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ABSTRACT

Analytical and numerical solutions to the differential equations for the conduction of heat with heat
production or with fluid flow have been used to evaluate the role of volatiles in the thermal history of
regional metamorphic terranes. The maximum thermal effect from pervasive, single-pass, regional
volatile flow may be predicted from a steady-state solution given by Bredehoeft & Papadopoulos
(1965). For fluid velocity vy (m/s) and connected porosity ¢, combinations of volatile flux vg¢p (m* of
fluid/m?s) and transport distance L(m) such that vepL is greater than 3-6 x 1077 should produce
regional temperature increases due to fluid flow, if the flow persists for 10°-10° a (depending on the
transport distance L). The absolute value of the temperature increase due to volatile flow will be
greater in regions with higher ambient geothermal gradients. For L=20km, a volatile flux of 1-8
% 107 "' (m? of fluid/m?s) or greater is required to achieve a temperature effect. Few geologic processes
release volatiles at this rate for extended periods of time, so regional thermal effects from the single-
pass, pervasive flow of volatiles are unlikely. A new analytical solution for the steady state temperature
distribution between idealized parallel channels of fluid flow is presented along with the results of two-
dimensional numerical models of channelized fluid flow. Both approaches show that little temperature
increase is expected near channels of fluid flow relative to the rocks between the channels, unless the
channels exceed 100 m in width or unless the fluid fluxes are very large and transient. A possible
thermal effect of volatile flow in metamorphic terranes is the production of metamorphic hot spots due
to focusing of volatiles into widely spaced channels or conduits exceeding 1 km in width. Given a
sufficient fluid flux (exceeding 10~ '® m? of fluid/m?s), thermal gradients of over 100K from center to
edge may be produced in such channels during relatively short time intervals (10°-10°a).

NOMENCLATURE
A a constant
Aq ‘heat production’ due to fluid flow (J/m?s)
B a constant defined in equation (4)
C a constant

Cor isobaric specific heat of the fluid (J/kg-K)

Cor isobaric specific heat of the (wet) rock (J/kg'K)

Ces isobaric specific heat of the dry rock (J/kg-K)

net energy gain (J/m?s)

heat flux in the z direction with respect to a fixed reference frame (J/m?s)

JIRF heat flux in the z direction with respect to a moving reference frame (J/m?s)
k, a constant

Ky thermal conductivity of a fluid (J/mKs)

Ky thermal conductivity of a rock (including pore fluid) (J/mKs)

L thickness of the model slab of equation (1) (m)

P pressure (Pa)

q, a constant heat flux given in equation (10) (J/m?s)

q, a constant heat flux given in equation (12) (J/m?s)

0 a constant heat flux (J/m?s) used in equations (7) and (8)

Rg radius of a cylindrical fluid conduit (m)
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t time (s) or (a)
3 a length of time defined by equation (13) (s) or (a)
T temperature (K)
% temperature at Z=0 or x=0 (K)
T, temperature at Z= —1 or x=—L (K)
T normalized temperature (T— T,) /(T — Ty)
Vg fluid velocity (actual) (m/s)
We half-width of a channel of fluid flow (m)
Wa half-width of the region between fluid low channels (m)
z depth (m)
V4 normalized distance (=z/L)
¥ Euler’s constant (=0:57722. . . ) in equation (12)
y dimensionless parameter ( = 4xt/W}) in equations (16) and (17)
@ porosity
0. porosity of a channel of fluid flow
K thermal diffusivity (m?/s)
Pr density of the fluid (kg/m?)
Pr density of the rock (kg/m?)
Ps density of the dry rock (kg/m?)

INTRODUCTION

Scientific, technological, and conceptual advances over the last few decades have
brought metamorphic petrology to the point where the pressure-temperature-time (P-7-t)
history of metamorphic terranes can be discussed quantitatively. Thermal models abound in
the recent literature for orogenies both hypothetical (e.g., Shimazu, 1961; Richardson, 1970;
Oxburgh & Turcotte, 1971; Wells, 1980; Fowler & Nisbet, 1982; Nisbet, & Fowler, 1982;
England & Thompson, 1984; Davy & Gillet, 1986) and real (e.g., Clark & Jiger, 1969;
Oxburgh & Turcotte, 1974; Richardson & Powell, 1976; England, 1978; Rubie, 1984).
Petrologists are beginning to interpret their field and laboratory data in terms of these
models (e.g., Crawford & Mark, 1982; Hollister, 1982; Royden & Hodges, 1984;
Chamberlain & England. 1985). Each model is necessarily built upon an array of
assumptions that reduce the mathematical complexity to manageable proportions, even
though some of the assumptions might not be warranted in cases of interest. In particular,
except for hydrothermal convection in the vicinity of shallow intrusives, the transfer of heat
by the flow of water and other volatiles is typically not included in the analysis.

England & Thompson (1984) neglected fluid flow in their crustal scale models because
they felt that thermal convection is unlikely to occur in the deep crust where porosity and
permeability are low, and that the fluid flux due to metamorphic devolatilization reactions
would be too small to have a significant effect. Etheridge et al. (1983), however, argue that
convection is possible for the high fluid pressures and consequent increased permeability
that may occur during metamorphism. Certainly, forced flow of volatiles can occur in rocks
where permeabilities are much too low to permit thermal convection. Indeed, one of the
most significant features of the metamorphism of sedimentary rocks is the loss of water that
occurs. Pore water is lost due to compaction and structural water is lost as a result of
dehydration reactions. Because of the high porosity and water content of young sediments
and the significant compaction that occurs during burial, thermal models of sedimentary
basins commonly consider forced fluid flow (e.g.. Skempton, 1970; Sharp & Domenico, 1976;
Stegena, 1982). Even highly compacted shale, however, still has 2-3 wt.% water to lose en
route to becomming a gneiss. Does the loss of this water and other volatiles lead to a
transport of heat that significantly affects the history of a metamorphic terrane on a regional
or local scale?



ROLE OF VOLATILES IN THE HISTORY OF METAMORPHIC TERRANES 1189

A positive answer to this question could open a new range of possibilities for metamorphic
P-T-t paths. For example, England & Thompson (1984) and others have clearly shown that
crustal thickening coupled with erosion can lead to heating and metamorphism of the crust.
However, only extreme choices of their variable parameters produced the high 7, low P
conditions observed in Buchan style metamorphic terranes, supporting the view that
magmatic activity or special circumstances are required for high 7, low P metamorphism
(see Jaupart & Provost, 1985). Can forced volatile flow lead to regional, non-magmatic high
T, low P metamorphism as suggested by Hoisch (1987)? If the flow of metamorphic
dehydration water is channelized as suggested by Norris & Henley (1976), Walther & Orville
(1982), Ferry (1987), Chamberlain & Rumble (1988) and others, what thermal effects might
be expected near the channels? Might other sources of fluid, such as the dehydration of
subducted crust, the rapid dehydration of autochthonous sediments following thrusting, or
mantle degassing, lead to significant metamorphic effects as proposed by Schuiling &
Kreulen (1979) and others? These and related questions concerning heat and water are
examined in the paragraphs that follow.

PERVASIVE VOLATILE FLOW

How much volatile flow is needed to affect temperatures on a crustal scale? An answer to
this question can be found in a steady-state solution to the one-dimensional heat conduction
equation with fluid flow added. If the crust or a portion of the crust were to experience a
steady flow of volatiles from depth toward the surface, temperatures would be elevated
relative to a conduction geotherm. As temperatures rise, however, temperature gradients
near the surface and conductive heat loss to the surface must increase. If the volatile flow
continues long enough, temperatures will rise until a steady state is achieved in which the
heat added by conduction and fluid flow from below is exactly balanced b heat loss to the
surface (by conduction and fluid flow). Therefore, a steady-state solution to the heat
conduction equation modified for volatile flow will provide the maximum expected increase
of temperature due to volatile flow.

