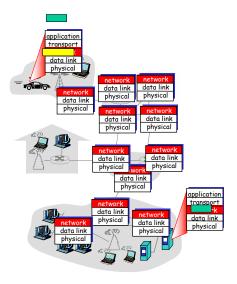
<u>The Network Layer</u> <u>Forwarding Tables and</u> <u>Switching 'Fabric'</u>

Smith College, CSC 249 February 27, 2018

Network Layer Overview


- Network layer services
 - Desired services and tasks
 - Actual services and tasks
- Forwarding versus routing
 - Routing algorithms path selection
 - Routing algorithms creation of forwarding table
- Inside a router: switching 'fabric'
- Three Network Layer protocols
 - IP for addressing and forwarding
 - Routing protocols determining the best path

2

ICMP - messaging protocol

Network layer

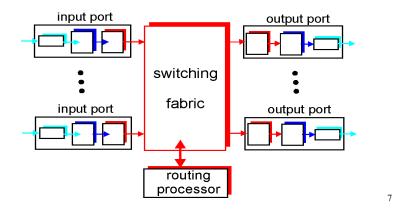
- Transport a segment from sending to receiving host, but implemented in the network core
- The sending side encapsulates segments into datagrams
- The receiving side delivers segments to transport layer
- Network layer protocols run in every host & router
 - Router examines header fields in all IP datagrams passing through it

3

5

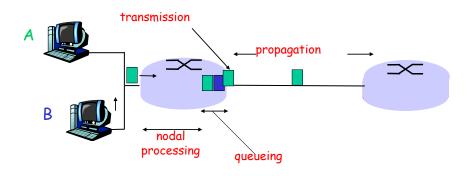
Network Layer Services of IP?

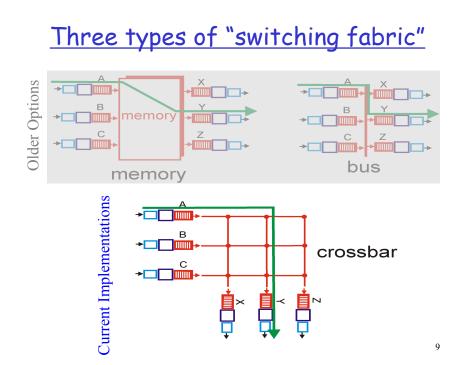
- □ Guaranteed delivery?
- Guaranteed minimum delay?
- □ In-order datagram delivery?
- Guaranteed minimum bandwidth to flow?
- Restrictions on changes in interpacket spacing?
- □ IP Provides? → "Best-effort service"


Key Network-Layer Functions

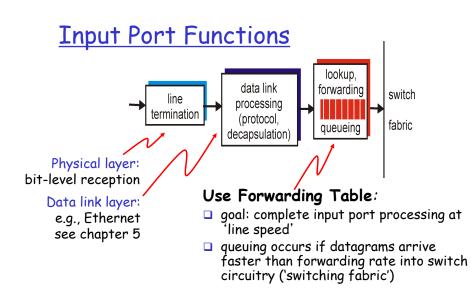
- routing: determine route taken by packets from source to destination
 Network-wide routing algorithms
- 2. *forwarding:* move packets from router's input link to appropriate output link
 - Internal to a single router

Router Architecture Overview

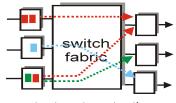

Two key router functions:

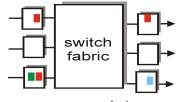

- **1**. run routing algorithms/protocol
- **2**. *forward* datagrams from incoming to outgoing link

Four sources of packet delay


Find an analogy for each category below in the caravan example.

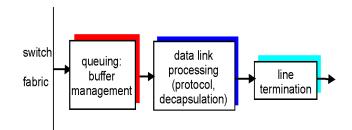
Queuing in Routers


- Where can queuing occur?
- Why does it occur?


