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Summary Chapter 4
q IP Addressing

v Network prefixes and Subnets
v IP datagram format

q DHCP – dynamic addressing
v Obtain: own IP address
v Subnet mask, DNS server & first-hop 

router IP address
q NAT – network address translation… at end 

of class today



2

Overview of the Network Layer

forwarding
table

Network layer functions & protocols:

routing protocols
• path selection
• RIP, OSPF, BGP

IP protocol
• addressing conventions
• datagram format
• packet handling conventions

ICMP protocol
• error reporting
• router “signaling”

transport layer: TCP, UDP

link layer

physical layer

network
layer

Smith College IP Addressing
Possible QUESTIONS: 
1) Given a mask of 255.255.254.0

v What is the ”/__” notation for this?

2) are the machines with IP addresses 
131.229.22.50 and 131.229.23.243 on the 
same subnet? 
v How many hosts are supported in the 

range 131.229.22.00/23 ?

4
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IP addresses: how to get one?

Q: How does a host get an IP address?
q hard-coded by system administrator in a file, or
q DHCP: Dynamic Host Configuration Protocol: 

dynamically get address from as server
v “plug-and-play” 

Q: How does network get subnet part of IP 
address?

A: Is allocated a portion of its provider ISP’s 
address space, which gets that from ICANN
(Internet Corp. for Assigned Names and Numbers)

6

DHCP: Dynamic Host Configuration Protocol

Goal: allow host to dynamically obtain its IP address 
from network server when it joins a network
v Can renew its lease on the IP address it is using
v Allows reuse of addresses once one host leaves
v Support for mobile users to join networks

DHCP overview:
1) host broadcasts “DHCP discover” msg
2) DHCP server responds with “DHCP offer” msg
3) host requests IP address: “DHCP request” msg
4) DHCP server sends address: “DHCP ack” msg
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DHCP client-server scenario
DHCP server: 223.1.2.5 arriving

client

time

DHCP discover

src : 0.0.0.0, 68  
dest.: 255.255.255.255,67
yiaddr:    0.0.0.0
transaction ID: 654

DHCP offer
src: 223.1.2.5, 67
dest:  255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request
src:  0.0.0.0, 68
dest:: 255.255.255.255, 67
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK
src: 223.1.2.5, 67      
dest:  255.255.255.255, 68
yiaddr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

yiaddr = ‘your internet address’
broadcast address, 255.255.255.255 à sent to every host in the subnet

8

NAT: Network Address Translation
q Motivation: local (home) network uses just one 

IP address as far as outside world view:
v range of addresses not needed from ISP:  just one IP 

address for all devices
v can change addresses of devices in local network 

without notifying outside world
v can change ISP without changing addresses of 

devices in local network
v devices inside local net not explicitly addressable, 

visible by outside world (a security plus)
q Range of addresses within: 10.0.0.0/24
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Standard Reserved IP Address 
Blocks for Private Network Use
q 10.0.0.0/8 (10.0.0.0 - 10.255.255.255) 

q 172.16.0.0/12 (172.16.0.0 –172.31.255.255) 

q 192.168.0.0/16 (192.168.0.0 - 192.168.255.255) 
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NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0.0/24

rest of
Internet

Datagrams with source or 
destination in this network

have 10.0.0.0/24 address for 
source, destination (as usual)

All datagrams leaving local
network have same single source 

NAT router IP address: 
138.76.29.7, but they have

different source port numbers
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Implementation: NAT router must:

v for outgoing datagrams: replace (source IP address, port #) of 
every outgoing datagram with (NAT IP address, new port #)
• remote clients/servers will respond using (NAT IP address, new port #) 

as destination address

v remember (in NAT translation table) every (source IP address, 
port #) to (NAT IP address, new port #) translation pair

v for incoming datagrams: replace (NAT IP address, new port #) in 
destination fields of every incoming datagram with 
corresponding (source IP address, port #) stored in NAT table

NAT Router Tasks

12

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1
10.0.0.4

138.76.29.7

1: host 10.0.0.1 
sends datagram to 
128.119.40.186, 80

NAT translation table
WAN side addr LAN side addr
138.76.29.7, 5001   10.0.0.1, 3345
……                                         ……

S: 128.119.40.186, 80 
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80 
D: 138.76.29.7, 5001 3

3: reply arrives
dest. address:
138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345 

NAT: network address translation



7

13

NAT Question on Handout

14

IPv6 datagram format
priority: identify priority among datagrams in flow
flow Label: identify datagrams in same “flow.”