Steady-state model

Consider an ‘infinite slab’ (an idealized crust) of uniform, permeable rock bounded above
and below by parallel planar surfaces (at z=0and z= — L). Let a fluid low upward through
the connected porosity (¢) of the slab at a constant velocity vg (m/s), low enough to permit
the flowing fluid to maintain thermal equilibrium with the adjacent rock. Assume that the
rock (including pore fluid) has a constant effective thermal conductivity Ky (J/msK) and a
constant heat capacity per unit volume (J/m*K) given by [(1 — ¢@)psCp.s+ @pyCp ], Where
ps and pg (kg/m?) are the densities and Cp g and Cp ¢ (J/kg'K) are the isobaric specific heats
of the dry rock and pore fluid, respectively. The change of temperature with time at any point
within the slab is described by

T o*T oT
(F) [(1—@)psCp s+ @prCp 1=Kg ((«7) e UF(PPFCP.F(E‘___')‘ (n
T(K) is temperature, £(s) is time, z(m) is distance measured perpendicular to the parallel
surfaces. Equation (1) is an expression of the law of conservation of energy in the absence of
heat sources or sinks (e.g., Donaldson, 1962; Stallman, 1963). It should be noted that the
velocity vp used here is the actual or ‘seepage’ velocity (Fetter, 1980, p. 116), whereas the
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velocity used by Stallman (1963) is the fluid flux (per unit area per unit time) or Darcy
velocity (vg ).
Substituting Z =z/L to make distance dimensionless, equation (1) becomes

ﬁT KR 52T U';.-(Pp-Cp'- EJT
(E)[(l—‘P)Pscp.s+‘PPFCP.F]=?(aZQ)_% 2z ) (2)

In the steady state (¢7/0t=0), equation (2) reduces to the simple form

AT JoT
(@)“’(ﬁ) )

with B given by

vpPLpgCp ¢
B=—"—"T- "= 4
K, 4)
and with solutions of the form
T=A-exp(B-Z)+C. (5)

where A and C are constants. Choosing constant temperature boundary conditions (7= T,
at Z=0, T=T7_ at Z=—1), and defining a dimensionless temperature 7'=(7T—T,)/(T,
— Ty), the solution (5) becomes

, 1 —exp(BZ)
1 —exp(—B)

(Bredehoeft & Papadopulos, 1965). A graphical presentation of (6) is given in Fig. 1 for
various values of B, which is similar to a thermal Peclet number.* Figure | may be viewed as
showing the maximum effect of upward volatile flow on a simple linear (no heat production)
geotherm for specific volatile fluxes. For B=0-5, the thermal effects of fluid flow are
noticeable with maximum temperature increases of about 30K for a 20 km slab and an
initial gradient of 30 K/km. For B=2-0, maximum temperature increases of over 140K are
expected for the same initial conditions. Clearly, values of B as large as 2:0 can have a
dramatic effect on the steady state fluid flow geotherm. Note that equation (6) and Fig. 1 give
relative temperatures. Larger absolute temperature increases will occur in regions that have
larger initial gradients.

One might assume that a constant conductive flux of heat into the base of the slab would
more closely approximate many geologic situations than a constant basal temperature. In
this case, the lower boundary condition is d7/6Z= —QL/K at Z= —1, where Q (J/m?s) is
the constant conductive heat flux from below. The solution (5) and its rearrangement (6) are

(6)

*Bickle & McKenzie (1987) present a solution to a slightly simplified version of equation (1) in which they neglect
the difference between the heat capacities per unit volume of the fluid (ppCp ) and the rock [(1 —¢)psCy s
+ @pg Cyp ¢ ] (see Table 1). Their solutions are given in terms of a thermal Peclet number, Pe, which is related to B by
the expression

(1—@)psCp.s+@pe C
Pe=3[ Plostlep s Pr F‘F].
PeCep
For the case that B > I, the solution (6) becomes
T'=1—exp(BZ),

which is identical to the steady-state result found by Bickle & McKenzie (1987, eq. 20) for the same boundary
conditions, if Pe = B.
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Fi1G. 1. Normalized temperature 7' =(T—7,)/(T, — T,) shown as a function of normalized distance Z=z/L as
described by equation (6) for various values of the dimensionless parameter B defined in equation (4). In effect, the
curves shown are steady-state geotherms for a model crust with constant volatile flux upward from Z = — -0 to the
surface at Z=0. Values of B=0-5 lead to a geotherm that differs significantly from the no fluid flow (linear)

geotherm.

also correct for the modified boundary conditions, but with constants 4 and C changed to
yield:

- B QLexp(B) |
T=T,+[1—exp(BZ)] [7BKR :| (7)
Solving for T, , however,
L
TL=TD+(g_K) [exp(B)—1]. (8)

yields unrealistically high temperatures for even modest values Q and B. Flowing fluid
reduces the temperature gradient required to maintain a constant heat flux from below so
that the boundary condition ¢7/6Z=—QL/K at Z= —1 does not approximate a likely
geologic constraint.

Of the parameters in B, the fluid flux (the product of the fluid velocity v and the connected
porosity ¢) and the scale length L are most subject to uncertainty or variation. Values of the
volumetric heat capacity at constant pressure (p; Cp ;) for water and carbon dioxide listed in
Table 1 show little variation along metamorphic geotherms. Although the volumetric heat
capacity of carbon dioxide is only half that of water for the same conditions, metamorphic
fluids are typically water rich. Therefore, restricting our attention to the physical conditions
of regional metamorphism, a constant value for p.Cp  of 3:5x 10° (J/m?*K) will be used.
Thermal conductivity may vary by a factor of two or more, but no simple model is generally
applicable. A constant thermal conductivity Ky of 2:5 (J/msK) is assumed throughout this
paper (see England & Thompson, 1984, p. 899). For illustrative purposes. consider a scale
length L of 20 km to focus on crustal scale processes. Interestingly, doubling or halving this
parameter will have the same effect on B as doubling or halving the fluid flux. Using pCp .
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TaBLE 1

Volumetric heat capacity of water at constant pressure (pyCp ) x 107 (J/m*K)

Pressure (kb)

T°C ! 2 3 4 5 6 7 L

100 404 405 409 4-11 414 419 423 4:26
200 3-84 383 3-86 391 396 399 4-04 408
300 3-61 358 364 369 374 381 384 392
400 341 336 342 347 353 3-59 364 371
500 291 314 325 328 335 340 349 357
600 1-95 2:69 291 308 320 330 339 349
700 1:21 211 248 2:70 2:85 2:96 305 313

Data from Helgeson & Kirkham (1974, tables 3 and 34).

Volumetric heat capacity of carbon dioxide at constant pressure (pgCp g) X 107° (J/m*K)

Pressure (kb)

TK ! 2:5 5 743 10
400 133 1-73 1-77 1-80 1-81
500 111 1-59 1-74 1-80 1-82
600 091 1-24 1-69 1-79 1-85
700 0-77 1-17 1-62 1-77 1-85
800 0-68 1-10 1-53 1-73 1-84
900 061 103 1-45 1-68 1-82

1000 055 097 1:26 162 1-78

Data from Bottinga & Richet (1981, tables 4 and 10).

K. and L as defined above, a fluid flux of vpo=1-8x 10"'" (m* of fluid/m?s) will yield
B=0-5. If the porosity ¢ is 0-01, too high perhaps for the deeper crust and too low for shallow
rocks, vy =56 (cm/a) for this fluid flux. The same relative effect for a 10 km slab would be
produced by a fluid flux of 3-6 x 10~ ' (m? of fluid/m?s). Clearly, volatile flows over 10~
(m? of fluid/m?2s) (velocities over a few centimeters per year for ¢ =0-01) may be significant
on a crustal scale, if the flow of volatiles continues until a steady state is established.

Time

Although equation (6) gives the magnitude of the maximum thermal effect due to fluid
flow as a function of the important variables, it provides no hint of the length of time
required to achieve this effect. Can a thermal steady state with volatile flow added to
conduction be established within the time span of a metamorphic event? Time may be
introduced with the help of some numerical solutions to equation (1) or more elegantly with
the analytical solution of Bickle & McKenzie (1987). Their equation (24) gives the time ¢,
required to achieve approximately 2/3 of the temperature perturbation from a linear
gradient in response to fluid flow as

; tL'E“—@]!’scp.s+(ﬂf’!-'cp.r-']' ©)

¢ B2
K P
(7 +5)

!
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log tc (a)

F1G. 2. The time ¢, required to achieve the majority of the temperature adjustment expected in a model crust

perturbed by upward fluid flow is shown on a logarithmic scale as a function of the thickness L of the crustal slab

involved, also on a logarithmic scale, for various values (0-5, 2:0, 20-0) of the parameter B defined in equation (4). The

lines are calculated from equation (24) of Bickle & McKenzie (1987). Significant temperature changes may be
produced in | Ma or less by crustal-scale fluid flow.

