link state v. Distance Vector
- Hierarchical structure