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ABSTRACT

Measurements of 60 single-grain, UV laser microprobe “Ar/*Ar total gas ages for
hornblende from metamorphic rocks of the Tobacco Root Mountains in southwest Mon-
tana yield a mean age of 1.71 + 0.02 Ga. Measurements of “’Ar/*Ar step-heating plateau
ages of three bulk hornblende samples from the Tobacco Root Mountains metamorphic
rocks average 1.70 + 0.02 Ga. We believe that these and the K/Ar or “Ar/*Ar ages report-
ed by previous workers are cooling ages from a 1.78 to 1.72 Ga, upper-amphibolite to
granulite facies, regional metamorphism (Big Sky orogeny) that affected the northwestern
portion of the Wyoming province, including the Tobacco Root Mountains and adjacent
ranges. Based on the “Ar/*Ar data, this 1.78-1.72 Ga metamorphism must have achieved
temperatures greater than ~500 °C to reset the hornblende “°Ar/*Ar ages of samples from
the Indian Creek Metamorphic Suite, which was previously metamorphosed at 2.45 Ga,
and of the crosscutting metamorphosed mafic dikes and sills (MMDS), which were intrud-
ed at 2.06 Ga. Biotite and hornblende from the Tobacco Root Mountains appear to give the
same “Ar/*Ar or K/Ar age (within uncertainty), indicating that the rocks cooled rapidly
through the interval from 500 to 300 °C. This is consistent with a model of the Big Sky
orogeny that includes late-stage tectonic denudation that leads to decompression and rapid
cooling. A similar cooling history is suggested by our data for the Ruby Range. Three biotite
samples from the Ruby Range yield “’Ar/*Ar step-heating plateau ages with a mean of 1.73
+0.02 Ga, identical to the best-estimate (near-plateau) age for a hornblende from the same
rocks. Two samples of the orthoamphibole, gedrite, from the Tobacco Root Mountains
were studied, but did not have enough K to yield a reliable “Ar/*Ar age. Several biotite
and three hornblende samples from the region yield “*Ar/*Ar dates significantly younger
than 1.7 Ga. We believe these samples were partially reset during contact metamorphism
by Cretaceous (75 Ma) intrusive rocks. Hydrothermal alteration associated with ca. 1.4 Ga
rifting led to growth of muscovite with that age in the Ruby Range, but this alteration was
apparently not hot enough to reset biotite and hornblende ages there.
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INTRODUCTION

The Tobacco Root Mountains of southwestern Montana
(Fig. 1) are cored by metamorphic rocks of the Wyoming prov-
ince that are believed to have a geologic history spanning at least
3 Ga. Sensitive high-resolution ion microprobe (SHRIMP) dat-
ing of individual Tobacco Root Mountain zircons by Mueller et
al. (1998) yielded detrital zircon core ages of 3.2 to 3.9 Ga, with
none younger than 2.9 Ga. Although Rb/Sr studies by Mueller
and Cordua (1976) and by James and Hedge (1980) yielded a
whole-rock age of 2.7 Ga for the metamorphic rocks of this
region, consistent with similar ages reported for the central Wyo-
ming province, recent work on U and Pb isotopes of monazite
and zircon (Krogh et al., 1997; Burger et al., 1999; Cheney et al.,
1999; Dahl et al., 1999; Roberts et al., 2002; Dahl et al., 2002;
Cheney et al., 2004b, this volume, Chapter 8; Mueller et al.,
2004, this volume, Chapter 9) has identified metamorphic events
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in the Tobacco Root Mountains at 2.45 Ga and between 1.78 and
1.72 Ga with no clear evidence for a 2.7 Ga event.

Early K/Ar studies of biotite in southwest Montana by
Hayden and Wehrenberg (1959, 1960) demonstrated that the
Tobacco Root Mountains rocks experienced a heating event
at 1.7 Ga that was not observed in the Archean rocks of the
Beartooth Plateau. Giletti and Gast (1961) using Rb/Sr data for
micas and Giletti (1966, 1968) using K/Ar and Rb/Sr data for
micas and whole rocks showed that the entire northwestern por-
tion of the Wyoming province was heated at 1.6—1.7 Ga, including
the Tobacco Root Mountains and adjacent Ruby Range and High-
land Mountains. Giletti (1966) presented a map of the Wyoming
province showing a line that divided the 1.6—1.7 Ga terrane from
the rest of the Wyoming province. Marvin and Dobson (1979)
also reported 1.7 Ga K/Ar ages for muscovite in a pegmatite and
for hornblende in gneiss from the northern Tobacco Root Moun-
tains. However, because the studies of Mueller and Cordua (1976)
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Figure 1. An outline map of the outcrop
distribution of Precambrian metamor-
phic rocks (in gray) and adjacent Creta-
ceous intrusive rocks (KI) in southwest
Montana. Also shown are the locations
of samples used for K/Ar and “Ar/*’Ar
dating. Solid circles—samples newly
described in this paper. Open circles—
samples of Brady et al. (1998). Solid
squares—samples of Giletti (1966).
Open squares—samples of Harlan et
al. (1996). Solid diamond—samples of
Marvin and Dobson (1979). Open dia-
mond—sample of Hayden and Wehren-
berg (1960). Stars—samples of Roberts
et al. (2002).
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and James and Hedge (1980) showed 2.7 Ga Rb/Sr data that were
apparently not reset at 1.6-1.7 Ga, it was generally believed that
the 1.6-1.7 Ga metamorphism was a low-grade, patchy, green-
schist facies event (e.g., Mueller and Cordua, 1976; Berg, 1979;
Dahl, 1979) with little accompanying deformation or fabric devel-
opment. Indeed, most of the data were from micas, which can be
crystallized or have their K/Ar clocks reset at relatively low tem-
peratures (300400 °C, McDougall and Harrison, 1988).

More recently, O’Neill et al. (1988a, 1988b) described 1.8—
1.9 Ga euhedral rims on zircon crystals in a Highland Mountains
gneiss dome, which they believe demonstrate a significant meta-
morphism accompanied by penetrative deformation—certainly
more significant than a static regional greenschist facies heating.
Erslev and Sutter (1990) and Harlan et al. (1996) also argued that
the Proterozoic heating recorded by mica and amphibole K/Ar data
was a major, regional event involving significant deformation.