The time required to reach the steady state is a function of the square of the thickness of the
slab. The variation of r, with slab thickness and B is shown in Fig. 2. It appears that the small
temperature effects due to fluid low may be achieved quite rapidly in thin bounded slabs.

When numerical methods are used. equation (1) may be tackled in a way that includes
more of the complexity of the earth’s crust. Figure 3 shows the results, in 0-4 Ma intervals, of
adding volatile flow to the top 20 km of a hypothetical crust with a ‘normal’ conductive
geotherm based on a detailed numerical model that includes heat production, a variable
thermal conductivity and heat capacity, and a constant conductive heat flux from below. For
clarity a fluid flux of 16 x 107 '° (m? of fluid/m?s) and values of K and (p;Cp ¢) to give
B~4-7 are used. Evidently, significant regional thermal excursions can be caused by volatile
fluxes lasting less than | Ma.

Permeability

If metamorphic rocks have low permeabilities, is it reasonable to consider fluid flows of
even 107" (m? of fluid/m?s)? Brace (1980, 1984) lists laboratory and in situ measurements of
permeabilities for crystalline rocks in the range 1072'-107 '3 m% Whether the larger
permeabilities can persist in a rock undergoing metamorphism is unknown. However, Brace
et al. (1968) showed that the permeability of Westerly granite increased with decreasing
effective pressure (Pyyu — Priwia)- Brace et al. attributed this effect to microcracks that close
as effective pressure rises. The experiments of Brace et al. and similar measurements by Pratt
et al. (1977) indicate that high fluid pressures (low effective pressures) should lead to the
maximum permeabilities for a given set of conditions. High fluid pressures are believed to
develop during metamorphism, enhancing permeability, when devolatilization reactions are
occurring (Fyfe et al., 1978, Chap 10; Etheridge et al., 1983). For the calculation that follows,
a permeability of 107 '® m? will be used, well below what Etheridge et al. (1983) consider
possible (107 '#-107'3m?), but well above the values measured by Brace et al. (1968) for
granite at high effective pressures (1072 m?).
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F1G. 3. Temperature shown as a function of depth for 0-4 Ma intervals in an approach to the steady state computed
by a finite difference approximation to equation (1) for a model crustal slab 20 km thick. A pervasive fluid flux of 1-6
% 10719 m? of fluid/m?s was initiated at t=0 when the steady state geotherm was the dashed curve. Model heat
production and conductive heat flux from below that produced the initial geotherm and heat flow (49 mW/m?) were
continued during the numerical experiment (B~ 4-7). Results of this numerical model are in good agreement with
predictions of the analytical solution for the less complex model of Bickle & McKenzie (1987) shown in Fig. 2.
Significant temperature changes are observed in less than | Ma and a steady state is nearly achieved within 2 Ma.

The maximum pressure gradient normally available to drive vertical fluid flow on a
crustal scale is the difference between the lithostatic gradient and the hydrostatic gradient
(see Walther & Orville, 1982). Using this differential pressure gradient (1-9 x 10* Pa/m for a
crustal density of 2-8 and a fluid density of 0:9), using a fluid viscosity of 1'5 x 10™* (kg/ms)
(see Walton (1960), Ahrens & Schubert (1975)), and using a permeability of 10 '®*m?,
Darcy’s Law for fluid flow in a porous medium (Hubbert, 1940) predicts a flux of 1:3 x 107 ¢
(m? of fluid/m?s). A flux of this magnitude through a rock with a flow porosity of 0:01 would
require an average fluid flow velocity of 60 (cm/a). Based on these estimates, it appears to be
physically possible to have fluid fluxes large enough to cause thermal effects, even in low-
permeability metamorphic rocks.

Although a permeability of 10~ '®* m? may be too high for many metamorphic rocks, it
may be too low for metamorphic rocks fractured by volatile release. If fracturing occurs in
response to rising fluid pressure or tectonic events as suggested by Norris & Henley (1976),
Fyfe et al. (1978), and Walther & Orville (1982), fluid flow may be concentrated along
fractures and enhanced. The thermal consequences of flow along fractures are similar to the
thermal consequences of percolating flow, unless the fractures are widely spaced (see below).

Flux and volume of volatiles released during regional metamorphism

Maintaining a volatile flux of 1-8 x 10~ ! (m? of fluid/m?s) requires 570 (m* of fluid/m?) in
| Ma. Clearly, large volumes of volatiles must be supplied rapidly to maintain the flow rates
necessary to cause a crustal scale thermal effect from volatile flow. Walther & Orville (1982)
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calculate a maximum volatile flux from the regional metamorphism of an average pelite of
about 300 (m? of fluid/m?Ma). Yardley (1986) suggests a maximum volatile flux of 420 (m? of
fluid/m?*Ma) for regional metamorphism. Based on these estimates, a volatile flux from
metamorphic reactions of the magnitude necessary to produce a regional thermal effect
appears to demand the special circumstance of rapid heating.

The devolatilization of an average pelite during progressive metamorphism will yield
about 5 wt.% fluid with a volume at 500 °C and 5 kb of about 12% of the volume of the rock
metamorphosed (Walther & Orville, 1982). Therefore, to supply the fluid for a fluid flux of
1-8 x 107! (m? of fluid/m?s) (B=0-5) for 1 Ma, the complete dehydration of a 4-7 km thick
pile of pelite in one Ma (isograd velocities of 4-7 mm/a) would be needed. Actual rates of
metamorphism are believed to be an order of magnitude lower (isograd velocities < 1 mm/a,
Brady, 1982; Walther & Orville, 1982; Peacock, 1986). Metamorphism of siliceous dolomites
can yield a proportionally much larger volume of fluid than the metamorphism of pelites, as
much as 50% of the volume of the rock metamorphosed (Rumble et al., 1982), but siliceous
dolomites rarely form a significant fraction of the crust. Metamorphism on a crustal scale is
required to supply fluids at the rate of 10~ (m? of fluid/m?s) for even a few million years,
whereas crustal scale metamorphism is likely to require tens of millions of years (e.g.,
England & Thompson, 1984). Rates of metamorphism are not significantly increased by
including the forced convection of evolved fluids. Results of numerical crustal heating
experiments in which the advection of evolved metamorphic fluids is included are virtually
indistinguishable from conduction only experiments (Brady, 1982). In sum, volatiles
produced by metamorphic reactions during most crustal thickening events are not supplied
at a rate sufficient to noticeably affect the crustal thermal regime.

LOOKING FOR LARGE FLUID FLUXES
Convection

What tectonic environments might lead to fluid fluxes on the order of S00m? of
fluid/m>Ma? Convective fluid flow in the neighborhood of shallow (<6 km) intrusives may
involve fluxes this large and can have a major thermal effect on both the cooling intrusive
and on the surrounding rocks (e.g., Taylor, 1971; Cathles, 1977; Norton & Knight, 1977;
Criss & Taylor, 1987). Based on their models, Norton & Knight (1977) compute fluid fluxes
that locally exceed 10° m? of fluid/m?Ma. Similar fluid convection may occur in the vicinity
of the deeper intrusives that are commonly found in metamorphic terranes, although
estimates of permeability for metamorphic rocks argue against convection (England &
Thompson, 1984). Etheridge et al. (1983), believing that relatively high permeabilities result
from high fluid pressures, suggest that convective circulation, with detailed fluid pathways
determined by local structure, can occur during regional metamorphism. Wood & Walther
(1986), however, argue that high fluid pressures (greater than hydrostatic) should preclude
convection and permit only ‘single-pass flow’. The oxygen isotopic data of Wickham &
Taylor (1985) for a regional metamorphic terrane in the Pyrenees support the idea of
pervasive infiltration and perhaps circulation of a seawater-rich fluid during heating of
pelitic metasediments at depths of 6-12 km. Ferry (1986q, b) argues that the high (1-5:1)
fluid to rock ratios calculated for many metamorphic terranes require a multi-pass
(convection) model of fluid flow at depths greater than 10 km. Wood & Walther (1986) give
reasons why the calculated fluid to rock ratios might not require multi-pass flow. Clearly,
there is no agreement on the possibility of thermal convection of volatiles in the deep crust.
The thermal effects of convective circulation (the multi-pass model), if it occurs, could be
dramatic. Thermal convection requires a different analysis from that presented here for
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forced fluid flow, and is not considered further. The conclusions of this paper are based on
the assumption of single-pass volatile flow.