(concept of“flow” not well defined).
next header: identify upper layer protocol for data

data

destination address (128 bits)

source address (128 bits)
payload len next hdr hop limit

flow labelpriver

32 bits
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NAT Controversies?
q Port numbers are used by NAT to identify 

hosts (and the process) within the local 
network – but ports are for addressing 
processes only not hosts

q Routers should only process packets up to 
layer 3 (ports associated with app socket)

q Violates end-to-end argument
v NAT possibility must be taken into account by 

application designers, e.g., P2P applications
v Interfering nodes should not modify IP 

addresses and port numbers
q Address shortage should instead be solved 

by IPv6

IP fragmentation & reassembly
q network links have MTU 

(max. transfer size) - largest 
possible link-level frame
v different link technologies 

have different MTUs 
q large IP datagram may be 

divided (“fragmented”) 
within a network when the 
link technology changes
v one datagram becomes 

several datagrams
v “reassembled” only at final 

destination
v IP header bits used to 

identify, order related 
fragments

fragmentation:
in: one large datagram
out: 3 smaller datagrams

reassembly

…

…
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ID
=x

offset
=0

fragflag
=0

length
=4000

ID
=x

offset
=0

fragflag
=1

length
=1500

ID
=x

offset
=185

fragflag
=1

length
=1500

ID
=x

offset
=370

fragflag
=0

length
=1040

So one large datagram becomes
several smaller datagrams

example:
v A 4000 byte datagram
v Encounters an older 

link technology
v That can only 

accommodate      
MTU = 1500 bytes

1480 bytes in 
data field

offset =
1480/8 

IP fragmentation & reassembly

18

1

23

0111

value in arriving
packet’s header

routing algorithm

local forwarding table
header value output link

0100
0101
0111
1001

3
2
2
1

Recap:  Routing v. Forwarding
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Generalized Forwarding and SDN

23
0100 1101

values in arriving
packet’s header

logically-centralized routing controller

1

control plane

data plane

Each router contains a flow table that is computed and 
distributed by a logically centralized routing controller

local flow table
headers  counters  actions

q generalized	forwarding:	simple	packet-handling	rules
v Pattern:	match	values	in	packet	header	fields
v Actions:	for	matched	packet:	drop,	forward,	modify,	
matched	packet	or	send	matched	packet	to	controller	

v Priority:	disambiguate	overlapping	patterns
v Counters:	#bytes	and	#packets

Flow table in a router (computed and distributed by 
controller) define router’s match+action rules

OpenFlow data plane abstraction
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OpenFlow data plane abstraction
q generalized	forwarding:	simple	packet-handling	rules

v Pattern:	match	values	in	packet	header	fields
v Actions:	for	matched	packet:	drop,	forward,	modify,	
matched	packet	or	send	matched	packet	to	controller	

v Priority:	disambiguate	overlapping	patterns
v Counters:	#bytes	and	#packets

1. src=1.2.*.*,	dest=3.4.5.*	à drop																								
2. src	=	*.*.*.*,	dest=3.4.*.*	à forward(2)
3.		src=10.1.2.3,	dest=*.*.*.*	à send	to	controller

* : wildcard

OpenFlow: Flow Table Entries

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Match Action Stats

1. Forward	packet	to	port(s)
2. Encapsulate	and	forward	to	controller
3. Drop	packet
4. Send	to	normal	processing	pipeline
5. Modify	Fields

Link	layer Network	layer Transport	layer
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Destination-based forwarding:

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Proto

TCP
sport

TCP
dport Action

* * * * * 51.6.0.8 * * * port6

Examples

IP datagrams destined to IP address  51.6.0.8 should 
be forwarded to router output port 6 

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Proto

TCP
sport

TCP
dport Forward

* * * * * * * * 22 drop

Firewall:

do not forward (block) all datagrams destined to TCP  port 22

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Forward

* * * *
128.119.1.1

* * * * drop
do not forward (block) all datagrams sent by host 128.119.1.1

Overview of Routing
q The “control plane”
q What is the objective of routing?
q Does routing occur between hosts or routers?
q What are differences between centralized

(global) and decentralized algorithms?
vWhat are examples of each?
vAmount of information initially
vHow information is shared/spread
vSynchronous or asynchronous?