It was in this context that we obtained a number of “Ar/*Ar
isometric ages that further constrain the tectonometamorphic his-
tory of the region as part of an ongoing study of the metamorphic
rocks of southwest Montana (Brady et al., 1994; Kovaric et al.,
1996; Brady et al., 1998). In the following pages, we present our
“Ar/*Ar data and compare them to previously published “*Ar/*Ar
and K/Ar data, including the extensive *°Ar/*’Ar data presented by
Roberts et al. (2002). We join the other authors cited previously to
argue that the 1.7 Ga ages determined for the potassium-bearing
minerals of the Tobacco Root Mountains and adjacent ranges date
their cooling at the end of a major orogenic event that included
regional-scale, granulite facies metamorphism. We argue further
that the similar K/Ar and **Ar/*’ Ar ages obtained for hornblende,
biotite, and muscovite are evidence for rapid cooling, consistent
with a model of decompression due to tectonic unroofing as sug-
gested by Cheney et al. (2004a, this volume, Chapter 6).

SAMPLES

The Tobacco Root Mountains samples were collected by
Jacob (1994), King (1994), and Tierney (1994) from amphibo-
lites and gneisses while studying the metamorphism, geochem-
istry, and structure of the Spuhler Peak Metamorphic Suite and
adjacent Indian Creek Metamorphic Suite (see Fig. 1). The
Spuhler Peak Metamorphic Suite is a mafic unit—largely of
basaltic composition but with significant portions of Ca-poor,
Mg-Fe-rich orthoamphibole gneisses and layers of Al-rich
quartzite—that outcrops principally along the southwestern
margin of the Tobacco Root batholith (see also Burger, 2004, this
volume, Chapter 1; Vitaliano et al., 1979a, see reprinted map and
text accompanying this volume). The Indian Creek Metamorphic
Suite is a quartzofeldspathic gneiss package that also includes
marbles, metamorphosed iron formation, and other metasedi-
ments as well as felsic meta-igneous rocks, and occupies the
southern portion of the Tobacco Root Mountains (see Vitaliano
et al., 1979b; Mogk et al., 2004, this volume, Chapter 2). Amphi-
boles were also dated from weakly foliated and locally folded
metamorphosed mafic dikes and sills (MMDS) that crosscut the
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gneissic layering of the Indian Creek Metamorphic Suite but
do not occur in the Spuhler Peak Metamorphic Suite. The goal
of our sample collection was to identify differences (if any) in
the “*Ar/*Ar data for similar minerals in the three rock groups
(Spuhler Peak Metamorphic Suite, Indian Creek Metamorphic
Suite, MMDS), so our Tobacco Root samples are all from a
comparatively small area in the central Tobacco Root Mountains
where all three units occur near one another. As a consequence,
the Tobacco Root samples studied are all within five kilometers
of the Cretaceous Tobacco Root batholith and may have been
heated by it. No new samples were dated from the Pony—Middle
Mountain Metamorphic Suite, which is believed to have the same
Proterozoic geologic history as the Indian Creek Metamorphic
Suite because both have gneissic banding cut by the MMDS.

Ruby Range rocks were collected in 1990 by Green (1991),
Larson (1991), and Brady et al. (1991) in pursuit of an origin for
the talc deposits in the marbles there (see Brady et al., 1998). All
of the Ruby Range samples were taken from gneisses, marbles, or
amphibolites of the Christensen Ranch Metamorphic Suite within
or adjacent to talc deposits (see James, 1990). The Highland
Mountains sample was collected by Brady in 1978 from gneisses
within a chlorite deposit as part of the Dillon 1° x 2° Sheet study
of the U.S. Geological Survey. More detailed sample information
can be found in the theses listed above as well as in Table 1.

METHODS

“OAr/¥Ar isotopic ages for these samples were determined
in three different laboratories (University of California at Los
Angeles [UCLA], Massachusetts Institute of Technology [MIT],
University of Maine) employing contrasting techniques. Some of
the Tobacco Root Mountains samples were analyzed at MIT using
UV laser microprobe, single-grain “’Ar/*?Ar total gas methods on
irradiated hornblende grains as described in Hames and Cheney
(1997). Other Tobacco Root Mountains samples were dated at
UCLA by Kovaric (1996) following standard step-heating proce-
dures of irradiated bulk mineral separates (Quidelleur et al., 1997).
The Ruby Range samples (Brady et al., 1998) were analyzed at the
University of Maine, also following standard step-heating proce-
dures of irradiated bulk mineral separates (Lux et al., 1989).

RESULTS

Sample information, total gas ages, and plateau ages where
available are listed for all samples in Table 1. Errors for the ages
in Table 1 are reported as one standard deviation (16). Also
compiled for comparison in Table 1 are total gas and plateau
ages for previously published K/Ar and “’Ar/°Ar studies of
K-bearing minerals in the Tobacco Root Mountains, the High-
land Mountains, the Ruby Range, and the Blacktail Mountains.
“Ar/*?Ar step-heating release spectra for individual samples are
shown in Appendix Figures Al and A2 along with the original
data (Tables Al and A2). Also in the Appendix are histograms
for each sample of UV laser microprobe, single-grain, and total
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gas ages (Fig. A3), along with the original data (Table A3). Two
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Figure 2. A histogram of 89 UV laser microprobe “’Ar/**Ar ages for single
hornblende crystals from nine Precambrian metamorphic rocks of the
Tobacco Root Mountains. Ten individual hornblende crystals were dated
for each sample, save one. Ages in gray (29) are in rocks that are believed
to have lost “*Ar due to reheating by Cretaceous intrusions. Ages in black
(60) cluster about a mean of 1.71 + 0.02 Ga. Bin size is 40 m.y.

Metamorphic Suite, Pony—Middle Mountain Metamorphic Suite,
Spuhler Peak Metamorphic Suite, and MMDS) in the Tobacco
Root Mountains. However, the scatter among the total gas ages is
too large (300 m.y.) to reasonably attribute to differences in cool-
ing age from a single orogenic event. Clearly, some samples must
have been disturbed by subsequent heating to lose Ar, while other
samples must have acquired excess Ar.