Magmatic devolatilization

Although it is not clear whether convective circulation can occur in the vicinity of deep
intrusives, deep intrusives can lead to forced fluid flow due to magmatic devolatilization
during crystallization. Ferry (1980, 1983) argues on the basis of mineral compositions and
modes of metacarbonate rocks that fluid flow during metamorphism increased in the
vicinity of two quartz monzonite stocks, possibly recording the loss of fluid from the
crystallizing stocks. Magmas can contain several weight per cent of H,O and CO, that may
separate into a fluid phase during crystallization. Even so, to have a regional temperature
effect from the release of these volatiles, a large magma body such as a batholith would be
required. For example, the region overlying an extensive granodiorite intrusion 10 km thick
might receive a total flux of 84 x 10° (kg water/m?) (730 m* water/m? at 500°C and 5 kb)
from the approximately 3 wt. % water in the granodiorite (Burnham, 1979). This water may
be released gradually over the several million years that it may take the intrusion to solidify
(Jaeger, 1964) or in pulses as fluid pressure rises during crystallization (Burnham, 1979).
Enough water is available in the magma to have a short-lived regional thermal effect, but
only if the volatiles are released in 1 Ma or less. A release of volatiles that is focused into
broad zones of fluid flow may leave a record in the conduit host rocks (see below).
Devolatilization during contact metamorphism of country rocks may produce a small
volume of fluid rapidly. Simple calculations suggest that the thermal effects of the movement
of this fluid should be small and will not normally be important.

Subduction zone devolatilization

An extensive literature exists on the thermal structure of subduction zones (e.g.,
McKenzie, 1969; Hasebe et al., 1970; Oxburgh & Turcotte, 1970, 1976; Toksoz et al., 1971;
Griggs, 1972; Anderson et al., 1978, 1980; Sydora et al., 1978; Honda & Uyeda, 1983; Wang
& Shi, 1984;: Honda, 1985). A number of these authors have proposed thermal, chemical, and
petrologic effects that may result from the fluid released by compaction and diagenesis in the
accretionary wedge and by devolatilization reactions in the subducted oceanic crust. Davis
et al. (1986) and Reck (1987) call upon upward fluid flow to explain higher than expected heat
flow in accretionary prisms in Barbados and northeast Japan, respectively. Reck’s (1987)
numerical models satisfy observed temperature data (Burch & Langseth, 1981) if upward
water fluxes of 10~ ' (m® of fluid/m?s) are present. However, upon consideration of the
water content of prism sediments, Reck concludes that sufficient fluid fluxes are only
possible if the fluid flow is focused into narrow zones (e.g., Cloos, 1984).

Oceanic crust may be hydrated by a number of processes from ridge to subduction zone
and some uncertainty exists regarding the actual volatile content of the oceanic crust as it is
heated during subduction (Anderson et al., 1976). Release of volatiles is believed to occur in
the depth interval 80-125 km (Anderson et al., 1978; Delany & Helgeson. 1978). Flow paths
and sinks for these volatiles are the subject of much speculation and few data. It is likely that
most of the volatiles are consumed by melting reactions in overlying dry mantle or crustal
rocks (e.g., Anderson et al, 1980) and, therefore, participate only indirectly in the
metamorphism of upper crustal rocks. Nevertheless, were subducted volatiles able to reach
upper crustal regions directly, back up the subduction zone or along other unspecified fluid
.conduits, a thermal effect might be present (see Hoisch, 1987; Peacock. 1987h). The cardinal
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aspect of subduction processes is the comparatively inexhaustible supply of fluid. The major
question mark is whether any of these fluids can reach the middle or upper crust without
being consumed in melting reactions.

Dehydration of the hypothetical oceanic crustal metamorphic mineral assemblage of
Anderson et al. (1976, 1978), consisting of 25% chlorite, 25% amphibole, 20% serpentine,
5% talc, and 25% anhydrous minerals, would yield about 178 kg water/m>. Anderson et al.
(1978) model the dehydration as occurring beneath a 50 km zone parallel to the trench.
Assuming a 5 km thick hydrated oceanic crust and a convergence rate of 5 cm/a, water
would be released at the rate of 8:9 x 10° (kg/m*Ma) over the 50 km interval. At 500 °C and
5 kb, this water flux would be about 2.5 x 107! (m? of fluid/m?s) (=775 m? of fluid/m?Ma).
Although the oceanic crust may contain less than the approximately 6 wt. % water specified
in the above model mineral assemblage, higher convergence rates, subducted sediments,
and/or a thicker crust might compensate in individual cases. Peacock (1987b) considers this
particular problem in more detail. He uses a more conservative estimate of the volatile
content of subducted oceanic crust (2 wt. %) and releases these volatiles over a 150 km zone
to conclude that the effects of pervasive fluid flow are minimal. Peacock suggests that
channelized flow of these fluids in the subduction shear zone may provide a greater localized
thermal effect than pervasive flow.

Crustal thickening and thinning

If the rate of metamorphism is tectonically accelerated, significant fluxes of evolved fluids
may occur. In particular, heating due to large scale thrusting (e.g., England & Thompson,
1984) or crustal thinning (McKenzie, 1978), may lead to rapid devolatilization and
significant fluid fluxes. Emplacement of thrust slices will cause the underlying rocks to be
heated, rapidly at first, as the geotherm responds to a thickened crust. If the underlying rocks
are sediments or partially dehydrated metasediments, volatiles will be released that may flow
through the overlying thrust slice or perhaps upward along the thrust fault zone. Initially,
evolved fluids may accelerate cooling and fuel retrograde reactions in the warmer overlying
rocks. However, unless the fluid flow is focused, the rate of volatile production is generally
not sufficient to change the geotherm from that expected in the absence of fluid flow. This
can be demonstrated from numerical experiments analogous to those of England &
Thompson (1984) and others, but with volatile production from metamorphic reactions and
consequent upward fluid flow added (Brady, 1982). However, a look at the possible volatile
production rates based on England & Thompson's (1984) results will provide a more simple
proof.

Consider a crust thickened by thrusting with thermal parameters and tectonic chronology
corresponding to those of fig. 3e of England & Thompson (1984). Very roughly, 25 km of the
lower plate is heated from below 400°C to over 600°C during the first 20 Ma following
thrusting. Assuming that the full 25 km contains 5 wt.% volatiles (Wather & Orville’s (1982)
estimate for the average ‘fertile” pelite) and that all of the volatiles are released over the
20 Ma period, a flux of about 180 m? of fluid/m?Ma would be produced (B =0-28 because of
the 35 km scale length). Recognizing that these parameter choices have maximized the
calculated flow and that features such as multiple, rather than single, thrust slices (Davy &
Gillet, 1986) will reduce the rate at which volatiles are released, the thermal impotence of this
flow is evident. Focusing the flow of these fluids through broad channels in the upper plate,
however, might cause significant local effects (see below).

Metamorphism in response to crustal thinning (e.g.. McKenzie, 1978, 1981; Royden &
Keen, 1980; Wickham & Oxburgh, 1985; Sandiford & Powell, 1986) may be relatively rapid,
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increasing the rate of volatile release over that expected for zones of crustal thickening. The
effect of an increased volatile flux, however, is countered by a decreased scale length L as the
crust is thinned, so that pervasive single-pass fluid flow is not likely to be important.
Interestingly, an extensional environment may facilitate deep circulation of fluids (Wickham
& Oxburgh, 1985; Wickam & Taylor, 1985) with possible significant thermal effects.

