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Abstract

We present kinetic data structures for detecting collisions between a set of polygons that are
not only moving continuously but whose shapes can also vary continuously with time. Unlike
classical collision detection methods that rely on bounding volume hierarchies, our method is
based on deformable tilings of the free space surrounding the polygons. The basic shape of our
tiles is that of a pseudo-triangle, a shape sufficiently flexible to allow extensive deformation,
yet structured enough to make detection of self-collisions easy. We show different schemes for
maintaining pseudo-triangulations as a kinetic data structure, and we analyze their performance.
Specifically, we first describe an algorithm for maintaining a pseudo-triangulation of a point set,
and show that the pseudo-triangulation changes only quadratically many times if points move
along algebraic arcs of constant degree. We then describe an algorithm for maintaining a pseudo-
triangulation of a set of convex polygons. Finally, we extend our algorithm to the general case
of maintaining a pseudo-triangulation of a set of moving or deforming simple polygons.

1 Introduction

Collision detection between moving objects is a fundamental problem in computational simulations
of the physical world. Because of its universality, it has been studied by several different communi-
ties, including robotics, computer graphics, computer-aided design, and computational geometry.
Several methods have been developed for the case of rigid bodies moving freely in two and three di-
mensions. Though a physical simulation involves several other computational tasks, such as motion
dynamics integration, graphics rendering, and collision response, collision detection remains one of
the bottlenecks in such a system. A commonly used approach to expedite the collision detection
between complex shapes is based on hierarchies of simple bounding volumes surrounding each of
the objects. For a given placement of two non-intersecting objects, their respective hierarchies are
refined only to the coarsest level at which the primitive shapes in the two hierarchies can be shown
to be pairwise disjoint.

Motion in the physical world is in general continuous over time, and many systems attempt to
speed up collision checking by exploiting this temporal coherence, instead of repeating a full colli-
sion check ab initio at each time step [11]. Swept volumes in space or space-time have been used
towards this goal [4, 9]. Though fixed time-sampling is customary for motion integration, collisions
tend to be rather irregularly spaced over time. If we know precisely the motion laws of the objects,
then it makes sense to try to predict exactly when collisions will happen, instead of hoping to locate
them with time sampling. There have been a few theoretical papers in computational geometry
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along these lines [5, 8, 12], but their results are not so useful in practice because they use complex
data structures and are only applicable for limited types of motion.

Recently Basch et al. [2] and Erickson et al. [6] presented algorithms for detecting collision
between two polygons using the kinetic data structures framework, which was originally introduced
by Basch et al. [3, 7]. Their algorithms avoid many of the problems that arise in the fixed time-
sampling method. A kinetic data structure, or KDS for short, is built on the idea of maintaining
a discrete attribute of objects in motion by animating a proof of its correctness through time.
The proof consists of a set of elementary conditions, called certificates, based on the kinds of tests
performed by ordinary geometric algorithms (CCW tests in our case). Those certificates that can
fail as a result of the motion of the polygons are placed in an event queue, ordered according to
their earliest failure time. When a certificate fails, the proof needs to be updated. Unless a collision
has occurred, we perform this update and continue the simulation. In contrast to fixed time step
methods, for which the fastest moving object gates the time step for the entire system, a kinetic
method is based on events (the certificate failures) that have a natural significance in terms of the
problem being addressed (collision detection in this case).

Unlike the previous hierarchy-based algorithms, the algorithm by Basch et al. [2] maintains a
decomposition of the common exterior of the two moving polygons. The cells of this decomposition
deform continuously as the objects move. As long as all the cells in the decomposition remain dis-
joint, the decomposition itself acts as a KDS proof of non-collision between the objects. At certain
times, cells become invalid because they self-intersect and the decomposition has to be modified.
Unfortunately, in their approach an extension to collision detection between many polygons is very
expensive — we have to construct such a decomposition for every pair of polygons.

In this paper we present an algorithm for detecting collision between members of arbitrary sets
of simple polygons as they move and/or deform in the plane. As in [2], we maintain a decomposition
of the common exterior of polygons, the free space, into deformable tiles. Ideally, we would like
to maintain a decomposition so that the self-intersection of a cell of the decomposition is easy to
detect, the decomposition is simple to update when a self-intersection occurs, and the decomposition
conforms to the motion of polygons so that self-intersections do not happen too many times. An
obvious choice for the decomposition is a triangulation of the free space. Although a triangulation
satisfies the first two criteria, it contain too many cells and therefore has to be updated frequently.
We will therefore use a pseudo-triangulation as the decomposition, which has considerably fewer
cells compared to a triangulation. Pseudo-triangles can flex as the objects move, and therefore the
combinatorial structure of the tilings needs fewer updates. At the same time, the cells in a pseudo-
triangulation have sufficiently simple shapes so that their self-intersections are easy to detect and
the triangulation is easy to update. Pseudo-triangulations have been used in the past, but primarily
for various visibility problems [10]. An additional benefit of our structure is that it can gracefully
adapt to object shapes that are themselves flexible. As our polygons move they can also deform
and change shape. This additional flexibility impacts our data structure primarily on the number
of events it has to process — but its basic nature and certification remains unchanged.