We interpret the nine 72—-248 Ma ages to be the result of par-
tial to complete Ar loss due to heating by nearby 75 Ma intrusive
igneous rocks (Tobacco Root batholith, Hells Canyon pluton, and
smaller igneous bodies). Two of these nine ages, for Highland
Range micas, were reported by Giletti (1966), who first recognized
this Cretaceous resetting. Eight of these nine samples are mica
separates (biotite or muscovite), which can lose their Ar if heated
to between 300 and 400 °C (McDougall and Harrison, 1988). In
our study, both biotite and hornblende were separated and dated
from one Tobacco Root Mountains Spuhler Peak Metamorphic
Suite sample (KAT-21). Both minerals have disturbed “°Ar/*Ar
step-heating spectra (Fig. 4) and no good age plateau (adjacent
steps including >50% of the *Ar, all within 26 of the plateau age).
The hornblende yields a total gas age of 1639 + 26 Ma, whereas
the biotite gives a total gas age of 129 + 6 Ma. Because the biotite
age is close to the Tobacco Root batholith intrusion age (75 Ma,
Vitaliano et al., 1980), we believe this sample was heated above
300 °C by that intrusion. Because the hornblende is only slightly
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Figure 3. A histogram of the K/Ar and “Ar/Ar total gas ages for
Precambrian metamorphic rocks of the Tobacco Root Mountains and
vicinity listed in Table 1. Samples in gray are “*Ar/*’Ar total gas ages de-
termined as part of this project. Samples in black are “’Ar/*Ar total gas
ages from the literature, mostly Roberts et al. (2002). Samples in stripes
are K/Ar total gas ages from the literature. Bin size is 40 m.y. The large
cluster of ages with a mean of 1.70 & 0.07 Ga is believed to record cool-
ing from a 1.78 to 1.72 Ga regional metamorphism of upper-amphibolite
or granulite facies. Younger ages are believed to reflect various degrees
of ®Ar loss due to later heating by Late Cretaceous intrusive rocks.
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Figure 4. “Ar/*Ar step-heating age spectra for hornblende
and biotite separated from the same Tobacco Root Mountains
Spuhler Peak Metamorphic Suite sample (KAT-21). The young
age of the biotite is due to *°Ar loss resulting from heating by
Late Cretaceous (75 Ma) intrusive rocks. The hornblende gives
much older age steps, with a best-estimate age of 1700 + 9 Ma
that would be a plateau without steps five and six.
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disturbed, the host rock was probably not heated above 500 °C,
but the hornblende total gas age may be a minimum age. Indeed,
there is a “near plateau” at 1700 + 9 Ma that is our best estimate
of the metamorphic cooling age of this sample, so there may have
been some Ar loss due to heating by the intrusion. Sample KAT-
21 was collected approximately one kilometer from the surface
exposure of the Tobacco Root batholith. Using simple thermal
models for batholith emplacement (Jaeger, 1964), Kovaric (1996)
demonstrated that temperatures between 300 and 500 °C are
reasonable contact metamorphic temperatures for the size of the
batholith and the position of the samples.

Several samples give ages between the main group with the
1.70 £ 0.07 Ga mean and the young group clearly reset by the
Cretaceous intrusions. One of these (JBB-AC-22) is a muscovite
sample from a zone of hydrothermal alteration that formed a talc
deposit in the Ruby Range. Brady et al. (1998) argue that this age
(total gas = 1.33 + 0.01 Ga, plateau = 1.36 + 0.01 Ga) represents
the growth of muscovite during formation of the talc as part of ca.
1.4 Ga rifting. Indeed, this sample was collected in an attempt to
learn the age of talc formation. Because samples of biotite (RP-2,
RK-12, ACL-023), phlogopite (ACL-005, SW8), and hornblende
(RK-10) near the talc deposits were not reset, the hydrothermal
alteration and growth of mica must have occurred at temperatures
below 300 °C. The three amphibole samples (TK-58, TK-68,
TK-69) that give intermediate mean ages (839, 1228, 1298 Ma)
were collected near one another about one kilometer from the
Tobacco Root batholith contact and even closer to several satellite
intrusions. We believe that these three samples were heated enough
to lose some, but not all, of their Ar. The heating of these samples
was probably due to the batholith, but these and other intermediate-
age samples may have been affected by the intrusion of (unmeta-
morphosed) mafic dikes during the Proterozoic era at 1450 Ma
(Wooden et al., 1978) or at 780 Ma (Harlan et al., 2003).

DISCUSSION

K/Ar and “°Ar/*°Ar data for hornblende, biotite, and musco-
vite of the northwestern portion of the Wyoming province present
a consistent temporal pattern, whether measured by traditional
bulk K/Ar methods, by “Ar/*’Ar step heating of bulk, irradiated
mineral separates, or by total gas “’Ar/**Ar UV laser spot heating
of irradiated single crystals, and in a number of different labs
(Fig. 3). As first observed by Hayden and Wehrenberg (1959)
and more fully documented by Giletti (1966), the K/Ar systems
of the metamorphic rocks of the Tobacco Root Mountains and
adjacent areas record Early Proterozoic ages, unless reset by
thermal effects such as those due to Late Cretaceous plutons.
“Ar/?Ar data reported here further document the nature of the
Proterozoic event. The Indian Creek Metamorphic Suite, which
was previously metamorphosed at 2.45 Ga (Cheney et al., 1999;
2004b, this volume, Chapter 8), and the MMDS, which were
intruded at 2.06 Ga (Burger et al., 1999; Mueller et al., 2004, this
volume, Chapter 9), must have achieved temperatures greater
than ~500 °C (McDougall and Harrison, 1988) during the 1.78—
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1.72 Ga metamorphism to reset their hornblende “Ar/*Ar ages
and to record cooling by 1.71 + 0.02 Ga. The fact that similar
“OAr/*?Ar ages are obtained for hornblende from the Ruby Range
and the Highland Mountains is consistent with a high-tempera-
ture, tectonothermal event of regional extent.

Interestingly, the K/Ar and “Ar/*°Ar ages of amphiboles
and micas are very similar in these rocks (Fig. 5), even though
the amphibole ages are believed to be set as the rock cools
through ~500 °C and the mica ages are believed to be set as the
rock cools through ~300 °C (McDougall and Harrison, 1988).
Cooling rate, grain size, and mineral composition can affect the
value of the closure temperature, but the available K/Ar and
“OA1/*Ar data appear to reflect fairly rapid cooling through the
500-300 °C temperature interval. Cheney et al. (2004a, this
volume, Chapter 6) argue on the basis of mineral assemblages
and reaction textures that the pressure-temperature path fol-
lowed by Tobacco Root Mountains rocks during the Big Sky
orogeny includes a nearly isothermal decompression segment,
possibly caused by tectonic unroofing during late extension. If
their model is correct, then one would expect rapid cooling to
follow the removal of overburden. The observed similarity in
amphibole and mica ages from the Tobacco Root Mountains
lends support to this model.

