Name:

CSC 103 QUIZ 1

 SOLUTIONS

Name:

Quiz 1 CSC 103

Questions

1) Thinking about computation and what it means to compute, give three examples of computation that do not involve the arithmetic manipulation of numbers.
(1 point)
There are many possible answers for this question, many common ones will involve manipulation of text or words. The basic definition from which to work is that computation is the mechanical manipulation of symbols. Pages 1 and 2 discuss computation, page 2 has some examples.
Possible examples are:

a.
Spell checking a document involves comparing words in a document with words in a predefined list. The computer of course does this all by comparing binary numbers of 0s and 1s, which represent the ACSII version of the words.
b. Counting words in a paper
c.
Simple card games (that involve mechanical – rule based – manipulation of the cards) where cards are the symbols.
2) What two word phrases do the following abbreviations represent?
(1 point)
a. bit = binary digit (page 3)
b. pixel = picture element (page9)
3) What sequence of bits are transmitted from the keyboard to the computer when you press the (lowercase) y key on the keyboard. (You might want to check the links in the course syllabus/schedule)
(1 point)
In ASCII, ‘y’ is represented by the decimal number 121. In binary, this is

0 _1_ _1_ _1_ _1_ _0_ _0_ _1_

digit value in base 2, binary: (128 64 32 16 8 4 2 1)
4) List 6 examples of different data types, with at least 4 of them not being examples from the text, Chapter 1
(2 points)
Page 8, at the beginning of section 1.1.3 lists a number of possible data types. There are endless possible answers. Some such possibilities could be

a. hours in a day
b. flavors of ice cream
c. types of Halloween candy
d. possible hair colors
e. restaurant meals (combining beverage, salad, main course and dessert)
f. movies or music (each a different data type)
g. pictures, such as .jpeg, .tif, .gif… (all different data types)

5) Describe – briefly (a couple of sentences) – the structured complexity in one of

the following (to the extent that they are discussed in chapter 1)
(2 points)
There are many possible points to bring up with each of these. You only need to mention the basics in your answers. The discussion below is much more involved than you need to be in your answers.

The main idea is to begin focusing on the idea of structured complexity. Complexity is “structured,” (as we discuss it in this course and as in the text) when we break down a larger, complex problem or topic into smaller and smaller components. We first understand each of the smaller components and then combine them, gradually, into increasingly complex structures, until we arrive back at our starting point – the high level complex problem

a. Data
(pages 2 -11)

The lowest level for data, for our discussion of computers, is a single bit. We then see that bits are combined into bytes (8 bits), and that these bytes can be used to represent text (as in the ASCII code). Also, single bits can be used to map one-to-one to pixels on black and white monitors (full bytes are likely to be used for each pixel in a color monitor, so that each pixel will have a wide variety of colors). Therefore, we see that bits and bytes allow us to represent, in combination, entire sentences, or a complete video image.

Bytes are also the size grouping of bits that we use to represent individual machine language instructions (which we will get to next week), so we can group bits together, and build them up to represent entire computer programs.
b. Hardware (transistors etc)
(pages 17-20)

Transistors, or more generally switches, are the lowest level for our discussions. We have seen how we can combine these transistors to make NOT, OR and AND gates (as well as the XOR gate from class on Nov 2). These gates then are combined to make larger circuits, such as our adder circuit. Then this and similar circuits (e.g., for subtracting, dividing, comparing…) are combined into the ALU – arithmetic logic unit – which is turn is combined with other circuits to make the CPU. The CPU in combination with the memory circuits for main memory (RAM) are then the core of the computer hardware (though many many more circuits are involved to make a complete computer)
c. Programs (software)
(pages 20-24)

Programs are lists of instructions that the computer follows, mechanically, from the moment it is powered on until it is turned off. The lowest level of instructions are machine language instructions, which are single bytes that (1) encode the task to be performed (ADD, SUB, JUMP…) and (2) include data to use in the task. The next level up from machine language (which is in binary, and so is hard for us to understand) is assembly language. Assembly language instructions map one-to-one to machine language instructions, yet assembly is in almost-English, so it is easier for people to understand. The next level up from assembly language contains all the so-called higher level languages, such as C, C++, Java, Pascal, FORTRAN…, and JavaScript, which we’ll be using in this course.
6) Convert the following binary numbers (base 2) to decimal (base 10)
(1 point)
This is discussed in section 1.1.1., starting on page 3. As in problem 2, these numbers can be converted using the following method

__0_ _1_ _1_ _0_ = 1 x 4 + 1 x 2 + 0 x 1 = 6

digit value in base 2, binary: (8 4 2 1)
a. 1102 = 6
b. 0112 = 3
7) Convert the following decimal number to binary
(1 point)
a. 7 =_1_ _1_ _1_ = 1 x 4 + 1 x 2 + 1 x 1 = 7
8) Are the following expressions TRUE or FALSE (assuming A, B and C are all

TRUE)? (Optional!
(1 point)
a. (A OR B) AND (NOT B)

= (1 OR 1) AND (NOT 1)

= (1) AND (0)

= 0 = False

b. C AND (NOT(A) OR B)

= 1 AND (NOT(1) OR 1)

= 1 AND (0 OR 1)

= 1 AND (1)

= 1 = True
page 2