v (see pathologies as well)
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u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Graph: G = (N,E)

N = set of nodes, here nodes = routers 
= { u, v, w, x, y, z }

E = set of edges or links 
= { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), 

(w,z), (y,z) }

Routing Notation

26

A Link-State Routing Algorithm
Dijkstra’s algorithm
q Computes the shortest paths in a graph by 

using weights on edges as a measure of 
distance. 
v Starts with complete information
v A path with the least number of edges may not be 

the path with the least weight / least cost.
q Each node has global information on network 

topology and edge weights
q A ‘Greedy’ algorithm 

v Makes the locally optimum choice, with objective 
of finding the global optimum
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Dijkstra Notation

q c(x,y): link cost from node x to y
v = ∞ if not direct neighbors

q D(v): current value of cost of path from 
source to dest. v

q p(v): predecessor node along path from 
source to v

q N': set of nodes whose least cost path 
definitively known

28

A Link-State Routing Algorithm
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A Link-State Routing Algorithm
Dijkstra’s algorithm
q computes least cost paths from one node (‘source’) to 

all other nodes
v Determines the forwarding table for that node

q The network topology and link costs are known to all 
nodes
v accomplished via “link state broadcast” 
v all nodes have the same information

q The algorithm is iterative: after k iterations, the least 
cost paths to k destinations are known

http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/DijkstraApp.shtml?demo1

http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/DijkstraApp.shtml?demo7

http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/DijkstraApp.shtml?demo8

30

Dijsktra’s Algorithm for node ‘u’

1  Initialization:
2    N' = {u} 
3    for all nodes v 
4      if v is neighbor to u 
5          then D(v) = c(u,v)   (D(v): current value of cost of path from source to dest. v)
6      else D(v) = ∞
7 
8   Loop
9     find some w not yet in N' such that D(w) is a minimum 
10   add w to N'
11   update D(v) for all v adjacent to w and not in N' : 
12       D(v) = min( D(v), D(w) + c(w,v) ) 
13    /* new cost to v is either old cost to v or known 
14       shortest path cost to w plus cost from w to v */ 
15  until all nodes are in set N'
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w3

4

v

x

u

5

3
7 4

y

8

z
2

7
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Dijkstra’s algorithm: example
Step N'

D(v)
p(v)

0
1
2
3
4
5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u
uw ∞ 11,w6,w 5,u

14,x 11,w 6,wuwx
uwxv 14,x 10,v 

uwxvy 12,y 

notes:
v Construct shortest path tree 

by tracing predecessor nodes
v Construct the forwarding table

by recording the next hop to 
the destination node

v What is the forwarding table??

uwxvyz

32

Dijkstra’s algorithm: example
Step

0
1
2
3
4
5

start N’
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5
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Dijkstra’s algorithm: example 
Resulting shortest-path tree from A:

B
D
E
C
F

(A, B)
(A, D)

destination link

Resulting 
forwarding table 
in A:

A

ED

CB

F

(A, D)
(A, D)
(A, D)

Routing Activity

q Each pair, or table, be a different router
q Fill in table on handout using Dijkstra’s

algorithm, for your router letter (IP address)
q Create the forwarding table (back side of 

handout)
q Send datagrams to a distant destination, 

forwarding the datagrams to the appropriate 
“next-hop” using your forwarding table.

34
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Link State Example

35

Use Dijkstra’s algorithm to compute the least-cost-path table 
for node x, and the forwarding table for x’s router

36
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Final Step:  The Forwarding Table

37

Destination Link
S
T
U
V
W
Y
Z

38

Algorithm 2:  Distance Vector
Rather than using global information, a 
distance vector algorithm is:
q distributed:

veach node communicates only with directly-
attached neighbors

q iterative:
vcontinues until no nodes exchange info.
vself-terminating: no “signal” to stop

q asynchronous:
vnodes need not exchange information or 

iterate in lock step!
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Distance Vector Algorithm 
Bellman-Ford Equation, an important 

relationship among costs of least-cost paths

Define
dx(y) := cost of least-cost path from x to y

Then

dx(y) = min {c(x,v) + dv(y) }

where min is taken over all neighbors v of x

v

40

Summary
Forwarding:
q Leads to questions of addressing

v Assignment of IP addresses
v NAT, IPv6 …

Routing:
q Routing objectives
q Routing notation
q Routing classification
q Link state v. Distance Vector
q Hierarchical structure


