Name:
CSC 103 QUIZ 3
DUE Midnight (11:59pm)

 SOLUTIONS

Sunday, Sept. 30, 2007
Name:

Questions

1) What are the three categories of assembly language instructions? Also, provide one example of each type of instruction (Note this is discussed a bit in chapter 1, but mostly is from class discussions.)
(3 points)
a. Data flow: LOD, STO
b. Arithmetic, logic: ADD, SUB, MUL, DIV, CPZ, CPL
c. Control: HLT, NOP, JMP, JMZ
2) For the PIPPIN code segments below, determine an equivalent algebraic expression or statement that would perform the same task.
(2 points)
 LOD X

 DIV #3

 STO Y

Y = X / 3

 LOD #5

 MUL W

 STO X

 LOD Z

 DIV X

 STO W

W = Z / (5 * W)

3) Discuss the fetch-execute cycle briefly (1 or 2 sentences). (you do not need to discuss the COUNT register, as discussed in the text, but do identify the other components of the CPU and main memory that are involved, and mention what they do / how they are part of the fetch-execute cycle.
(3 points)

The following discussion is much longer than you need to have in your answers.
There are many ways to describe the fetch-execute cycle. This is discussed in the text on pages 79-81. Basically, this is the main action of the computer – it is the process by which it executes instructions and so executes our programs. The main points of this cycle (as seen in the PIPPIN simulator) are:

1. The CPU fetches the next (first) instruction by referencing the program counter (PC), which is always pointing to the address of the next instruction. This address is put on the address bus, the referenced byte from main memory is put on the data bus and…

2. The instruction is loaded into the Instruction Register (IR), and from there it is sent to the control circuit, which we see contains the Decoder and the Mux

3. The decoder decodes the instruction, sending the control signal for the appropriate task to the Accumulator. This circuit can be viewed as being essentially designed, or constructed, through the use of a truth table where the inputs are the possible bit patterns of every available instruction and the output is a ‘1’ on the control line to the ALU for the specified task (with all other control lines being held at ‘0’).
4. The Mux is used to send the data for the operand to the ALU. If the data is part of the instruction (immediate addressing, using the ‘#’ sign) then this data passes directly through the Mux. If the data is located in main memory, then the Mux fetches the data and sends it to the ALU.

5. The ALU executes the instruction, using the data in the Accumulator as necessary, and putting the result into the Accumulator (writing over whatever may have been in the Accumulator)

6. The cycle is done, the CPU returns to step 1.

4) To a computer, what is the difference between a piece of data (a number) and an instruction?
(2 points)

To a computer there is no difference between a number and an instruction. They are both simply bit patterns. We impose meaning on these types of information and arrange the bits / bytes in memory so that the computer interprets them correctly.

Alternatively, you could state that there is a difference between data and instructions based on how they are used by the computer. Instructions are used to select the correct output from the ALU, for example, while data is used by the ALU to perform its tasks. This is only true though if we, the people, have organized the data correctly. If we incorrectly put a bit pattern representing an ADD instruction, for example, in a byte where the CPU is expecting to find an operand, then that byte will be interpreted and used as an operand and not as an instruction.
page 2
quiz 1
CSC 103