In Section 2, we describe our model for motion, define pseudo-triangulations, and describe
the certificates needed to maintain a pseudo-triangulation. In Section 3, we first describe how to
maintain a pseudo-triangulation for a set P of n moving points in the plane, and show that it
can be maintained in an output-sensitive manner. For low-degree algebraic motion, the pseudo-
triangulation changes about n2 times. We can further refine the pseudo-triangulation to maintain
a triangulation of P, which changes O(n7/3) times if each point in P is moving with fixed velocity.
To our knowledge, this is the first triangulation (without Steiner points) that changes a sub-cubic
number of times.

In Section 4, we describe a scheme for maintaining the pseudo-triangulation of a set P of k
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disjoint polygons with a total of n vertices. We show that the greedy vertical pseudo-triangulation
proposed by Pocchiola and Vegter [10] can be maintained efficiently. A nice feature of this (or
any minimal) pseudo-triangulation is that the number of cells is only O(k), which is typically
much smaller than n, the total complexity of the polygons. On the other hand, the size of any
triangulation has to be at least Ω(n). We will show that we need a kinetic data structure of size
O(k) to maintain this pseudo-triangulation. But unlike the set of points case, we do not have sharp
bounds on the number of events.

Finally, in Section 5, we combine our algorithm for the convex case with the one in [2] to
construct a pseudo-triangulation for a set of pairwise-disjoint simple polygons moving in the plane.
It can easily be updated when a certificate fails. The number of certificates needed to maintain the
correctness of the pseudo-triangulation is proportional to the size of a minimum link subdivision
separating the polygons [13], and is thus optimal in some sense. Our separation proof automatically
adapts to the complexity of the relative placement of the polygons, and its size will vary between
O(k) (when the polygons are far from each other) and O(n) (when they are closely intertwined).
A compact separation proof is important when objects are allowed to change their motion plan
unpredictably.

Traditionally collision detection has been divided into two phases: the broad phase, in which
one uses a simple-minded algorithm (typically a bounding box check) to determine which pairs of
objects might collide and thus need further testing, and the narrow phase, in which these candidate
pairs get a more detailed collision test using a sophisticated algorithm. Note that our approach
based on deformable free space tilings completely obviates this distinction. The tiling effectively
‘hides’ features of objects that are far away and treats the objects as equivalent to their convex
hulls. As the objects get closer and more intertwined, their features get progressively revealed and
participate in collision checks. Furthermore our framework can be extended in a straightforward
way to deformable objects, a setting that no previous collision detection method had successfully
addressed. Though this paper describes how to implement the deformable tiling idea only in 2D,
we are hopeful that 3D extensions will also be possible.

2 Pseudo-Triangulations and their Certification

In this section we define pseudo-triangulations and discuss how we maintain them as objects move
or deform continuously. Due to lack of space, we do not elaborate on the kinds of motions and
deformations allowed. The two key properties that we need for our methods to work are that

• for each certificate or condition in the kinetic proof, we must be able to predict when it will
fail next; we assume that our knowledge of the polygon motions allows us to compute the
time of such an event at O(1) cost.

• for our analyses we need the property that the polygon motions are such that any particular
certificate can fail at most a constant number of times; motions satisfying this constraint are
called pseudo-algebraic.

2.1 Pseudo-triangles

A pseudo-triangle in the plane is a simple polygon whose boundary consists of three concave chains,
called side chains, that join at their endpoints. The three endpoints of a pseudo-triangle are called
corners. The edges incident upon the corners are called corner edges (Figure 1 (i)). For a vertex
p on the boundary of a pseudo triangle, we denote pL, pR be the predecessor and the successor of
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(i) (ii)

Figure 1. (i) The examples of some pseudo-triangles and non-pseudo-triangles. The corner vertices are shown in the
pseudo-triangles. (ii) An example of pseudo triangulation of a polygon with holes. The dotted edges are the diagonal
edges.

p along ∂∆ in the counterclockwise direction. Let S be a polygon with holes; some of the holes
may be degenerate, i.e., they can be points or segments. A pseudo-triangulation T (S) of S is a
planar subdivision of the closure of S, so that each face of T (S) is a pseudo-triangle and so that
the interior of each face lies in the interior of S; see Figure 1 (ii) for an example. In other words,
T (S) is a collection of pseudo-triangles with pairwise-disjoint interiors, each lying inside S, that
cover S. The vertices of T (S) are the same as the vertices of S, and each edge of T (S) is either an
edge of ∂S or a segment whose interior lies inside S; edges of the latter type are called diagonals.

