Summary Chapter 4

O IP Addressing
< Network prefixes and Subnets
« IP datagram format

0 DHCP - dynamic addressing
< Obtain: own IP address

Subnet mask, DNS server & first-hop
router IP address

O NAT - network address translation... at end
of class today

Overview of the Network Layer

Network layer functions & protocols:

transport layer: TCP, UDP

IP protocol
* addressing conventions

« path selection
* datagram format

| routing protocols I

* RIP, OSPF, BGP
network « packet handling conventions
layer \., forwarding
ICMP protocol
table .
* error reporting
« router “signaling”

link layer

physical layer

Smith College TP Addressing

Possible QUESTIONS:

1) Given a mask of 255.255.254.0
+ What is the "/__" notation for this?

2) are the machines with IP addresses
131.229.22.50 and 131.229.23.243 on the
same subnet?

+ How many hosts are supported in the
range 131.229.22.00/23 ?

IP addresses: how to get one?

Q: How does network get subnet part of IP
address?

A: Is allocated a portion of its provider ISP's

address space, which gets that from ICANN
(Internet Corp. for Assigned Names and Numbers)

Q: How does a host get an IP address?
O hard-coded by system administrator in a file, or

QO DHCP: Dynamic Host Configuration Protocol:
dynamically get address from as server

<+ “plug-and-play”

DHCP: Dynamic Host Configuration Protocol

Goal: allow host to dynamically obtain its IP address
from network server when it joins a network

« Can renew its lease on the IP address it is using

+ Allows reuse of addresses once one host leaves

« Support for mobile users to join networks
DHCP overview:

1) host broadcasts "DHCP discover” msg

2) DHCP server responds with "DHCP offer” msg

3) host requests IP address: "DHCP request” msg

4) DHCP server sends address: "DHCP ack" msg

DHCP client-server scenario

DHCP server: 223.1.25

arriving
client

src: 0.0.0.0, 68 &M

ﬂ dest.: 255.255.255.255,67 5

yiaddr: 0.0.0.0 |

transaction ID: 654

DHCP offer

src: 223.1.2.5, 67

dest: 255.255.255.255, 68
T | jiaddr 223124
transaction ID: 654
Lifetime: 3600 secs ~

DHCP discover

DHCP request

src: 0.0.0.0, 68
dest:: 255.255.255.255, 67
yiaddr: 223.1.2.4 .

transaction ID: 655
Lifetime: 3600 secs

fime

DHCP ACK

T | src223.1.25,67

dest: 255.255.255.255, 68
yiaddr: 223.1.2.4 —~
transaction ID: 655
Lifetime: 3600 secs

yiaddr = ‘your internet address’
broadcast address, 255.255.255.255 = sent to every host in the subnet

NAT: Network Address Translation

Q Motivation: local (home) network uses just one
IP address as far as outside world view:

o

« can change addresses of devices in local network
without notifying outside world

« can change ISP without changing addresses of
devices in local network

+ devices inside local net not explicitly addressable,
visible by outside world (a security plus)

0 Range of addresses within: 10.0.0.0/24

Standard Reserved IP Address
Blocks for Private Network Use

010.0.0.0/8
0172.16.0.0/12

0192.168.0.0/16

NAT: Network Address Translation

Internet (e.g., home network)

10.0.0.0/24 ‘_@ 10.0.0.1
10.0.0.4
SO~ @ 100.0.2

«—— restof local network

i —
138.76.29.7
‘ 10.0.0.3
All datagrams /eaving local Datagrams with source or
network have same single source destination in this network
NAT router IP address: have 10.0.0.0/24 address for
138.76.29.7, but they have source, destination (as usual)

different source port numbers

10

NAT Router Tasks

Implementation: NAT router must:

< for outgoing datagrams: replace (source |P address, port #) of
every outgoing datagram with (NAT [P address, new port #)

* remote clients/servers will respond using (NAT IP address, new port #)
as destination address

< remember (in NAT translation table) every (source |P address,
port #) to (NAT IP address, new port #) translation pair

« for incoming datagrams: replace (NAT IP address, new port #) in
destination fields of every incoming datagram with
corresponding (source |P address, port #) stored in NAT table

NAT: network address translation

NAT translation table

1: host 10.0.0.1

2: NAT router WAN side addr

LAN side addr

sends datagram to

changes datagram 138.76.29.7. 5001

source addr from
10.0.0.1,3345t0 |

10.0.0.1, 3345

128.119.40.186, 80

138.76.29.7, 5001,
updates table

S: 138.76.29.7, 5001
D: 128.119.40.186, 80

138

N
.76.29.7

S: 128.119.40.186, 80
;. D:138.76.29.7, 5001

3: reply arrives
dest. address:

138.76.29.7, 5001

S:10.0.0.1, 3345
D: 128.119.40.186, 80

S\w 10.0.0.1
=

_g 10.0.0.2

S:128.119.40.186, 80 ~
D: 10.0.0.1, 3345

"\
4: NAT router Jsg. 10003

S8

changes datagram
dest addr from

138.76.29.7, 5001 to 10.0.0.1, 3345

12

NAT Question on Handout

NAT translation table

WAN side LAN side

>

e

13

|Pv6 datagram format

priority: identify priority among datagrams in flow

flow Label: identify datagrams in same “flow.”
(concept of“flow” not well defined).

next header: identify upper layer protocol for data

ver | pri flow label

payload len | next hdr | hop limit

source address (128 bits)

destination address (128 bits)

data

32 bits

14

NAT Controversies?

O Port numbers are used by NAT to identify
hosts (and the process) within the local
network -

0 Routers should only process packets up to
layer 3 (ports associated with app socket)
Q Violates end-to-end argument

« NAT possibility must be taken into account by
application designers, e.g., P2P applications

+ Interfering nodes should not modify IP
addresses and port numbers

0 Address shortage should instead be solved
by IPv6

15

IP fragmentation & reassembly

O network links have MTU
(max. transfer size) - largest
possible link-level frame w
« different link technologies ~ ~&
have different MTUs
O large IP datagram may be N
divided (“fragmented”) ~
within a network when the
link technology changes
< one datagram becomes
several datagrams

fragmentation:
in: one large datagram
out: 3 smaller datagrams

+ “reassembled” only at final
destination

% IP header bits used to

identify, order related
fragments

IP fragmentation & reassembly

example:
« A 4000 byte datagram

length [ID
=4000 | =x

fragflag

=0 =0

offset

» Encounters an older
link technology

+ That can only
accommodate
MTU = 1500 bytes

1480 bytes in
data field

So one large datagram becomes
several smaller datagrams

Bl

length
L T=1500

ID

fragflag
=1

offset

length
=1500

ID
=X

fragflag
=1

offset
=185

length

ID

=1040 | = |

| fragflag
=0

offset
=370

Recap: Routing v. Forwarding

routing algorithm

local forwarding table

header value

0100
0101
0111
1001

value in arriving

packet’s headeri

0

18

Generalized Forwarding and SDN

Each router contains a flow table that is computed and
distributed by a logically centralized routing controller

data plane l
local flow table]|

headers |counters actionsl
Tees [I[== [
oo 1] == [
LTI - TIT---TT|
1
—— i
3

values in arriving EE

packet’ s header

OpenFlow data plane abstraction

O generalized forwarding: simple packet-handling rules

% Pattern: match values in packet header fields

% Actions: for matched packet: drop, forward, modify,
matched packet or send matched packet to controller

% Priority: disambiguate overlapping patterns
% Counters: #bytes and #packets

Flow table in a router (computed and distributed by
controller) define router’s match+action rules

10

OpenFlow data plane abstraction

O generalized forwarding: simple packet-handling rules
% Pattern: match values in packet header fields

% Actions: for matched packet: drop, forward, modify,
matched packet or send matched packet to controller

% Priority: disambiguate overlapping patterns
% Counters: #bytes and #packets

* . wildcard

1. src=1.2.*.* dest=3.4.5.* - drop
2. src=**** dest=3.4.** - forward(2)
3. src=10.1.2.3, dest=*.*.*.* > send to controller

OpenFlow: Flow Table Entries

Match Action
1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify Fields
Switch | VIAN | MAC | mAc | Eth IP IP IP TCP | TCP
Port ID src dst type | Src Dst Prot | sport | dport
L : I i | L ‘ |
Link layer Network layer Transport layer

11

Examples

Destination-based forwarding:

Switch|MAC |MAC [Eth VLAN |IP IP IP TCP [TCP
Port |src dst type [ID Src Dst Proto |sport |dport

Action

* * % * * * 51.6.0.8 * * * port6

IP datagrams destined to IP address 51.6.0.8 should
be forwarded to router output port 6

Firewall:

Switch|MAC [MAC |Eth VLAN (IP IP IP TCP TCP Forward
Port [src dst type |ID Src Dst Proto |sport |dport

* * * * * * * * * 22 drop

do not forward (block) all datagrams destined to TCP port 22

Switch|MAC [MAC |Eth VLAN |IP IP IP TCP |TCP Forward
Port |src dst type |ID Src Dst Prot |sport |dport
* * * * * 128'119‘1§k1 * * * drop

do not forward (block) all datagrams sent by host 128.119.1.1

Overview of Routing

0 The "control plane”
0 What is the objective of routing?
0 Does routing occur between hosts or routers?

O What are differences between centralized
(global) and decentralized algorithms?
«What are examples of each?