Mantle devolatilization

Schuiling & Kreulen (1979) postulate that the metamorphic thermal dome at Naxos,
Greece may have been caused by a large influx of CO,-rich fluid of deep seated origin. A
large number of workers have suggested that an influx of CO,-rich fluids may have had an
important role in the genesis of granulites, but this suggestion remains a topic of controversy
(see Hansen et al., 1984; Bhattacharya & Sen, 1986; Crawford & Hollister, 1986; Newton,
1986). If it can be demonstrated that large volumes CO,-rich fluids escape from the mantle,
the possible thermal consequences are significant and can be estimated using the equations
presented here. Spera (1981) estimates a minimum, long-term average rate of volatile
outgassing from the mantle by summing the mass of volatiles in the atmosphere, hydro-
sphere, and sedimentary rocks and dividing by all of geologic time. His result of 4-4 x 10!!
(kg/a), averaged over the surface of the earth, is about 2 x 10~ '* (m? of fluid/m?s). Although
the large scale length L that would apply to mantle outgassing through continental crust
would enhance the thermal effect, considerable focusing is needed for this long-term average
flux to have a noticeable effect on crustal temperatures. If, however, most of these volatiles
were released early in the earth’s history, their flow may have had a major role in
determining the geotherm in the early crust.

CHANNELIZED FLUID FLOW

It has been suggested by many geologists that the escape of metamorphic fluids may be
localized along planar or cylindrical channels (e.g., Norris & Henley, 1976; Ferry, 1979;
Rumble et al., 1982; Walther & Orville, 1982; Chamberlain & Rumble, 1988) and evidence
for specific cases of channelized flow of fluid is mounting (e.g., Beach & Fyfe, 1972; Rye et al.,
1976; Rumble & Spear, 1983; Kerrich et al., 1984; Nabelek et al., 1984; Bebout & Carlson,
1986; Ferry, 1987). High permeability flow paths due to features such as fracture systems,
fault zones, hydrofracturing, and high permeability formations can have a dramatic effect on
the metamorphic hydrology and might also affect the temperature distribution in a
metamorphic terrane, depending on the distribution of the channels and the total fluid flux.
Volatile sources listed above that cannot fuel a regional thermal effect may become
significant if the flow is focused along a few channels. For example, Chamberlain & Rumble
(1988) attribute localized occurrences of high temperature minerals in New Hampshire to
metamorphic ‘hot spots’ produced by fluid flow, citing oxygen isotopic evidence for large
quantities of fluid.

Two questions are of special interest when considering channelized fluid flow: (1) to what
extent can the local temperature be raised in the vicinity of the channels, and (2) how does
the regional thermal effect of channelized fluid flow differ from that of the pervasive flow of
the same quantity of fluid? To answer these questions it is helpful to examine some
additional analytical and numerical solutions to the differential equations of heat transfer.
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Constant planar source of heat
Fluid flowing in a channel such as a fracture, shear zone, or permeable rock unit provides
a source of heat that may be approximated by a constant thermal flux across the planar
boundary of the channel. The magnitude of the constant flux ¢, (J/m?s) is determined by the
flow rate of the fluid, the temperature gradient along the channel, the width of the channel,
and the heat capacity of the fluid according to the expression

ar
4, = WFUI-'(pCpFCP.F(E) (10)

where W is the half width of the channel, ¢ is the porosity of the channel, and (¢7/7z) is the
temperature gradient along the channel. This expression assumes that temperatures are
uniform within the channel along planes perpendicular to the direction of fluid flow and that
all the available energy is transferred to the rock as the fluid passes, neglecting the small
portion of the energy required to raise the temperature of the channel rocks themselves. The
result is therefore limited to relatively narrow channels (see below).

A one-dimensional solution is given by Carslaw & Jaeger (1959, p. 75) for a constant
planar source of heat in a semi-infinite solid initially at constant temperature 7. Although
Carslaw & Jaeger give the full solution, the equation of interest is their (2.9.8), which gives the
temperature increase of the solid at the boundary of the channel as follows:

2q, [kt
T—-T,= e (11)
In this expression, x (m?/s) is the thermal diffusivity of the rocks and the other terms are as
defined previously. T— T, is shown on a logarithmic scale as a function of the steady flux g,
in Fig. 4 for times t of 10° and 107 a, Ky =2.5 (J/mKs), and x=10"° (m?/s). Based on this

log (T-To)

-4 | -2 0 2
log q

Fi1G. 4. The increase in temperature (7'— T;) at the planar boundary of a semi-finite slab initially at a constant

temperature T, is shown as a function of a constant heat flux g across the boundary for events lasting 10%a and 107a.

Equation (11), taken from Carslaw & Jaeger (1959, eq. 2.9.8), was used to compute the figure. According to this

model (see text), heat fluxes greater than 10~ J/m?s are required to produce temperature rises greater than 10K in

10 Ma. Calculations for a cylindrical model (Carslaw & Jaeger, 1959, eq. 13.5.19) with a radius of 1 m are also

shown. Heat fluxes of 10 (J/m?s) across the boundary of the cylinder are required to produce a 10 K temperature rise
in 10 Ma adjacent to the cylinder.
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simple model, it appears that ¢, must be greater than 10~ 2 (J/m?s) to have a temperature
increase of 10K near the channel in 1 Ma or less. For a temperature gradient of 30 K/km
and (ppCp ¢)=35x10° (J/m’K), a ¢, of 1073 (J/m?s) corresponds to a fluid flux Wyoe o
per unit length of channel of about 108 (m? of fluid/ms) or 300000 (m? of fluid/mMa). This
fluid flux is about 10* greater than the maximum flux estimated for the volatiles evolved
during the metamorphism of an average pelite and, therefore, would require focusing of the
fluid from pelite underlying a minimum of | km? into a 1 km long channel. The exact width
of the channel is unimportant as long as the assumption is correct that the heat added to the
channel by fluid flow is lost to the adjacent rock at the same rate.

Constant cylindrical source of heat

Fluid flowing in a pipe-like conduit has less influence on its surroundings than fluid
flowing in a planar channel at the same flux per unit area of channel. The expression for the
temperature increase at the boundary of a cylindrical heat source in a semi-infinite medium,
comparable to equation (11), is given by Carslaw & Jaeger (1959, equation 13.5.19) as

: g, R 4Kt
T—Ty= 22K: |:ln (Té) — ,,] (12)

where g, is the heat flux (J/m?s) across the surface of the cylindrical conduit, Ry (m) is the
radius of the fluid conduit, y is Euler’s constant (0:57722 . . . ), and the other terms are as in
(11). T—T, calculated from equation (12) is shown in Fig. 4 for a conduit with Rp=1 (m)
along with the results from equation (11). Because the temperature rises only with the
natural logarithm of the time ¢, the temperature rise for 107 a is not much different than that
for 10°a. For the same rise of temperature, the heat flux ¢, across the surface of a cylindrical
conduit must be two to three orders of magnitude higher than the heat flux ¢, across the
surface of a planar channel.

Again assuming that all the available energy is transferred to the rock as the fluid passes,
g, may be expressed in terms of g, as follows:

_ Rt @eppCop (0T _ g1 Ry
9= 2 oz ) 2W’ "

Using the same parameters as above, a 10K temperature rise would require a fluid flux
nRE vp @c of about 1073 (m* of fluid/m?s). This could be accomplished by funnelling the
volatiles from pelite underlying a minimum of 1 km? into an open circular conduit with a
1 m? cross-section.

