
1

The CPU &
Computer Architecture

CSC 103
September 22, 2005

Overview for Today

• Paper topics (sheet)
– No AI – class discussion
– Outline and references in 2 weeks

• The CPU – central processing unit
– Fetch-execute cycle
– The Pippin simulator

• Hierarchy of Languages
• Program Control

– Making decisions with ‘if-then’ statements

2

Chapter 3 Objectives

• To see how a mechanical/electrical
device can automatically execute any list
of instructions, written in binary

• To see how a simple machine that stores
and executes programs (Pippin)
– All computers do is execute instructions
– Organized into programs: a precise list of

simple instructions

Plexiglas Computer

3

How Do Computers Work?

• Thoughts so far?

• What are the main components of a
computer?

• How do the pieces work together?
• How do the concepts (hardware and

software) work together?
• Open questions?
• Great new ideas?

Class To Date: Hardware

• Logic circuits without feedback
– Addition: Logic gates and Boolean algebra

tools
– Subtraction: A + (-B) ...

• Logic circuits with feedback
– Memory circuits and RAM array
– Data bus and control lines

4

Today: Moving from Hardware to Software

• The CPU & main memory
– Hardware components circuits
– Designed and organized to execute (binary)

instructions
• Conceptually like a row of dominoes

• CPU is automatically given the first
instruction when the computer ‘boots up’
– A clock circuit keeps everything moving on
– Told where the first domino is

Components of the CPU (Pippin)

5

CPU Examples

• Sample CPU in text is composed of
– Clock
– ALU
– 8 registers – memory, temporary staging

areas
– Main memory
– Control circuit

• PIPPIN has similar components / circuits
• Read the text chapter! (chapter 3)

The Arithmetic-Logic-Unit

• Inside the CPU is the Arithmetic-Logic-
Unit (ALU), which performs addition,
subtraction...

A

B

Cin

6

Memory: RAM & Registers

A1 A2 A3 A4

Control Circuit: Decoder

• RAM Address; Decode instruction
• Truth Table of a 2-to-4-Line Decoder

Inputs Outputs
S1 S2 A0 Al A2 A3

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

7

Control Circuit: Decoder

S1

S2

A1

A2

A3

A4

S1’

S2’

S1’

S2

The CPU &
‘Fetch-Execute’

8

Addition Example

To perform 2 + 3 = 5 :

1. Load ‘2’ into the CPU
2. Add ‘3’ to ‘2’ and temporarily store

the result, ‘5’
3. (=) Store the result to main memory

‘Fetch’ each instruction and data, and then
do what it directs (‘execute’)

Components of Pippin

9

Components of Pippin

• Pippin handout
– ALU
– Registers

• PC, the program counter
• Instruction register
• Accumulator (the computer’s scratch pad)

– Decoder
– MUX
– RAM

The Pippin Simulator
http://www.science.smith.edu/~jcardell/Courses/CSC103/CPUsim/cpusim.html

10

Addition Example Con’t

• Keeping everything organized
– The CPU must know where to find

everything
• Data and instructions

– The CPU must know where to store the
result

• Performing the example in binary
– The operations (e.g., ‘ADD’) need a binary

code/number assigned to them
– The operands (data) must be in binary

Assembly Language

• Our example must be written in simple
steps
– LOD #2 = load #2 into the CPU
– ADD #3 = add #3 to whatever is there
– STO Y = store the result to ‘Y’
– HLT = stop!