We are interested in maintaining the pseudo-triangulation of F(P), which, for brevity, we denote
by T (P).

Since a polygon (even with degenerate holes) can always be triangulated and a triangulated
planar subdivision is obviously a pseudo-triangulation, a pseudo-triangulation of S always exists. A
pseudo-triangulation T is called minimal if the union of any two faces in T is not a pseudo-triangle.
If T is not minimal, then there exists a diagonal d in T so that T remains a pseudo-triangulation
after the removal of d from it. Although minimal pseudo-triangulations are not unique, we can
prove the following result on the size of minimal pseudo-triangulations of F(P).

Lemma 2.1. Let P be a set of k simple pairwise-disjoint polygons as defined above. Suppose m
of these polygons are not points, and suppose there are a total of r reflex vertices1 in P. Then
there are k +m+ r − 2 pseudo-triangles in any minimal pseudo-triangulation of F(P).

2.2 Maintaining a pseudo-triangulation

We are interested in maintaining T (P), as F(P) deforms continuously. Specifically, we want to
maintain T (P) as a kinetic data structure. As mentioned in the introduction, this is accomplished
by maintaining a proof of the correctness of T (P), which consists of a small set of elementary
conditions called certificates. As long as the certificates remain valid, the current combinatorial
structure of T (P) is valid. T (P) is updated only when some certificate fails. A certificate failure
is called an event. All the events are placed in an event queue according to their failure time. The
structure is then maintained by processing those events one by one. The efficiency of such a data
structure depends on the size of the proof, the number of events, and the number of certificates
that need to be updated at each event.

In our set-up, we certify that each face in T (P) is a pseudo-triangle and that the faces cover
F(P). It turns out that the latter claim does not have to be explicitly checked, assuming it was

1For polygonal lines, all the interior vertices are assumed to be reflex vertices while the end vertices are not. A
single point is always assumed non-reflex.
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Figure 2. The certificates and updates for pseudo triangulation. (i) The reflex and corner certificates; (ii) the update
for a reflex certificate failure; (iii) the update for a corner certificate failure.

true at the beginning of time. Thus we need to certify only the following two conditions for each
pseudo-triangle ∆ in T (P):

1. Each side chain C is concave, i.e. for each interior vertex p of C, the angle
�
pLppR > π (or

the signed area of 4pLppR is negative). We call these certificates reflex certificates.

2. The side chains of a pseudo-triangle ∆ join only at their endpoints, i.e. for each corner vertex
q of ∆, the angle

�
qLqqR < π (or the signed area of 4qLqqR is positive). We call such

certificates corner certificates.

When the reflex certificate of p fails, we connect the vertices adjacent to p, say p1, p2, to maintain
the pseudo-triangularity of ∆. To maintain the pseudo-triangulation, we may also have to update
other pseudo-triangles, depending on the edges adjacent to p. If both edges adjacent to p are
boundary edges, then we add a triangle pp1p2 to T (P). If only one edge, say pp1, is a diagonal
edge, then pp1 must be on another pseudo-triangle ∆1. In this case, we delete the edge pp1 and
merge the triangle pp1p2 into the pseudo-triangle ∆1. If both pp1, pp2 are diagonal edges, we then
delete one of pp1 or pp2: which edge is deleted depends on the specific pseudo-triangulation we are
maintaining; we will explain the choice for each pseudo-triangulation later in the paper.

When the corner certificate of q fails, we collapse the corner. Suppose that the vertices adjacent
to q are q1, q2 and when the concave certificate corresponding to q fails, q2 lies on the edge qq1. We
then delete the edge qq1 and add the edge q1q2 to maintain the pseudo-triangularity of ∆. This
process also effectively adds the point q2 to the side chain of the other pseudo-triangle incident
to the edge qq1. Since there is only one way to update the pseudo-triangulation when a corner
certificate fails, we will not describe updates for this case in the following sections.