Two-dimensional parallel channel flow

Of the simplifications needed to apply equations (11) and (12), two are particularly
troubling. (1) In the earth the problem is at least two-dimensional: fluids will be heating
rocks in a geothermal gradient. Heat is conducted toward the surface as well as away from
the fluid channel. (2) Fluid pathways may not be isolated so that the interaction of multiple
channels may be important. Both of these complications are addressed in a steady state
solution derived in the Appendix for the case of constant fluid flow in symmetrically
distributed channels of infinite extent (see Fig. 5). Although this geometry is idealized, two-
dimensional numerical experiments confirm its utility for estimating the maximum tempera-
ture effect of channelized fluid flow (see below). Constant fluid flow advances the isotherms
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F1G. 5. Isotherms expected between symmetrically positioned, parallel channels of fluid flow in a model, infinite

system. Planes of symmetry are indicated by the vertical lines labelled ‘'m." If a fluid lows upward in the channels at a

constant rate, isotherms will be advanced near the channels until a steady state is achieved. In the steady state,

isotherms will move upward at a constant velocity that is proportional to the fluid flux (equation Al2). In a

reference frame that moves with the isotherms, the isotherm shape is given by equation (A13). AT is given by
equations (14) and (15).

of a linear temperature gradient such that the isotherms near the channels are bent in the
downstream direction (upward in the earth and in Fig. 5). A critical measure of the local
thermal effect of channelized fluid flow is the difference in temperature (A7) between rocks
within the channels and rocks halfway between the channels at the same depth. The relative
temperature elevation near the channels is given by equation (A13) with X =1

AT:( = Wi ocpeCo v _ _)(EF WRZPRCP‘R_)(E_T)_ (14)
WrprCp r + We@cppCp p+ Wil —@c) psCr s 2Ky 0z

oo

2W g @ is the total flux of fluid in a channel of porosity ¢c. Wy and Wy, are the half-widths
of the channel and rock slabs, respectively. For large values of Wy /W, (14) simplifies to

_UsPc Wy WR.(’[-'CP.r'(a_T) (15)
2Ky '

It is clear from (15) that the local thermal effect of fluid flowing in channels can be increased

by increasing the fluid flux (v @ Wy ), increasing the separation (Wy) of the channels, and by

increasing the temperature gradient (¢7/6z) parallel to the channels.

AT calculated from equation (15) is shown on a logarithmic scale in Fig. 6 as a function of
the logarithm of Wy for (¢T/dz) of 0:03 K/m and various values of the fluid flux per unit
length of channel v Wg. For channel spacings (Wy) less than 1 km, fluxes approaching
10~ 7 (m? of fluid/ms) are needed to create steady state temperature differences (AT') greater
than 10 K. Based on this result it appears that significant local deviations from the regional
geotherm due to fluid flow in narrow channels are only possible for large volumes of fluid
flow on widely separated channels.

One of the useful implications of equation (15) is that the distinction between pervasive
flow of fluids and channelized flow of fluids is unimportant for thermal models of regional
metamorphism, as long as the channels are not too isolated or the fluid flows unusually
large. Results obtained using the simpler mathematics of pervasive flow can, therefore, be
applied with confidence, even if detailed information about fluid pathways is unavailable.

AT=

An
cz
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2
log Wg

FiG. 6. The maximum steady state temperature difference AT'(K) between the rocks in a fluid flow channel and the

rocks halfway between the channels as predicted by equation (15) is shown on a logarithmic scale as a function of

the logarithm of the half-distance between channels Wy (m) and the fluid flux per unit length of channel vg e Wi (m?
fluid/ms).

Conversely, the temperature memory of metamorphic mineral assemblages is not likely to be
of much assistance in elucidating the fine structure of volatile transport, such as the
identification of metamorphic aquifers.

To obtain the convenience of the analytical solution (15), the assumption of a steady state
and of an infinite system were used. Both of these assumptions warrant some examination.
In particular, the finite thickness of the crust along with the constraint of constant
temperature at the earth’s surface are at odds with a picture of isotherms forever advancing
upward. The limitations of these assumptions were removed and the success of equation (15)
in estimating the maximum temperature rise in the vicinity of fluid flow channels was
explored using two-dimensional finite difference calculations. Boundary conditions for the
numerical models were: (1) constant temperature at the bottom and top of a rectangle of
rock giving an initial linear temperature gradient; (2) a constant upward flux of fluid in a
channel along one side of the rectangle; (3) vertical planes of symmetry (no heat flow)
bounding the rectangular rock plus channel (as in Fig. 5), and (4) uniform temperature
within the channel at any depth z.

Results of two numerical experiments simulating 10° a of fluid flow (near steady state) are
shown in Figs 7 and 8. In both experiments, fluid fluxes of 3:6 x 107® (m* fluid/m?s) were
directed upward along 20 m wide planar channels (W= 10 m) through a 10 km crust that
initially sustained a 20 K/km gradient. In the experiment shown in Fig. 7A, the channels of
fluid flow were separated by 20 km of rock (W, =9990 m). In Fig. 7B, the channels of fluid
flow were separated by 2km of rock (Wy=990m). In both Fig. 7A and 7B, final
temperatures are contoured at 20 K intervals. When averaged over the horizontal distance
shown, the volatile flux supplied in Fig. 7B is an order of magnitude larger than the volatile
flux in Fig. 7A. Were this volatile flow pervasive, the parameter B defined in equation (4)
would be 0-5 for Fig. 7A and 50 for Fig. 7B. The bunching of isotherms near the top of
Fig. 7B follows closely that predicted for pervasive fluid flow with B=5-01in Fig. 1. Similarly,
the isotherm spacing at the sides of Fig. 7A follows closely the prediction for B=0-5 given in
Fig. 1.
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FiG. 7. Isothermal contours for the near steady state results of 1 Ma numerical simulations of channelized fluid

flow are shown for (A) a channel spacing interval of 20 km and (B) a channel spacing interval of 2 km. In each case a

volatile flux (vpc) of 3:6 x 10~ (m? fluid/m?s) was directed upward along tabular vertical channels 20 m wide.

Temperatures at the top and bottom of the 10 km rock slab were held constant at 0 and 200 K, respectively. The
isotherm interval is 20 K.

Of particular interest is the difference in temperature (AT) between the rocks adjacent to
the channels and the rocks halfway between the channels. How closely do the calculated ATs
match those predicted by equation (15)? ATs for the experiments of Fig. 7A and 7B are
shown in Fig. 8 as a function of depth along with the AT5s predicted by equation (15).
Although the AT predicted by equation (15) for the conditions of Fig. 7A is well above the
‘observed’” ATs, the AT predicted for the conditions of Fig. 7B is straddled by the ‘observed’
ATs. The underestimate by equation (15) of AT for the conditions of Fig. 7B may be
attributed to the high temperature gradients near the surface of the earth that result when
the averaged B is large. If the temperature gradients (07/8z) calculated from the averaged B
with equation (5) are used in equation (15), the predicted maximum A 75 exceed the ‘observed
AT's in all cases.*

*Only (87/0z) values from equation (5) that exceed the average (no fluid flow) (¢7/dz) should be substituted for
this average.
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F1G. 8. The temperature difference AT (K) between the rocks in fluid flow channel and the rocks halfway between

the channels is shown as a function of depth for the 1 Ma (near steady state) results of the numerical experiments of

Figures 7A and 7B. These “observed’ temperature differences may be compared with the predictions of equation
(15), shown as dotted vertical lines (AT=499 and AT=4-95, respectively), for the same fluid fluxes.

Overall, the numerical experiments confirm the predictions of the idealized solution (15):
except for very large channel spacings (Wy > 10km) and/or very large fluid fluxes per unit
length of channel (g We>10"8m? fluid/ms), the temperature of rocks near channels of
fluid flow will not be more than a few degrees higher than the temperature of rocks halfway
between the channels. Higher AT5 are produced for regions with higher initial geothermal
gradients. Equation (15) may underestimate the local temperature rise if the regional average
flow gives a large value of B (equation 4).

Transient channelized flow

Continuing fluid flow until a steady state is achieved will produce the maximum absolute
temperature increases relative to a conduction only steady state. However, large channelized
fluid fluxes for short times can produce temporary local temperature differences that would
not persist if the fluid low continued. In other words, because of the finite thermal diffusivity
of rocks, temperatures may rise more rapidly near channels of fluid flow than in the rocks
between the channels. Therefore, the AT between the rocks in the channels and the rocks
halfway between the channels is maximized prior to the attainment of a steady state. If the
mineral assemblages present can record the maximum temperatures achieved during a
thermal transient produced by short-term channelized flow, thermobarometry may be able
to identify the conduits for this transient flow.