Plateau ages for the three Highland Mountains samples
reported by Harlan et al. (1996) are slightly older (averaging
1.81 +£0.01 Ga) than the ages reported here for the Tobacco Root
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Figure 5. A histogram of K/Ar and “’Ar/*Ar total gas ages for Precam-
brian metamorphic rocks of the Tobacco Root Mountains and vicinity.
This figure is similar to Figure 3, except that the ages are sorted by
mineral rather than by investigator. Bin size is 40 m.y.



“Ur/Ar ages of metamorphic rocks

Mountains and the Ruby Range. Our three plateau ages for the
Tobacco Root Mountains average 1.70 £+ 0.02 Ga, whereas our
three plateau ages for the Ruby Range average 1.73 + 0.02 Ga.
It is possible that some of the Harlan et al. (1996) samples held
excess “Ar, giving them apparently older ages. However, it is
also likely that, in an event as large as the 1.78—1.72 Ga Big Sky
orogeny, rocks with different cooling histories can be found, due
to their different locations in the orogen. Indeed, different levels
of the crust might be juxtaposed by the extensive Cenozoic block
faulting. Clearly, there is much to learn from additional isotopic
studies in this region.

Recently, Roberts et al. (2002) presented “°Ar/*°Ar UV
laser microprobe ages for 18 samples from the Ruby Range, 13
samples from the Tobacco Root Mountains, and two samples
from the Highland Mountains, examining at least ten single crys-
tals of biotite (23 samples) or hornblende (10 samples) for each
sample. This large data set, which nearly doubled the number of
samples with measured “’Ar/*Ar total gas ages from this region,
is included in the histograms of Figures 3 and 5. Alone, the Rob-
erts et al. (2002) biotite data define a histogram similar to Fig-
ure 2, but with a mean age of 1.76 + 0.02 Ga, older than the 1.71
+0.02 Ga “Ar/*’Ar cooling age adopted in this paper. Roberts et
al. (2002) argue that all measured ages younger than 1700 Ma
are for samples that have lost Ar due to the Cretaceous intrusions,
and only use ages older than 1700 Ma to date cooling from the
Proterozoic metamorphism, possibly biasing their results to older
values. They also suggest that some of their amphibole ages that
are older than 17801740 Ma are due to the presence of excess
“Ar and, therefore, focus on their biotite data. As a consequence,
they argue from their selected biotite data that these rocks cooled
through the temperature interval of 350-300 °C during the inter-
val 1780-1740 Ma.

The Roberts et al. (2002) interpretation of their data is
in conflict with the abundant evidence of monazite growth
in the Tobacco Root Mountains as late as 1720 Ma reported
by Cheney et al. (1999; 2004b, this volume, Chapter 8), who
correlate late monazite growth with a lower-pressure portion
of the metamorphic pressure-temperature path at temperatures
of 650-700 °C (see also Cheney et al., 2004a, this volume,
Chapter 6). The Roberts et al. (2002) 1780—1740 Ma age is also
somewhat in conflict with the “*Ar/*Ar plateau ages obtained
in our study. Roberts et al. (2002) presented **’Pb->*Pb garnet
step-leaching ages, probably dating monazite inclusions in the
garnet, of 1820—1780 Ma for samples from this region (also in
conflict with the results of Cheney et al., 2004b, this volume,
Chapter 8). They argue that their 1780-1740 Ma “°Ar/*Ar
total gas ages were set during cooling from 1820 to 1780 Ma
regional metamorphism. One possible explanation for the con-
flict between the data and interpretations of this paper along
with the data of Cheney et al. (2004b, this volume, Chapter 8)
and that of Roberts et al. (2002) is that some of the Roberts et al.
(2002) biotite samples may contain excess “’Ar. Another pos-
sibility is that there may be systematic differences in the dates
obtained from two or more “Ar/*°Ar labs.
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TABLE A1. UCLA Ar DATA

