
1

The CPU &
Computer Architecture

CSC 103
September 26, 2007

Hierarchy of Languages

High level languages:
FORTRAN, C, Python, JS

Assembly language
Machine language

Hardware, circuits

• The process for people (natural languages) to
communicate with computers:

2

Overview for Today

• The CPU – central processing unit
– Elements of the CPU
– Fetch-execute cycle

• Decoder circuit
– Interpreting instruction codes (opcode)

• Assembly Language
– Types of instructions
– Instruction structure

• Opcode and operand

Assembly Language

• To perform 2 + 3 = 5 :

– LOD #2 = load #2 into the CPU
– ADD #3 = add #3 to whatever is there
– STO Y = store the result to ‘Y’
– HLT = stop!

• Fetch and then execute

3

Components of the CPU (Pippin)

Assembly Language

• Our example must be written in simple
steps
– LOD #2 =
– ADD #3 =
– STO Y =
– HLT =

• How are these instructions decoded by the
CPU?

0001 0100 0000 0010
0001 0000 0000 0011
0000 0101 1000 0010
0000 1111 0000 0000

4

Understanding How
Opcodes Work
Decoder Circuits

Memory: RAM & Registers

A1 A2 A3 A4

5

Control Circuit: Decoder

• RAM Address; Decode instruction
• Truth Table of a 2-to-4-Line Decoder

Inputs Outputs
S1 S2 A1 A2 A3 A4

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

S1

S2

A1

A2

A3

A4

S1’

S2’

S1’

S2

Inputs Outputs
S1 S2 A1 A2 A3 A4
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

6

Control Circuit: Decoder

• To decode Pippin instructions
Inputs Instruction Line High

C1 C2 C3 C4 I1 I2 I3 I4 I5 I6 I7 I8 I9 …

– ADD: 0 0 0 0 1 0 0 0 0 0 0 0 0
– SUB: 0 0 0 1 0 1 0 0 0 0 0 0 0
– MUL: 0 0 1 0 0 0 1 0 0 0 0 0 0
– DIV: 0 0 1 1 0 0 0 1 0 0 0 0 0
– LOD: 0 1 0 0 0 0 0 0 1 0 0 0 0
– STO: 0 1 0 1 0 0 0 0 0 1 0 0 0

http://maven.smith.edu/~jcardell/courses/CSC103/PIPPINGuide.html

The CPU (Pippin)

7

The CPU (Pippin)

What a Computer Does:
The CPU &

‘Fetch-Execute’

8

Assembly Language

• To perform 2 + 3 = 5 :
(…fetch and then execute)
– LOD #2 = load #2 into the CPU
– ADD #3 = add #3 to whatever is there
– STO Y = store the result to ‘Y’
– HLT = stop!

• The ‘operands’
– Immediate mode, data follows: #2, #3
– Direct addressing, data in RAM: Y

0001 0100 0000 0010
0001 0000 0000 0011
0000 0101 1000 0010
0000 1111 0000 0000

Binary Code Assignments for PIPPIN

• Load = LOD = 0001 0100 (data follows)
= 0000 0100 (data in RAM)

• Add = ADD = 0001 0000 (data follows)
= 0000 0000 (data in RAM)

• Store = STO = 0000 0101 (location follows)

• Halt = HLT = 0000 1111 (no data)

• Punch cards/Binary Assembly High level language

• See the handout and webpage link for full
PIPPIN ‘instruction set’

9

Program Control

Computer Programs

• A computer computes: it manipulates
symbols
– The symbols are always binary data

• We must tell the computer everything
– Where the data is
– What the data is (instructions vs. operand)
– What to do with the data

10

Computer Programs

• Sequential – start at the beginning and
methodically execute instructions until
done
(Our examples so far are sequential)

or

• Repeat sections; jump over parts...
Program control

Program Control

• Decisions: If-else
• Repeat: Loops

• On-line shopping
– Repeat: “Continue shopping?”
– Decision: “Or proceed to checkout?”

• Setting preferences
– No beeping sounds? Many sounds?
– Left- or right-handed mouse

11

Instruction Categories

• Three categories of instructions
– Data flow – load and store
– Arithmetic-logic – math, logic including compare
– Control – jump, halt, nop

• New instructions
– JMP n – go to instruction number n
– JMZ n – If Acc=0, goto instruction n, else to go

instruction immediately following
– CPZ X – (compare zero) If X=0, set Acc to 1; else

set Acc to 0
– CPL X – (compare less) If X<0, set Acc to 1; else

set Acc to 0

If-Else in Assembly

• Let ‘X’ represent the result from pulling
the handle of a slot machine
– X = 0 means you did not get 4-of-kind...
– X ≠ 0 means you got a winning hand

if (X = 0)
W = 0 // your winnings=0

else
W = 100 // you win!!!

12

If-Else: If (X = 0)

0 LOD X Useful to write out below:

2 CPZ X if X=0, Acc=1, else Acc=0
4 JMZ ? if Acc=0, goto 12

Note: Line numbers – we need to keep track of
them to know what line to jump to with the
‘JMZ’ instruction

If-Else: Then W = 0

6 LOD #0
8 STO W
10 HLT

Don’t forget to ‘HLT’ at the end of this branch
(we do not want to execute both branches,
only one)

13

If-Else: Else W = 100

12 LOD #100
14 STO W
16 HLT

Note: The ‘then’ branch went to line 10, so we
start the ‘else’ branch at line 12
This is the line we jump (JMZ) to

Don’t forget to ‘HLT’

Complete If-Else Program

0 LOD X Useful to write out below:
2 CPZ X if X=0, Acc=1, else Acc=0
4 JMZ 12 if Acc=0, goto 12
6 LOD #0
8 STO W
10 HLT
12 LOD #100
14 STO W
16 HLT

14

The Pippin Simulator
http://www.science.smith.edu/~jcardell/Courses/CSC103/CPUsim/cpusim.html

Things to Remember

• The role of the accumulator
– The result of the compare is stored in the

accumulator
– The jump occurs based on the accumulator

• Line numbers
– Write out program FIRST to work out line

numbers
• HLT

– Do not forget the ‘HLT’ after the ‘if’ branch
and after the ‘else’ branch

15

Summary

• The CPU
– The fetch-execute cycle
– The Pippin CPU simulator

• Programming Control
– If-then statements

• Using ‘compare’ and ‘jump’ for computer
decision making