Input Port Queuing

- Circuitry slower than input ports combined -> queueing may occur at input queues
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

queuing delay and loss due to input buffer overflow

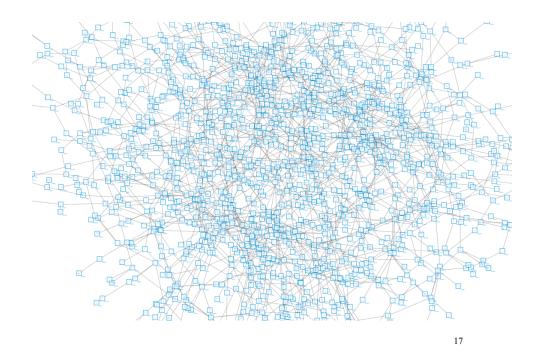

output port contention at time t - only one red packet can be transferred

green packet experiences HOL blocking

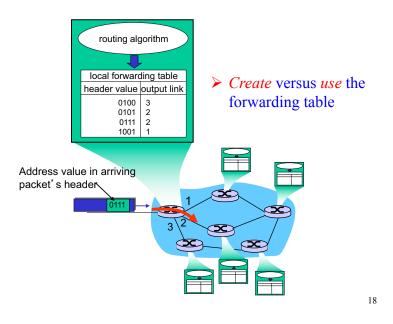
12

Output Ports

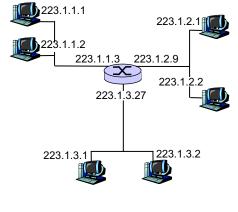
- Buffering required when datagrams arrive from circuitry faster than the line transmission rate
- Scheduling discipline chooses among queued datagrams for transmission


Output Port Queuing

- Packet scheduler at the output port
 - Select one queued packet for transmission
 - FCFS = "_____"?
 - Weighted-fair-queuing share the outgoing link "fairly" among connections


Discussion Questions

Questions on handout...

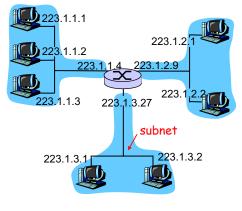


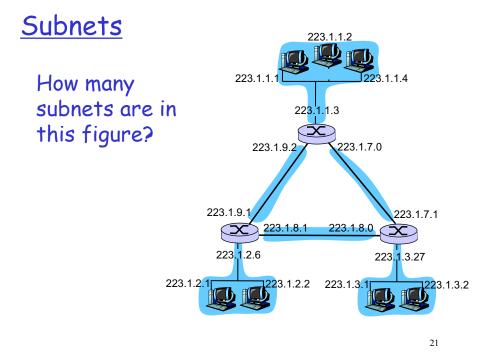
Interplay between routing and forwarding

IP Addressing: Overview

- IP address: 32-bit identifier for each interface on a host or router.
 - Dotted-decimal notation
- Interface: connection between host/router and physical link
 - routers typically have multiple interfaces
 - hosts typically have one interface
 - IP addresses associated with each interface

223.1.1.1 = 11011111 00000001 00000001 00000001


Subnets


□ A subnet contains:

- devices that can physically reach each other without an intervening router
- □ IP address:
 - subnet portion (high order bits)
 - host portion (low order bits)

□ Subnet <u>mask</u> notation:

- Differentiates the network versus host part of the address
- e.g., the leftmost 24 bits are for the network...
 223.1.3.0/24

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- * Subnet portion of address of arbitrary length
- * Address format: a.b.c.d/x
 - $\cdot \,$ x is the number of bits in subnet portion of address
 - These 'x' most significant bits are the 'prefix'
- Addresses of all hosts in the same subnet have the same left most 'x' bits

	subnet part	host	
	the 'prefix'		part
11001000	00010111	0001000 <mark>0</mark>	00000000

200.23.16.0/23

22

Forwarding table

2³² = 4 billion possible addresses So the table could have 4 billion entries!