T (°C) “CAr/ Ar “Ar/*Ar, “Ar/PAr A/ Ar K/Ca % Ar % Ar* Age (Ma) +1c
KAT-21 (Biotite, 19.8 mg) J = 0.006614 (x 0.000023)"
500 21.82 3.140 5.43E-02 6.31E-02 9.1 0.6 14.4 371 3.9
600 12.70 4.485 3.49E-02 2.77E-02 14.2 1.8 35.3 52.7 1.0
680 12.66 8.490 8.40E-03 1.40E-02 58.9 4.7 67.1 98.5 0.5
750 12.20 11.07 6.86E-03 3.74E-03 721 16.0 90.7 127.4 0.7
800 12.31 11.90 7.05E-03 1.32E-03 70.2 25.8 96.6 136.5 0.7
840 12.33 12.01 6.21E-03 1.01E-03 79.7 32.6 97.4 137.8 0.7
880 12.22 11.81 6.85E-03 1.29E-03 72.2 38.9 96.7 135.6 0.7
920 11.58 11.15 5.76E-03 1.37E-03 85.9 41.9 96.3 128.3 0.6
960 11.27 10.71 6.35E-03 1.80E-03 77.9 47.4 95.1 123.4 0.6
990 11.03 10.54 5.71E-03 1.58E-03 86.7 53.1 95.6 121.5 0.6
1020 11.28 10.91 5.29E-03 1.17E-03 93.6 63.4 96.7 125.6 0.6
1000 11.64 11.44 7.66E-03 5.89E-04 64.6 76.8 98.3 131.5 0.6
1150 11.79 11.67 2.12E-02 3.45E-04 23.3 99.6 98.9 134.0 0.7
1350 165.1 10.07 7.19E-01 5.25E-01 0.7 100.0 6.10 116.2 29.5
Total Gas 11.18 128.6 0.3
Plateau (no plateau)
KAT-21 (Hornblende, 25.2 mg) J = 0.006613 (+ 0.000023)
800 195.0 167.0 8.32E-01 9.52E-02 0.588 1.1 85.6 1342.4 36.3
950 166.0 160.9 4.19E+00 1.99E-02 0.118 5.6 96.6 1307.3 28.4
1000 230.4 230.5 5.38E+00 3.59E-03 0.092 34.8 99.7 1670.8 8.8
1020 235.7 235.7 5.36E+00 4.30E-03 0.092 54.7 99.6 1695.2 9.3
1040 224.8 209.8 5.01E+00 5.43E-02 0.098 56.5 93.0 1569.9 13.7
1060 236.4 214.6 5.39E+00 7.78E-02 0.092 57.6 90.4 1593.9 44.0
1100 237.7 234.7 5.82E+00 1.47E-02 0.085 69.8 98.3 1690.2 9.0
1150 240.7 238.9 5.73E+00 1.07E-02 0.086 90.6 98.8 1709.9 9.2
1200 233.8 220.0 5.29E+00 5.06E-02 0.093 95.7 93.8 1620.3 13.5
1250 305.1 211.6 5.14E+00 3.20E-01 0.096 97.2 69.1 1579.0 50.7
1350 425.0 93.7 2.44E+00  1.12E+00 0.204 99.5 22.0 870.1 86.0
1450 5429 -86.4 2.03E+00  1.87E+01 0.244 100.0 -1.6 -1527.5 17131
Total Gas 223.8 1639 26
Plateau (no plateau)
KAT-23A (Hornblende. 22.5 mg) J = 0.006612 (+ 0.000017)
800 198.0 87.25 2.49E+00 3.76E-01 0.200 1.3 44.0 821.8 146.7
950 195.8 180.1 9.23E+00 5.94E-02 0.053 4.4 91.4 1414.8 43.0
980 232.7 226.6 1.15E+01 2.97E-02 0.043 10.3 96.6 1651.8 14.7
1000 241.3 234.1 1.17E+01 3.38E-02 0.042 17.3 96.2 1687.3 16.6
1010 249.3 239.6 1.21E+01 4.23E-02 0.041 23.2 95.3 1713.2 20.8
1020 245.7 237.0 1.20E+01 3.90E-02 0.041 27.4 95.7 1700.8 15.5
1040 245.3 242.6 1.24E+01 1.94E-02 0.040 38.2 98.0 1726.6 17.8
1060 253.6 235.3 1.24E+01 7.19E-02 0.040 41.2 92.0 1692.9 52.4
1100 232.9 207.9 1.11E+01 9.25E-02 0.044 441 88.6 1560.5 54.3
1150 245.8 244.0 1.27E+01 1.65E-02 0.038 66.9 98.4 1733.1 12.4
1200 251.7 246.0 1.26E+01 2.97E-02 0.039 88.8 96.9 1742.3 11.4
1250 300.1 242.7 1.24E+01 2.04E-01 0.040 94.6 80.2 1727.2 19.6
1350 396.5 234.6 1.21E+01 5.57E-01 0.041 100.0 58.7 1689.9 57.3
Total Gas 236.1 1697 20
Plateau 50.5 1735 13
KAT-24A (Hornblende. 19.9 mg) J = 0.006612 (+ 0.000017)
800 89.05 9.8 2.03E+00 2.68E-01 0.244 2.7 11.0 113.8 170.5
950 40.10 23.1 3.38E+00 5.85E-02 0.147 7.8 57.4 256.2 13.1
980 154.9 140.4 1.78E+01 5.94E-02 0.027 12.2 89.5 1184.4 33.4
1000 219.5 207.2 2.37E+01 5.88E-02 0.021 20.1 92.9 1556.8 26.5
1015 240.4 213.4 2.39E+01 1.09E-01 0.020 23.6 87.3 1587.9 34.5
1030 249.3 226.2 2.53E+01 9.79E-02 0.019 30.6 89.1 1649.9 42.9
1045 263.2 233.3 2.65E+01 1.22E-01 0.018 40.1 87.0 1683.8 33.6
1080 260.4 235.2 2.71E+01 1.07E-01 0.018 57.1 88.6 1692.6 17.8
1120 914.0 74.5 1.29E+01 2.85E+00 0.038 58.4 8.1 722.4 4698.8
1160 529.3 222.1 2.81E+01 1.06E+00 0.017 66.9 411 1630.0 108.6
1200 413.9 231.0 2.69E+01 6.40E-01 0.018 79.8 54.8 1672.6 34.9
1350 467.7 220.2 2.47E+01 8.56E-01 0.020 100.0 46.3 1621.2 25.6
Total Gas 203.7 1539 74
Plateau 76.4 1665 37

(continued)



TABLE A1. UCLA Ar DATA (continued)