• The ‘operands’
– Immediate mode, data follows: #2, #3
– Direct addressing, data in RAM: Y

0001 0100 0000 0010
0001 0000 0000 0011
0000 0101 1000 0010
0000 1111 0000 0000

11

Binary Code Assignments for PIPPIN

• Load = LOD = 0001 0100 (data follows)
= 0000 0100 (data in RAM)

• Add = ADD = 0001 0000 (data follows)
= 0000 0000 (data in RAM)

• Store = STO = 0000 0101 (location follows)

• Halt = HLT = 0000 1111 (no data)

• Punch cards/Binary Assembly High level language

• See the handout and webpage link for full
PIPPIN ‘instruction set’

Pippin Lab

12

Software and the Hierarchy
of Languages

Hierarchy of Languages

High level languages:
FORTRAN, C, Python, JS

Assembly language
Machine language

Hardware, circuits

• The process for people (natural languages) to
communicate with computers:

13

Computer Programs

• A computer computes: it manipulates symbols
– The symbols are always binary data

• We must tell the computer everything
– Where the data is
– What the data is (instructions vs. operand)
– What to do with the data

• Two tasks
– Define the purpose of each instruction – ADD, etc.
– Define a sequence of steps that will execute the

instruction
• (We will then need a complex digital circuit to

carry out the steps – the CPU – and a clock)

Computer Programs

• Sequential – start at the beginning and
methodically execute instructions until
done
– Our examples so far are sequential

or

• Repeat sections; jump over parts...
Program control

14

Program Control

• Decisions: If-else
• Repeat: Loops

• On-line shopping
– Repeat: “Continue shopping?”
– Decision: “Or proceed to checkout?”

• Setting preferences
– Left- or right-handed mouse

Preview of JavaScript and Decisions

• Entering personal information to shop
on-line
– Name
– Address

• Zipcode Our next task

• Simple verification of information
entered
– Is the zipcode entered a number?
– Is it 5 digits long?

15

Instruction Categories

• Three categories of instructions
– Data flow – load and store
– Arithmetic-logic – math, logic including compare
– Control – jump, halt, nop

• New instructions
– JMP n – go to instruction number n
– JMZ n – If Acc=0, goto instruction n, else to go

instruction immediately following
– CPZ X – (compare zero) If X=0, set Acc to 1; else

set Acc to 0
– CPL X – (compare less) If X<0, set Acc to 1; else

set Acc to 0

If-Else in Assembly

• Let ‘X’ represent the result from pulling
the handle of a slot machine
– X = 0 means you did not get 4-of-kind...
– X ≠ 0 means you got a winning hand

if (X = 0)
W = 0 // your winnings=0

else
W = 100 // you win!!!

16

If-Else: If (X = 0)

0 LOD X Useful to write out below:

2 CPZ X if X=0, Acc=1, else Acc=0

4 JMZ ? if Acc=0, goto 12

Note: Line numbers – we need to keep track of
them to know what line to jump to with the
‘JMZ’ instruction

If-Else: Then W = 0

6 LOD #0
8 STO W
10 HLT

Don’t forget to ‘HLT’ at the end of this branch
(we do not want to execute both branches,
only one)

17

If-Else: Else W = 100

12 LOD #100
14 STO W
16 HLT

Note: The ‘then’ branch went to line 10, so we
start the ‘else’ branch at line 12
This is the line we jump (JMZ) to

Don’t forget to ‘HLT’

Complete If-Else Program

0 LOD X Useful to write out below:
2 CPZ X if X=0, Acc=1, else Acc=0
4 JMZ 12 if Acc=0, goto 12
6 LOD #0
8 STO W
10 HLT
12 LOD #100
14 STO W
16 HLT

18

The Pippin Simulator
http://www.science.smith.edu/~jcardell/Courses/CSC103/CPUsim/cpusim.html

Things to Remember

• The role of the accumulator
– The result of the compare is stored in the

accumulator
– The jump occurs based on the accumulator

• Line numbers
– Write out program FIRST to work out line

numbers
• HLT

– Do not forget the ‘HLT’ after the ‘if’ branch
and after the ‘else’ branch

19

Summary

• The CPU
– The fetch-execute cycle
– The Pippin CPU simulator

• Programming Control
– If-then statements

• Using ‘compare’ and ‘jump’ for computer
decision making