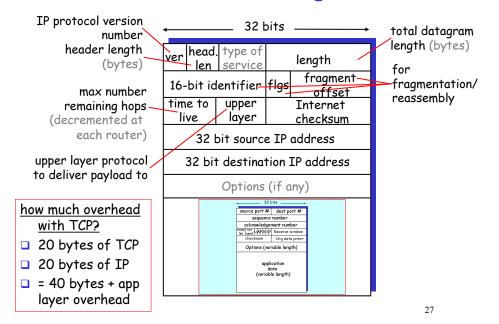
Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 1111111	0
11001000 00010111 00011000 0000000 through 11001000 00010111 00011000 1111111	1
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 1111111	2
otherwise	3

Longest prefix matching

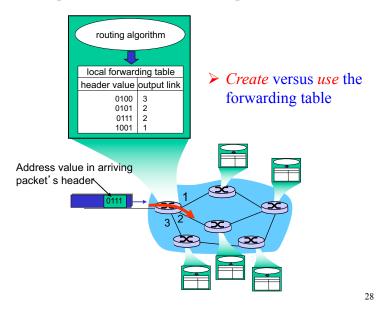
Prefix Match		Link Interface
11001000 00010111 0)0010*** *******	0
11001000 00010111 0	00011000 *******	1
11001000 00010111 0	0011*** ********	2
otherw	vise	3
Examples		
Cxumples		
DA: 11001000 0001011	1 0001 <mark>0110 10100001</mark>	Which interface?
DA: 11001000 0001011	1 00011000 10101010	Which interface?

Forwarding Table "Ranges"

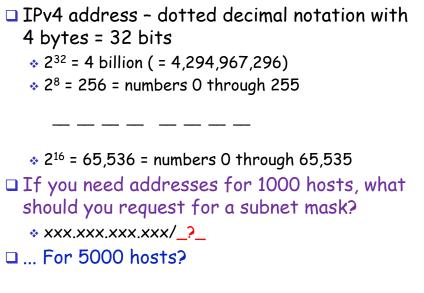
- What are the assumptions and implications of having large ranges of IP addresses forwarded to the same outgoing link?
- Why is CIDRized ('classless') addressing an improvement over 'classful' addressing, that restricted the network prefix to complete bytes?


25

TCP segment structure


← 32 bits		
source port #	dest port #	
sequence number		
acknowledgement number		
head not len used UAPRSF	Receive window	
checksum	Urg data pnter	
Options (variable length)		
application data (variable length)		

26


Internet Protocol: IP datagram format

Routing and Forwarding

Determining the needed submask

Binary Number Sanity Check

□ 2 ² = 4 =	0100	
2 ³ = 8 =	1000	(one nibble)
2 ⁴ = 16 =	0001 0000	
□ 2 ⁸ = 256 =	0001 0000 0000	(one byte)
2 ¹⁰ = 1024 =	0100 0000 0000	
2 ¹¹ = 2048 =	1000 0000 0000	

30

Longest prefix (subnet) matching

Prefix Match			Link Interface	
11001000	00010111	00010***	******	0
11001000	00010111	00011000	******	1
11001000	00010111	00011***	******	2
otherwise			3	

Examples

 Addr: 11001000 00010111 00010110 10100001
 Which interface?

 Addr: 11001000 00010111 00011000 10101010
 Which interface?

Discussion Questions

Back to the questions on handout...

Smith College IP Addressing

- Smith uses a variety of masks now, but most of the campus uses 255.255.254.0 rather than the much more common 255.255.255.0.
- The reason goes back to our original subnets using the original Ethernet.
- There weren't many subnets within Smith and the network administrators thought they might need to support more than 256 hosts per subnet.

33

Smith College IP Addressing

- The Science Center is mostly different from the rest of campus, because the CATS move machines around a lot and they are responsible for assigning the IP addresses within the science buildings.
- Ford Hall has a 255.255.248.0 mask to allow for 2048 hosts in the building.
- Bass and McConnell share a subnet of the same size, as do Burton and Sabin-Reed.