T (°C) “Ar/CAr CAr/Ar, “Ar/CAr A/ Ar K/Ca % Ar %" Ar* Age (Ma) +1c
KAT-41 (Biotite, 20.3 mg) J = 0.006608 (+ 0.000017)
500 170.4 100.51 1.62E-01 2.37E-01 3.1 0.1 59.0 918.9 26.2
680 15.97 9.594 1.19E-02 2.15E-02 415 1.7 60.1 110.9 0.7
750 11.20 9.101 4.65E-03 7.03E-03 106.4 5.6 81.2 105.4 0.5
800 10.25 9.311 2.65E-03 3.11E-03 186.9 121 90.8 107.7 0.5
840 9.175 8.562 1.96E-03 1.99E-03 251.9 17.3 93.3 99.3 0.5
880 9.483 8.881 2.11E-03 1.95E-03 234.7 27.7 93.7 102.9 0.5
920 10.37 9.861 1.91E-03 1.66E-03 258.4 35.2 95.0 113.9 0.6
960 10.54 9.996 1.71E-03 1.75E-03 289.9 45.1 94.9 115.4 0.6
1020 9.868 9.460 2.14E-03 1.30E-03 231.5 60.5 95.9 109.4 0.5
1060 9.083 8.837 2.30E-03 7.51E-04 2151 81.1 97.3 102.4 0.5
1120 8.096 7.904 3.41E-03 5.67E-04 144.9 95.9 97.6 91.8 0.5
1200 8.202 7.871 4.02E-03 1.04E-03 123.2 99.6 96.0 91.5 0.5
1350 17.15 14.77 6.88E-02 8.00E-03 7.2 100.0 86.1 168.0 2.4
Total Gas 9.13 105.7 0.2
Plateau (no plateau)
KAT-51 (Hornblende, 19.5 mg) J = 0.006603 (+ 0.000017)
800 194.5 107.9 4.08E+00 2.95E-01 0.120 0.8 55.3 970.3 20.8
950 215.7 210.0 1.41E+01 2.95E-02 0.035 5.7 96.4 1569.4 31.9
980 223.0 219.5 1.28E+01 2.13E-02 0.038 121 97.6 1616.2 28.8
1000 234.0 233.4 1.33E+01 1.25E-02 0.037 23.9 98.8 1682.7 8.5
1020 239.0 239.0 1.36E+01 1.10E-02 0.036 38.9 99.0 1708.4 8.3
1040 245.0 236.4 1.35E+01 4.01E-02 0.036 42.8 95.6 1696.4 69.8
1080 240.2 230.1 1.38E+01 4.50E-02 0.035 46.7 94.9 1666.9 34.7
1120 239.8 238.0 1.37E+01 1.72E-02 0.036 65.3 98.3 1703.9 13.0
1160 248.5 239.8 1.34E+01 4.01E-02 0.037 74.7 95.6 1712.4 30.1
1200 258.0 2411 1.34E+01 6.81E-02 0.036 84.1 92.6 1718.2 21.0
1350 697.1 230.0 1.28E+01  1.59E+00 0.038 100.0 32.7 1666.6 63.5
Total Gas 232.8 1680 26
Plateau 87.9 1698 27
JBB-AC-22 (Muscovite, 1.0 mg) J = 0.006598 (+ 0.000049)
500 155.6 148.2 7.42E-02 2.49E-02 6.7 6.1 95.3 1225.4 16.3
550 169.7 167.9 1.70E-02 6.05E-03 29.2 15.6 98.9 1339.6 12.3
600 168.9 167.3 1.66E-02 5.34E-03 29.9 46.1 99.1 1336.3 9.4
650 177.5 176.5 1.11E-02 3.33E-03 44.8 66.4 99.4 1387.5 121
700 1771 176.1 4.31E-03 3.03E-03 114.7 79.8 99.5 1385.6 9.8
800 176.8 174.8 1.10E-02 6.49E-03 45.0 92.6 98.9 1378.3 12.0
900 133.8 130.1 3.35E-02 1.25E-02 14.7 97.2 97.2 1113.4 18.0
1100 92.99 85.80 5.02E-01 2.45E-02 1.0 100.0 92.2 805.5 16.0
Total Gas 166.2 1330 9
Plateau (no plateau)

'Fish Canyon sanidine standard (27.8 Ma) used for all samples.




TABLE A2. UNIVERSITY OF MAINE Ar DATA

T (°C) “Ar/°Ar “Ar/°Ar A/ Ar K/Ca % Ar %°Ar* Age (Ma) + 1o
RK-10 (Hornblende) J = 0.00847 "
730 126.84 2.5840 0.2702 0.19 2.2 37.2 607.6 19
850 115.40 3.8860 0.1678 0.13 2.7 57.3 804.0 11
940 139.76 11.2900 0.0809 0.04 3.8 83.6 1247.7 8
1030 180.77 20.0740 0.0263 0.02 14.3 96.7 1653.4 9
1080 186.62 21.1150 0.0207 0.02 24.8 97.7 1700.7 9
1110 187.01 21.5850 0.0163 0.02 6.7 98.4 1711.5 8
1140 188.82 21.5630 0.0165 0.02 10.3 98.4 17221 8
1170 189.87 21.5020 0.0181 0.02 10.1 98.2 1725.5 8
1200 190.21 21.5170 0.0185 0.02 10.0 98.1 1726.8 8
1230 190.00 21.4560 0.0173 0.02 9.3 98.3 1727.5 8
Fused 189.49 21.2260 0.0232 0.02 6.0 97.4 1713.7 9
Total Gas 100.0 1640 9
Plateau (no plateau)
ACL-005 (Phlogopite) J = 0.00833
700 87.99 0.0909 0.0240 44.75 1.5 91.9 929.2 7
820 172.86 0.0099 0.0055 49.59 6.8 99.0 1599.0 8
940 188.40 0.0093 0.0014 52.96 1.4 99.8 1700.0 8
1020 192.86 0.0112 0.0004 43.67 14.8 99.9 1727.5 8
1100 192.96 0.0171 0.0001 28.66 19.0 100.0 1724.0 8
1160 191.79 0.0110 0.0002 44.68 21.3 100.0 1721.8 8
1220 191.59 0.0098 0.0001 49.96 15.6 100.0 1720.7 8
Fused 190.58 0.0254 0.0014 19.30 9.6 99.8 1712.6 8
Total Gas 100.0 1700 16
Plateau 70.7 1724 15
SW-8 (Phlogopite) J = 0.00830
700 85.29 0.0341 0.0215 14.39 3.2 92.5 908.9 8
820 150.74 0.0289 0.0046 16.96 5.1 991 1454.9 19
940 187.19 0.0162 0.0033 30.32 11.9 99.5 1685.8 8
1020 191.98 0.0151 0.0010 32.44 8.2 99.8 1717.6 8
1100 191.13 0.0176 0.0004 27.84 19.0 99.9 1713.7 8
1160 191.87 0.0362 0.0004 13.54 171 99.9 1718.0 8
1220 191.11 0.0236 0.0003 20.77 15.9 99.9 1713.8 9
Fused 189.63 0.0241 0.0004 20.34 19.7 99.9 1704.9 8
Total Gas 100.0 1670 9
Plateau 60.2 1716 13

(continued)



TABLE A2. UNIVERSITY OF MAINE Ar DATA (continued)