Results of a two-dimensional numerical experiment involving fluid flow for 5000 a at 3-6
x 1077 (m? fluid/m?s) through planar channels distributed as in Fig. 7B (B = 50-0) are shown
in Fig. 9. Profiles of the temperature difference (AT') between the channel rocks and the rocks
halfway between channels (at the same depth) are shown for r=500a and r=5000 a.
Although channel temperatures begin to fall immediately when the fluid flow stops at 5000 a,
the temperatures of the rocks between the channels continue to rise. Therefore, the difference
between the maximum temperature reached by the channels and the maximum temperature
reached by the rocks halfway between the channels (shown at time 100000 a in Fig. 9) is less
than the AT for 5000 a.
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F1G. 9. The temperature difference AT (K) between the rocks in a fluid flow channel and the rocks halfway between

the channels is shown as a function of depth for times 1 =500 a and 1= 5000 a during a numerical experiment in

which a fluid flux of 3-6 x 10~ 7 (m? fluid/m?s) was directed along channels with the geometry of those in Fig. 7B for

a period of 5000 a. The maximum temperatures achieved by these same rocks within 100000 a from the start of the

transient were used to calculate the AT listed as r= 100000 a. By 100000 a all rocks were cooling toward the
conduction-only steady state.

Based on the data presented earlier in this paper, a volatile flux within the channels of
36x 1077 (m?fluid/m?s) is not likely to persist for long in a metamorphic terrane.
Nevertheless, a combination of special circumstances, such as a thermal excursion due to a
magmatic intrusion combined with a fertile discontinuous devolatilization reaction in the
adjacent country rocks, might produce very high volatile fluxes for short periods. If these
high fluxes are channelized, their transient temperature effects may leave a permanent record
in the rocks they traverse.

Wide channels

If the channels of volatile flow are too wide, the combination of fluid mixing and heat
conduction within the channels may not maintain uniform temperatures across the
channels, as assumed in the models described above. If this were the case, then temperatures
would rise in the center of the channels relative to the sides, creating local temperature
differences exceeding those predicted by equation (15). How wide must the channels be for
this to be a concern? Once again, Carslaw & Jaeger (1959, eq. 2.11.9) have anticipated the
problem and provide a useful solution. A channel of fluid flow may be treated as a zone of
heat production with no heat production in the rock outside the channel. Their solution is
for a semi-infinite system that should maximize the predicted effect, by analogy with
the isolated and parallel channel models given above. For a channel of width 2Wy, their

solution is
W2y 1-X
T=A°7“[1—2fzerfc( i )—2;2errc(l+fﬂ0<x<1 (16)
4KR \/-' \/}I

i

A Wiy = ¥ =1
T==2 F—-’-[Zizerfc(x .l)—Zfzcrfc( - )] X>1 (17)
4KR \/}) V’}s
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where i*erfc is the second integral of the erfc error function (Carslaw & Jaeger, 1959,
Appendix II), X =x/Wy is normalized distance measured from the channel center per-
pendicular to the channel, z is distance along the channel, and y =4xt/W { is a dimensionless
parameter. The heat production due to fluid flow A4, (J/m?3s) is given by

oT
AOEUF(PF»OFCF.F(E)$ (18)

and the other terms are as defined previously. In using this result, the thermal conductivities
and heat capacities of the rock and channel are assumed to be identical.

Because all temperatures rise continuously in the vicinity of the channel for this model,
equations (16) and (17) have been normalized for plotting by dividing the calculated
temperatures by the temperature at the center of the channel. Figure 10 shows the
temperatures calculated from equations (16)(18) as a function of normalized distance X,
measured from the center of the channel, for various values of the parameter . For y > 100, it
appears that little relative temperature gradient is expected across the channel. When fluid
begins to flow in a channel, it is evident from Fig. 10 that there is an initial rise in
temperature reflecting the fact that, initially, the temperature gradient is too low to cause the
heat added to the channel to be conducted away as rapidly as it is added. The temperature
gradient at the channel boundary rises with time (Fig. 11) so that at long times (7> 100)
virtually all of the heat added to the channel is conducted away. In other words, for large
values of y(long times or narrow channels), the assumption that the fluid flowing in a channel
transfers all its thermal energy to the adjacent rock is valid. Even for long times, however, the
temperature will increase from the edge toward the center of a channel. The total increase
(normalized by the fluid flux and channel width) is given in Fig. 11 (read the scale on the
right) as a function of y. For wide channels and/or high fluid fluxes, temperature variation
across the channel may be significant. For a fluid flux of 107 '° (m? fluid/m?s), a temperature
gradient of 30 K/km, and a volumetric heat capacity of (pgCp ¢) = 3-5 x 10° (J/m*K), we have
Ao =1:0x 107 (J/m3s). For Wy = 1000 m and y = 100, the temperature difference AT (K)
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F1G. 10. Normalized temperature T/ T, is shown as a function of normalized distance X = x/ W for various values

(0-1, 1-0, 10, 100, 1000) of the dimensionless parameter =4t/ W for equation (2.11.9) of Carslaw & Jaeger (1959).

The figure shows the evolution of the temperature profile across a 2Wg-meter-wide zone of heat production (= fluid
flow) and into the surrounding rock. X =0 is a plane of symmetry.
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FiG. 11. The normalized heat flux across the boundary (d7/dx)(Kg)/(4, Wy) and the normalized temperature

clevation at the center relative to the boundary (AT)/(4, W}) are shown for a model zone of heat production

(=fluid flow) as a function of the logarithm of the dimensionless parameter y =4xt/ W} as described by equation

(2.11.9) of Carslaw & Jaeger (1959). The normalized heat flux (left scale) approaches 10 as the heat flux out of the

zone approaches the heat produced within the zone for ys exceeding 100. The temperature increase within the zone
approaches (0.2) (4, W}), also for ys exceeding 100.

3
log W

FIG. 12. The temperature difference AT (K) between the center (X =0) and edge (X = 1) of a wide channel of fluid
flow as given by equations (16) and (17) is shown on a logarithmic scale as a function of the logarithm of the channel
half-width W (m) for y =100 and various values of 4, the heat production due to fluid flow within the channel.

between the center and the edge of the channel is 1-78 K; for W;. = 10000 m, AT = 178 K (see
Fig. 12).

If the heat added to a channel by fluid flow is not balanced by heat loss to the surrounding
rocks within 10*a, then it is not appropriate to apply the steady-state, parallel channel model
(equation 15) to a fluid flow event lasting less than 1 Ma. For y=100 and t=10%a, 2W,;
=200m would be a maximum channel width for which equation (15) might be used.



1208 JOHN B. BRADY

Evidently, channels wider than one km will retain a significant portion of the heat added by
fluid flow, rather than losing this heat to the surroundings. For these wide zones of flow, a
return to equation (6) will yield maximum temperature increases for the center of the channel
relative to the surrounding rocks.

Chamberlain & Rumble (1988) describe ‘metamorphic hot spots’ in New Hampshire that
are approximately 10 km? in area and spaced on roughly a 50 km grid. If all of the fluid in
the 2500 km? area surrounding each metamorphic hot spot was focused into the hot spot, a
focusing factor of 250 would apply. Taking a scale length L of 20 km, a temperature gradient
of 30 K/km, Kg=2-5 (J/msK), and (pyCp)=35x10° (J/m*K), a fluid flux of vz =72
x 107" (m? of fluid/m?s) ( a focusing factor of 4 over the probable maximum rate of fluid
production) will yield B=2-0 and within about 10°a Chamberlain & Rumble’s observed
temperature increase of about 100 K. Given the large possible focusing factor and the
estimates given above for volatile production from pelites, a volatile-flow origin for
Chamberlain & Rumble’s metamorphic hot spot appears reasonable. Metamorphic hot
spots like those described by Chamberlain & Rumble may provide the best thermal record of
volatile flow in metamorphic terranes.

The Naxos thermal dome described by Schuiling & Kreulen (1979) and others extends
over about a 250 km? area and records temperatures about 300 K higher in its center than in
the region around it. If the dome was formed by a flux of CO, from the mantle as Schuiling &
Kreulen suggest, a scale length of as much as 100 km might apply. Using L=10"m, a
temperature gradient of 0:015 (K/m), Ky =25 (J/msK), and (ppCp_ )= 18 x 10¢ (J/m3K), a
CO, flux of about 3x 107" (m? of fluid/m?s) giving B=2:0 would produce the observed
thermal dome in about 107a. A larger fluid flux from a shallower depth would be necessary
to produce the thermal dome in the less than the 107a time interval that Schuiling & Kreulen
conclude was available.