34

Smith College IP Addressing

Possible **QUESTIONS**:

- What mask would you need to support (x) hosts on a subnet?
- 2) Given a mask of 255.255.254.0, are the machines with IP addresses 131.229.22.50 and 131.229.23.243 on the same subnet?
- 3) How many hosts are supported in the range 131.229.22.00/23 ?

Smith College IP Addressing

- Most people really want to identify a 131.229.23.x address as being on a different subnet from a 131.229.22.y address, whether it is or not.
- QUESTION: When would hosts with the above masks be in the same subnet and when would they not be? (how would you specify the network mask in each case?)

Booting Up

- How to boot up a computer
 - How does a computer know where to start itself?
- How to enter a computer network
 - How does a computer know how to start communicating with other computers?
 - * How does it get its own 'source' IP address
 - Which devices/hosts does an entering computer need to communicate with first, and how does it do this?

37

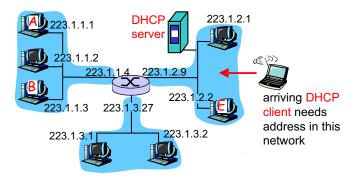
IP addresses: how to get one?

- <u>Q:</u> How does *network* get subnet part of IP address?
- <u>A:</u> Is allocated a portion of its provider ISP's address space, which gets that from ICANN (Internet Corp. for Assigned Names and Numbers)

Q: How does a *host* get an IP address?

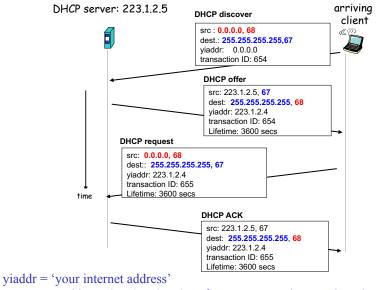
- hard-coded by system administrator in a file, <u>or</u>
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - * "plug-and-play"

DHCP: Dynamic Host Configuration Protocol


<u>Goal:</u> allow host to *dynamically* obtain its IP address from network server when it joins a network

- Can renew its lease on the IP address it is using
- Allows reuse of addresses once one host leaves
- Support for mobile users to join networks

DHCP overview:


- 1) host broadcasts "DHCP discover" msg
- 2) DHCP server responds with "DHCP offer" msg
- 3) host requests IP address: "DHCP request" msg
- 4) DHCP server sends address: "DHCP ack" msg

DHCP client-server scenario

40

DHCP client-server scenario

broadcast address, $255.255.255.255 \rightarrow$ sent to every host *in the subnet*

<u>Summary</u>

- □ There are many possible network layer services → IP provides none
- Forwarding vs. Routing
 - Forwarding tables
- Inside a router
 - The internet in miniature
 - Switching 'fabric' (circuitry)
- The network IP datagram
- IP addressing structure

<u>Midterm Topics</u>

- Know the principles for each layer
 - Know what the actual Internet implementation is (versus what might be desired)
- Chapter 1 mainly sources of packet delay,
 - How (and which ones) to calculate
 - Understanding of all sources of delay

Applications

- Architectures, mainly client-server
- Types of connections parallel, FTP-data and control, etc.
- What we did with Telnet
- Socket programming

Midterm Topics

Transport Layer

- Transport layer desired services
- UDP and TCP actual services
- Multiplexing/demultiplexing
- Checksum
- Connection management
- * Elements of reliable data transport
- * Timing diagrams with SEQ, ACK, SYN, etc
- * Congestion control elements and algorithm
- Flow control

44

Midterm Topics

Network layer

- The sources of packet delay, at the router
 - Queueing at the input and output ports, why, how, terms...
- The definition of / difference between forwarding and routing
- Basic structure of IPv4 addresses
- DHCP and NAT (today's topics)