In addition, we also have to maintain the boundary ∂F(P). ∂F(P) \ ∂P is automatically
maintained by the algorithm. By regarding ∂P as a concave chain with respect to the exterior
of P, it can also be maintained using reflex certificates for each vertex on the hull. We omit the
details.

Since the pseudo-triangulation is not a canonical structure (there may be many pseudo trian-
gulations of F(P)), it is not clear which pseudo-triangulation we are maintaining. To avoid this
ambiguity, we first describe a static algorithm that constructs a “specific” pseudo-triangulation
of F(P). We then assume that, at any time t, the kinetic data structure maintains the pseudo-
triangulation that the static algorithm would have constructed on P(t). This way, the structure is
canonical, and it is more convenient for the analysis. Such approach has been taken in maintaining
other structures, for example, the binary space partitioning structure in [1].

To maintain this invariant, we need additional certificates. When these certificates fail, we
usually update the structure by the flipping operation: For any diagonal edge e, consider the two
pseudo-triangles ∆1,∆2 that contain e. The union of ∆1,∆2 forms a pseudo-quadrangle � —a cell
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Figure 3. The incremental pseudo-triangulation of a point set. In (i), the sweep line has just passed p; (ii) shows
the final pseudo-triangulation.

whose boundary consists of four concave chains. Besides e, there is exactly one other diagonal
edge inside � , which is called the shadow edge of e. The quadrangle � can be decomposed into
two pseudo-triangles in two ways, one by adding e and the other by adding e’s shadow edge. The
flipping operation replaces e by e′.

3 Pseudo-Triangulation for Points

In this section, we assume P to be a set of n points. we define the incremental pseudo-triangulation
for P, and show how to maintain it efficiently. We also show it can be refined to maintain a
triangulation of P.

3.1 Incremental pseudo-triangulation

The pseudo-triangulation for points is built in an incremental manner as follows. We first sort the
points in increasing order of their x-coordinates. Suppose that p1, p2, . . . , pn is the sorted sequence.
We then place a vertical line at p1 and sweep it from left to right to build the pseudo-triangulation
incrementally. When the sweep line passes the point pk, we draw two tangent segments from pk
to the convex hull of Pk−1. Denote by u(pk) and d(pk) the left endpoints of the upper and lower
tangent segments to Pk−1 from pk, respectively (Figure 3). The concave chain on Pk−1 between
u(pk) and d(pk) and line segments pku(pk), pkd(pk) form a pseudo-triangle ∆(pk) — its boundary
consists of a concave chain and two single edges. Let C(pk) denote the concave chain on ∆(pk).
The three corners of ∆(pk) are the points pk, d(pk), and u(pk). After processing every point in P,
we obtain a pseudo-triangulation, which is called the incremental pseudo-triangulation (IPT) of P.

3.2 Maintaining the incremental pseudo-triangulation

As the points move, IPT (P) changes continuously, but its combinatorial structure changes only
at discrete times.

Lemma 3.1. As long the x-ordering of the points in P does not change, the reflex and corner
certificates certify the incremental pseudo-triangulations.

In view of this lemma, as long as the x-ordering does not change, we have to update IPT (P) only
when a reflex or corner certificate fails. When a corner event fails, the structure can be updated
as described in Section 2.2. When a reflex certificate fails, we have two choices as which edge to
delete — such choice is not difficult, and we omit the details in this abstract.
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Figure 4. (i) Two points exchange in x-order. (ii) Fan triangulation of IPT (P).

Next, we consider the case in which two points exchange in x-order. Although such an event
does not affect the validity of the pseudo-triangulation, it does cause a change to IPT (P) since
the incremental ordering of the points changes. Suppose that p passes q from the left at time t
and p is above q (Figure 4). Let r be d(p) just before time t, and let r ′ be u(q) immediately after
time t. Then the structure is updated by switching the edge rp with the edge r ′q — a flipping
operation defined in Section 2.2. The point r′ can be found by computing a tangent segment from
q to the concave chain between u(p) and d(q), which can be done in O(log n) time. Notice that
in this description, each event changes IPT (P). Thus, the method is output-sensitive. We have
shown that

Theorem 3.2. The incremental pseudo-triangulation can be maintained in an output-sensitive
manner. Each update of the structure takes O(log n) time.

In the following, we shall bound the number of changes to IPT (P) for points in constant degree
algebraic motion.