T (°C) “Ar/Ar A/ Ar A/ Ar K/Ca % Ar %"°Ar* Age (Ma) +1c
ACL-0023 (Biotite) J = 0.00841
700 144.04 0.0311 0.0087 15.74 5.9 98.2 1413.6 8
820 171.53 0.0271 0.0030 18.10 15.2 99.5 1605.1 8
940 178.82 0.0203 0.0003 24.16 15.2 99.9 1654.9 8
1020 183.56 0.0174 0.0003 28.14 19.5 99.9 1683.4 8
1100 185.76 0.0222 0.0006 22.12 21.2 99.9 1695.9 8
1160 186.82 0.0334 0.0010 14.69 8.7 99.8 1701.5 8
1220 187.43 0.0268 0.0006 18.26 8.7 99.9 1705.7 9
Fused 188.62 0.0466 0.0009 10.51 5.6 99.8 1712.3 13
Total Gas 100.0 1659 8
Plateau (no plateau)
RK-12 (Biotite) J = 0.00836
700 96.76 0.0608 0.0102 8.06 4.9 96.9 1044.0 7
820 152.50 0.0498 0.0046 9.83 16.8 99.1 1473.8 8
940 183.62 0.0340 0.0016 14.42 16.8 99.7 1675.5 8
1020 190.55 0.0310 0.0004 15.78 13.8 99.9 1718.3 10
1100 191.58 0.0190 0.0004 25.82 14.6 99.9 1724.3 9
1160 194.30 0.0212 0.0004 23.16 10.8 99.9 1740.0 9
1220 193.20 0.0218 0.0005 22.46 9.9 99.9 1733.5 8
Fused 193.16 0.0338 0.0009 14.49 125 99.8 17325 9
Total Gas 100.0 1644 9
Plateau (no plateau)
RP-2 (Biotite) J = 0.00843
700 183.93 0.0243 0.0131 20.18 3.0 97.9 1665.8 9
820 192.28 0.0243 0.0030 20.18 11.6 99.5 1733.1 8
940 195.40 0.0491 0.0004 9.98 12.3 99.9 1755.5 8
1020 197.55 0.0359 0.0010 13.65 10.1 99.8 1766.8 9
1100 196.77 0.0421 0.0003 11.64 15.2 99.9 1763.6 8
1160 196.74 0.0470 0.0003 10.43 20.6 99.9 1763.4 8
1220 196.84 0.0413 0.0003 11.86 18.5 99.9 1764.0 8
Fused 196.88 0.0939 0.0003 5.22 8.8 99.9 1764.3 9
Total Gas 100.0 1757 8
Plateau 64.4 1764 11

"Muscovite SBG-7 standard (240.9 Ma), calibrated to MMhb-1(520.4 Ma), used for all samples.




TABLE A3. MIT SINGLE-GRAIN Ar DATA'

Sample  “Ar/®Ar “Ar/*Ar, “ArCAr A/ Ar K/Ca % Ar, % Ar*  Age (Ma) +1c
LJ-25 114.8 114.4 4.06E-05 1.135E-03 0.1265 0.192 99.71 1725.3 2.4
LJ-25 114.2 113.7 5.01E-05 1.135E-03 0.1032 0.326 99.71 1719.6 6.0
LJ-25 91.9 91.2 7.83E-05 1.771E-03 0.1281 0.545 99.43 1486.1 7.0
LJ-25 1171 116.5 1.13E-04 2.472E-03 0.0975 0.769 99.38 1744.3 1.9
LJ-25 102.2 102.0 5.58E-05 1.129E-03 0.1030 0.927 99.67 1599.4 0.1
LJ-25 109.5 108.8 9.47E-05 2.579E-03 0.1292 1.092 99.30 1669.2 2.3
LJ-25 121.4 119.4 2.89E-04 6.049E-03 0.0897 1.161 98.53 1774.4 6.9
LJ-25 111.6 110.8 2.99E-04 3.465E-03 0.0540 1.258 99.08 1687.4 7.3
LJ-25 109.1 108.3 8.13E-05 2.018E-03 0.1182 1.373 99.45 1666.5 5.3
LJ-50 116.8 116.7 3.52E-05 6.178E-04 0.0780 1.565 99.84 1746.6 6.5
LJ-50 111.9 111.9 1.73E-05 3.119E-04 0.0838 1.600 99.92 1699.5 7.5
LJ-50 107.2 105.9 2.32E-04 4.025E-03 0.0843 1.704 98.89 1641.8 15.1
LJ-50 116.2 115.9 —2.93E-05 —5.907E-04 0.0903 1.766 100.15 1743.7 13.1
LJ-50 125.0 125.2 -3.65E-05 —6.897E-04 0.0787 1.821 100.16 1826.4 16.2
LJ-50 115.0 115.9 -8.55E-05  -1.451E-03 0.0768 1.890 100.37 1734.7 13.1
LJ-50 114.0 1141 -1.94E-05  -3.354E-04 0.0790 1.932 100.09 1722.0 7.7
LJ-50 122.4 122.7 -1.29E-05  -2.388E-04 0.0788 2.078 100.06 1801.7 6.5
LJ-50 111.4 111.4 3.02E-05 5.073E-04 0.0784 2.222 99.87 1693.9 3.0
LJ-50 110.8 110.5 6.17E-05 1.070E-03 0.0813 2.398 99.71 1686.7 4.2
LJ-76 117.6 117.3 2.11E-05 6.325E-04 0.1323 2.592 99.84 1753.9 6.3
LJ-76 109.9 109.2 8.70E-05 2.272E-03 0.1236 2.726 99.39 1673.5 7.3
LJ-76 115.0 114.5 6.77E-05 1.940E-03 0.1294 2.910 99.50 1725.6 10.2
LJ-76 117.9 117.1 6.77E-05 1.980E-03 0.1291 3.179 99.50 1753.1 4.0
LJ-76 115.8 115.6 1.37E-05 4.096E-04 0.1340 3.367 99.90 1737.2 4.5
LJ-76 115.9 115.5 3.55E-05 1.114E-03 0.1408 3.666 99.72 1736.0 2.4
LJ-76 117.9 117.6 3.89E-05 1.137E-03 0.1288 3.877 99.72 1755.7 1.7
LJ-76 118.4 118.3 1.88E-05 5.433E-04 0.1271 4118 99.86 1761.7 1.9
LJ-76 118.9 118.4 5.29E-05 1.470E-03 0.1215 4.306 99.63 1763.5 12.4
LJ-77 116.1 115.6 9.15E-05 1.809E-03 0.0885 4.553 99.54 1736.4 5.8
LJ-77 130.5 130.2 3.06E-05 7.076E-04 0.0920 4.855 99.84 1872.8 121
LJ-77 111.7 110.7 1.65E-04 3.159E-03 0.0891 5.057 99.16 1689.6 10.6
LJ-77 120.9 120.1 1.34E-04 2.903E-03 0.0931 5.206 99.29 1778.4 8.4
LJ-77 109.2 109.2 4.11E-05 6.641E-04 0.0769 5.380 99.82 16721 3.2
LJ-77 112.2 111.9 4.00E-05 7.239E-04 0.0838 5.573 99.81 1701.5 56.0
LJ-77 114.7 114.2 6.30E-05 1.159E-03 0.0834 5.718 99.70 1724.9 0.3
LJ-77 131.0 130.3 8.60E-05 1.756E-03 0.0811 5.851 99.60 1874.5 4.2
LJ-77 121.1 120.7 8.34E-05 1.582E-03 0.0815 6.097 99.61 1784.7 0.5
LJ-49 98.1 96.7 5.50E-04 5.522E-03 0.0532 6.222 98.34 1542.0 6.5
LJ-49 124.9 123.3 4.17E-04 4.580E-03 0.0458 6.313 98.92 1811.2 0.3
LJ-49 105.3 103.1 6.22E-04 7.330E-03 0.0582 6.408 97.94 1612.5 17.3
LJ-49 98.7 97.9 2.48E-04 2.593E-03 0.0551 6.512 99.22 1557.5 26.6
LJ-49 110.6 109.1 4.86E-04 5.080E-03 0.0491 6.576 98.64 1672.6 10.8
LJ-49 94.5 92.0 7.94E-04 8.399E-03 0.0582 6.637 97.37 1493.3 7.5
LJ-49 104.7 103.0 5.14E-04 5.590E-03 0.0540 6.678 98.42 1611.4 31.1
LJ-49 95.2 92.6 8.06E-04 7.891E-03 0.0535 6.750 97.55 1503.1 19.7
LJ-49 115.8 101.3 6.70E-04 6.235E-03 0.0470 6.841 98.41 1598.7 4.3
LJ-49 99.4 99.0 1.29E-04 2.536E-03 0.0577 6.911 99.25 1565.3 7.0