« Amount of information initially
«How information is shared/spread
« Synchronous or asynchronous?

+ (see pathologies as well)

12

Routing Notation

Graph: G = (N,E)

N = set of nodes, here nodes = routers
={u,v,w,Xx,Vy,2z}

E = set of edges or links
={(uyv), (Ux), (v.x), (v,w), (x,w), (x,y), (Wy),
(w,2), (v.2) }

25

A Link-State Routing Algorithm

Dijkstra's algorithm

0 Computes the shortest paths in a graph by
using weights on edges as a measure of
distance.
<+ Starts with complete information
+ A path with the least number of edges may not be

the path with the least weight / least cost.

0 Each node has global information on network

topology and edge weights

0 A 'Greedy’ algorithm

« Makes the locally optimum choice, with objective
of finding the global optimum

26

13

Dijkstra Notation

Q c(X,Y): link cost from node x to y

< = < if not direct neighbors

O D(V): current value of cost of path from
source to dest.v

O p(V): predecessor node along path from
source to v

0 N': set of nodes whose least cost path
definitively known

27

A Link-State Routing Algorithm

u3

28

14

A Link-State Routing Algorithm

Dijkstra's algorithm
O computes least cost paths from one node (‘source’) to
all other nodes
< Determines the forwarding table for that node
O The network topology and link costs are known to all
nodes
« accomplished via "link state broadcast”
« all nodes have the same information
O The algorithm is iterative: after k iterations, the least
cost paths to k destinations are known

29

Dijsktra’s Algorithm for node ‘v’

1 Initialization:

2 N'={u}

3 forall nodes v

4 ifvis neighbortou

5 then D(V) = C(U,V) (D(V): current value of cost of path from source to dest.v)
6 else D(v) =

7

8

Loop
9 find some w not yet in N' such that D(w) is a minimum
10 add wto N’
11 update D(v) for all v adjacent to w and notin N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes are in set N’

30

15

Dijkstra’s algorithm: example

D(v) D(w) D(x) D(y) D(z)

Step N' p(v) p(w) p(x) p(y) p(z)
0 u 7,u @ 5,u © ©
1 uw 6w G 11w o
2 uwx 11w ,
3 UWXV @

4 UWXVY
5 uwxvyz
notes:

> Construct shortest path tree
by tracing predecessor nodes

> Construct the forwarding table
by recording the next hop to
the destination node

> What is the forwarding table??

Dijkstra's algorithm: example

Step startN' D(B),p(B) D(C),p(C) D(D),p(D) D(E).p(E) D(F),p(F)

0 A 2,A

5A 1,A infinity infinity

32

16

Dijkstra's algorithm: example
Resulting shortest-path tree from A:

B <O
=
—EEB;B
destination | link

Resulting g g? g))
forwarding table E (A' D)

in A: C (A, D)

F (A,D)

Routing Activity

O Each pair, or table, be a different router
A Fill in table on handout using Dijkstra's
algorithm, for your router letter (IP address)

0 Create the forwarding table (back side of
handout)

0 Send datagrams to a distant destination,
forwarding the datagrams to the appropriate
"next-hop" using your forwarding table.

34

17

Link State Example

Use Dijkstra’s algorithm to compute the least-cost-path table

for node x, and the forwarding table for x’s router

35

Step

D(s):p(s)

D(9).p(t)

D(u),p(u)

D(v).p(v)

D(w),p(w)

D(y),p(y)

D(z).p(2)

18

Final Step: The Forwarding Table

N<S<cCHW®”

37

Algorithm 2: Distance Vector

Rather than using global information, a
distance vector algorithm is:

Q distributed:

«each node communicates only with directly-
attached neighbors

Qiterative:
< continues until no nodes exchange info.
« self-terminating: no "signal” to stop

0 asynchronous:

+nodes need not exchange information or
iterate in lock step!

38

19

Distance Vector Algorithm

Bellman-Ford Equation, an important
relationship among costs of least-cost paths

Define
d,(y) := cost of least-cost path from x toy

Then

d,(y) = min {c(x,v) + d,(y) }

where min is taken over all neighbors v of x

39

Summary

Forwarding:

0 Leads to questions of addressing

<« Assignment of IP addresses
+ NAT, IPvé6 ..

Routing:

0 Routing objectives

0 Routing notation

0 Routing classification

O Link state v. Distance Vector
QO Hierarchical structure

40

20