DISCUSSION

The major conclusion of this analysis is that single-pass volatile flow can be safely
neglected in the thermal modeling of most metamorphic terranes. Whether the volatiles flow
pervasively or in narrow channels, the regional thermal effect is the same. This conclusion is
not due to any inherent thermal impotence on the part of flowing fluids, but rather to the
absence of sufficient volumes of fluid to produce a significant temperature effect. If special
circumstances lead to large volatile fluxes, such as the focusing of metamorphic or igneous
volatiles into kilometer-scale zones, the temperature effects could be dramatic, if transient.
Fortunately, mineral assemblages may record such thermal transients, so that careful field
work may expose zones of volatile flow, if they occur. Peacock (1987a) reached similar
conclusions in a numerical study of advection during metamorphism.

The kinds of structure, formation types, and tectonic regimes that might produce the
necessary focusing of volatile flow can be imagined. For example, extensive fault zones are
likely to play a role in volatile transport. It was noted above that the thermal effects of
possible fluid flow in subduction zones have already been recognized (Davis et al., 1986;
Peacock. 1987h; Reck, 1987). However, Chamberlain & Rumble (1988) insist that their
metamorphic hot spots cross-cut regional structures. They do observe a system of fractures
of uncertain origin and suggest that the region may have been undergoing extension at the
time of hot spot formation. Nevertheless, more observation is needed before the secrets of
metamorphic plumbing are revealed. Fortunately, other measures of metamorphic fluid flow
are more sensitive to the passage of volatiles than paleotemperatures recorded by mineral
assemblages.
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For geologists aware of geothermal systems and perhaps familiar with domestic hot water
heat, the minimal thermal consequences of flowing metamorphic volatiles may seem
counterintuitive, as it did to me. As is commonly the case, however, a simple calculation can
improve one’s intuition. If flowing fluids are to rival conduction in importance, they should
transport an amount of heat that is comparable to the conductive heat flux. Using
Fourier’s law with Ky =2.5 (J/mKs), a modest temperature gradient of 0015 (K/m) will
produce a conductive heat flux of 37-5 (mW/m?). For p.Cp =35x10° (J/m*K), the
extremely high fluid flux of 1-1 x 10™* (m? fluid/m?s) is needed to produce the same heat flux
as conduction. The fact that a small fraction of this fluid flux can lead to thermal effects is a
victory for intuition and justification for a more detailed analysis, but of limited consequence
for thermal models of metamorphism.
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APPENDIX: STEADY CHANNELIZED FLUID FLOW IN AN INFINITE SLAB

One route to a solution involving channelized flow is to neglect all fluid flow other than that in the
channels, dividing the crust into regions of heat transfer by conduction and fluid flow (the channels)
and regions of heat transfer by conduction only (the rock). The solution is simplified if these regions are
parallel slabs of infinite extent distributed symmetrically with respect to one another (Figure 5).
Specifically, with this geometry the problem is reduced to two dimensions (67/0y=0 for all y) and
there is no heat flow across the planes of symmetry (7/éx =0 at the mirror planes). Let there be fluid
only in the channels (to simplify the equations) and let the fluid in the channels be well-stirred
perpendicular to the slab so that T is constant for all x and y at any z within the channels. Let there be
an initial constant temperature gradient (¢7/¢z = g,) within both the channels and the rock. If the fluid
begins to flow at a constant rate in the z direction, a steady state will be established eventually with
curved isotherms bending ‘downstream’ near the channels (Fig. 5) and moving at a constant velocity
(much slower than the fluid). The shape of these isotherms is constant and describes the expected
relative temperature rise in the vicinity of a tabular fluid channel through which a fluid is flowing.

Consider the energy flux into the space bounded by an infinitesimal cube in the rock that moves at
the same velocity as the isotherms in the z direction. Relative to this cube (the isotherm reference frame,
IRF), temperatures and the shape of the isotherms do not change (¢7/dt =0). Therefore, the net energy
flux into this cube must be zero. The net energy gain or loss E, in the cube by conduction across its yz
faces is given by (Carslaw & Jaeger, 1959, p. 8):

al, T
E,= e s =KR ‘_-5 (Al]
0x ox

where J, is the heat flux (J/m?s) in the x direction and Kg is the thermal conductivity (J/msK) of the
rock. The net energy gain or loss E, by conduction across the xz faces is zero because ¢7/y=0. The
heat flux in the z direction re!'arwe to the moving cube J'®F is (compare Brady, 1975):

J{8F=Jf1xed IRF{pR CP RT] (Az}

where J %4 is the heat flux in the z direction with respect to a fixed reference frame, v}'* is the velocity
of the isotherm reference frame (and cube) with respect to a fixed reference frame, py is the density and
Cp. g the specific heat capacity of the rock. Using (A2), the net energy flux across the xy faces E, is found

to be
‘_‘JIRF i T
E,= —(r—) VIR oo Cp. n( ) (A3)
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because the temperature gradient is linear in the z direction (07/dz*=0). Now
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Substituting the dimensionless parameter X =x/Wy for x, where Wy is the half width of the rock
between channels as identified in Fig. 5, Equation (A4) may be rearranged to yield

T WivEF pe Con (0T
e Rl ”(ﬂ ~k, (A3)
ox? Ky oz

where k, is a constant.

The solution to (A5) is of the form
T=AX*+BX+C. (A6)

If T=T, at X=0, then C=T,. Also at X =0, (¢T/¢X)=0 because of the symmetry plane there, so
B=0. And recalling (AS5), it is clear that 24 =k,. Thus,
k WU g C cT
pippa iy e PRURRET )an
2 2K,
The velocity of the isotherm reference frame may be related to the velocity of the fluid in the channels as
follows. In the isotherm reference frame at X = 1, the boundary of the fluid channels, the heat flux into
the rock (per unit area) from the channel must equal the net energy gain in the channel (per unit
volume) by conduction and fluid flow in the z direction. Using a modification of (A2) for the channels

JRE = Jlined _ yRE Tl ppCp, r + (1 — @c) psCp.5] (A8)

(A7)

oz

oT
JF=—-K ( )"‘1”““"!’( PrCo r T— 03 TLocpr Cr p+(1—c)psCps] (A9)
where K- is the thermal conductivity, vf"™ is the velocity, p is the density and Cp - is the heat capacity
of the ﬂuld @ 1s the connected porosny in the channels. pg and Cp g are the density and specific heat of
the solids in the channels. Because (¢7/¢z) is constant, the net energy gain in a channel (per unit
volume) with respect to the isotherm reference frame due to conduction and flow in the z direction is

et fluid IRF T
= oz =[03"cpr Cp =03 [0cprCor+(1—0c)psCp s1] F . (A10)

Setting Wy times equation (A10) equal to the flux across one channel boundary to maintain the
required constant temperature we have

Kg (6T ) : T
VR(~ ) = wF[l"Emdq’l’ipFCF‘F_l‘-lzkr[(p{“pFCP.F+“ _[PC)nOSCP.S]](T ) (Al1)
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Substituting the first derivative of (A7) with respect to X for (¢7/@X), the left side of (A11) becomes

Ky (Wﬁl’lzRFPRCP.R )(‘QT)
Wy Ky 0z

and (A11) may be rearranged to solve for v!*F. The solution

pIRF l;lu:d[ - ) WewcPeCrir :] (A12)
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may be inserted into (A7) to yield
T-T,=AX? (A13)
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where




	Thermal001.jpg
	Thermal002.jpg
	Thermal003.jpg
	Thermal004.jpg
	Thermal005.jpg
	Thermal006.jpg
	Thermal007.jpg
	Thermal008.jpg
	Thermal009.jpg
	Thermal010.jpg
	Thermal011.jpg
	Thermal012.jpg
	Thermal013.jpg
	Thermal014.jpg
	Thermal015.jpg
	Thermal016.jpg
	Thermal017.jpg
	Thermal018.jpg
	Thermal019.jpg
	Thermal020.jpg
	Thermal021.jpg
	Thermal022.jpg
	Thermal023.jpg
	Thermal024.jpg
	Thermal025.jpg
	Thermal026.jpg
	Thermal027.jpg