(continued)
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Sample  “Ar/Ar __ “Ar*/*Ar, A/ Ar A/ Ar K/Ca % Ar, %“Ar*  Age (Ma) +1c
TK-68 122.2 118.2 2.02E-03 1.313E-02 0.0276 99.156 96.82 1762.3 19.0
TK-68 148.6 83.9 2.64E-03 1.770E-02 0.0401 99.200 96.48 1401.7 3.6
TK-68 98.2 97.1 6.57E-04 4.631E-03 0.0373 99.279 98.61 1545.2 0.5
TK-68 52.4 48.6 2.32E-03 1.284E-02 0.0550 99.319 92.75 935.9 10.6
TK-68 77.4 74.6 1.48E-03 9.237E-03 0.0420 99.387 96.47 1290.3 15.5
TK-68 63.0 61.8 5.75E-04 3.654E-03 0.0524 99.550 98.29 1126.5 1.8
TK-68 19.7 19.3 2.17E-04 1.569E-03 0.1906 99.925 97.65 431.0 71
TK-68 63.2 55.7 6.13E-03 2.533E-02 0.0340 99.943 88.16 1040.3 31.2
TK-68 70.4 69.3 6.42E-04 3.975E-03 0.0457 99.982 98.33 1222.7 71
TK-68 100.7 94.5 2.97E-03 2.038E-02 0.0354  100.000 94.02 1522.1 38.8
TK-58 42.6 39.9 2.14E-03 9.573E-03 0.0545 0.000 93.36 798.0 14.7
TK-58 39.3 34.3 4.99E-03 1.707E-02 0.0453 4.077 87.16 706.4 9.2
TK-58 721 64.4 5.24E-03 2.602E-02 0.0358 5.240 89.34 1159.8 23.3
TK-58 39.1 33.1 8.00E-03 2.030E-02 0.0337 6.977 84.66 687.1 18.5
TK-58 52.9 49.8 1.56E-03 1.040E-02 0.0655 7.824 94.19 954.8 35.4
TK-58 32.9 30.9 1.73E-03 6.459E-03 0.0589 10.120 94.21 650.8 14.9
TK-58 39.0 35.1 2.31E-03 1.321E-02 0.0762 14.724 89.99 721.2 6.4
TK-58 58.9 55.9 1.28E-03 1.021E-02 0.0706 19.211 94.88 1043.2 9.5
TK-58 44.0 41.7 1.13E-03 7.848E-03 0.0823 24.219 94.72 828.5 4.8
TK-69 80.7 79.2 5.09E-04 4.895E-03 0.0620 26.832 98.21 1346.1 8.6
TK-69 49.7 49.1 1.67E-04 2.286E-03 0.1432 35.915 98.64 943.4 1.0
TK-69 88.5 87.6 2.06E-04 2.516E-03 0.0718 38.851 99.16 1446.2 9.9
TK-69 95.5 94.5 1.65E-04 3.077E-03 0.1018 44.295 99.05 1521.7 0.1
TK-69 36.6 36.2 8.56E-05 1.228E-03 0.2037 54.171 99.01 740.6 2.8
TK-69 91.1 90.5 1.95E-04 2.610E-03 0.0764 57.572 99.15 1474.6 9.4
TK-69 94.7 94.2 9.48E-05 1.374E-03 0.0796 63.103 99.57 1518.2 2.6
TK-69 78.6 77.4 3.42E-04 3.809E-03 0.0738 67.420 98.57 1325.5 3.9
TK-69 81.4 80.5 2.26E-04 2.999E-03 0.0850 73.365 98.91 1361.5 2.0
TK-34 123.6 121.0 1.01E-03 8.801E-03 0.0368 75.604 97.90 1788.1 11.7
TK-34 120.7 117.6 1.52E-03 1.217E-02 0.0346 77.939 97.02 1750.6 12.9
TK-34 122.8 122.1 2.84E-04 2.412E-03 0.0360 83.393 99.42 1797.7 3.7
TK-34 124.5 123.2 4.18E-04 3.861E-03 0.0386 86.435 99.08 1809.5 1.1
TK-34 125.0 122.8 9.46E-04 8.610E-03 0.0378 89.159 97.96 1801.2 12.5
TK-34 128.8 127.6 6.43E-04 5.646E-03 0.0355 91.925 98.70 1844.6 2.9
TK-34 124.2 120.8 1.27E-03 1.159E-02 0.0382 93.160 97.24 1786.1 20.3
TK-34 124.3 120.0 1.62E-03 1.462E-02 0.0377 94.717 96.53 1778.6 17.7
TK-34 122.0 116.6 2.03E-03 1.797E-02 0.0377 97.665 95.65 1747.3 21.6

"Hornblende, J = 0.014, Standard MMHB-1 = 520.4 Ma.

Printed in the USA