3.3 Combinatorial changes to IPT (P)

We now obtain an upper bound on the number of combinatorial changes to IPT (P), i.e., the number
of events, under the assumption that the degree of motion of P is fixed. We define a function φqp(t)
for two distinct points p, q ∈ P: if at time t, q is to the left of p, then φqp(t) is the slope of the
line that passes through p and q; otherwise, φqp(t) is undefined. Since the motion has constant
degree, the x-order of a pair of points can switch only a constant number of times. Thus, each
φqp(t) consists of a constant number of arcs, all of which are portions of a fixed-degree polynomial.
Consider the family of functions Φp = {φqp | p 6= q ∈ P}. By our assumptions any two arcs in Φp

intersect a constant number of times, say, s − 2. For a point q to be d(p) at time t, φqp(t) must
have the largest value among all the points in P. This is to say, the number of changes to d(p) is
the same as the combinatorial complexity of the upper envelope of Φp, which is bounded by λs(n)
(λs(n) is the maximum length of an (n, s) Davenport-Schinzel sequence and is roughly linear.).
Similarly, we can bound the number of changes to u(p) by λs(n). Summing over all the vertices in
P, we thus have

Theorem 3.3. When the points of P move algebraically with constant degree, IPT (P) changes
O(nλs(n)) times, where s is a constant that depends on the degree of the motion.

3.4 Triangulation of P
It is very easy to obtain a triangulation of P from IPT (P) by connecting each point p to every
interior point on C(p), thereby creating a fan inside each ∆(p). We call such a triangulation a fan
triangulation. Although IPT (P) changes only nearly quadratically many times, we are not able
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Figure 5. (i) Intersecting and non-intersecting tangents: s1, s2 are intersecting, but s1, s3 and s2, s3 are non-
intersecting tangents. (ii) Greedy vertical pseudo-triangulation. (iii) Left-to-right property. The solid segment is an
edge in GVPT . The dotted ones are the free tangents it crosses.

to prove a similar bound on the number of changes in the fan triangulation. The problem comes
from the x-ordering event, which we process by switching a fan of p to a fan of q, or vice versa
(Figure 4 (ii)). Using the previous notation, the cost of such switching is proportional to the length
of the chain between r and r′. In the worst case, it might be Θ(n). This would give us a näıve
bound of O(n3) on the number of changes to the fan triangulation.

For linear motion, we obtain a better upper bound on the number of changes to the fan trian-
gulation by a global argument. We omit the proof from this abstract.

Theorem 3.4. For points in linear motion, the number of changes to the fan triangulation is
bounded by O(n4/3λs(n)), where s is a constant.

The obvious open problems are whether it is possible to extend this result to algebraic motions
and whether the bound is tight.

4 Pseudo-Triangulation for Convex Polygons

Next we consider the case in which P is a set of k convex polygons with a total of n vertices. We
describe a different pseudo-triangulation for P, called the greedy vertical pseudo-triangulation, which
is based on a result by Pocchiola and Vegter [10]. They introduced greedy pseudo-triangulation as a
tool to compute the visibility complex of a set of convex polygons. We will modify their algorithm
for our application

4.1 Greedy pseudo-triangulation for convex polygons

There are exactly four bi-tangent segments between any two disjoint convex polygons. A bi-tangent
is called free if it does not intersect the interior of any object in P. Let s and s′ be two free bi-
tangents with a common endpoint v, which is a vertex of a polygon P ∈ P. We say that s and s′

cross at v if P lies in the wedge of angle greater than π formed by s and s′; see Figure 5.2 We say
that two free bi-tangents intersect either if they share an interior point or if they have a common
endpoint and they cross at that endpoint. For any linear ordering ≺ on the free tangents, we can
build a corresponding greedy triangulation T≺(P) as follows. We first sort the tangents by ≺
ordering. We then scan through this list and maintain a set S of tangents that we have added to
the pseudo-triangulation so far. At each step, we pick the next tangent segment s in the sorted
sequence and check whether it intersects any tangents in S. If s does not intersect any segment of

2Intuitively, if we smooth the polygon P by taking the Minkowski sum of P with a disk of a sufficiently small
radius, say δ, and we translate s and s′ by at most δ so that they become tangents to the resulting polygons at their
endpoints, then s and s′ cross at v if and only if the translated copies of s and s′ intersect.
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S, we add it to S; otherwise, we discard s. After processing all the segments, we obtain a set of
non-intersecting free tangents. It is shown in [10] that |S| = 3k − 3, and that together with the
object boundaries, S forms a pseudo-triangulation of F(P) consisting of 2k − 2 pseudo-triangles.
By Lemma 2.1, this procedure constructs a minimal pseudo-triangulation.

For any line segment s, define θ(s) to be the minimum positive angle by which we have to rotate
a vertical segment in the clockwise direction so that it becomes parallel to s. We order all the free
tangents in increasing order of θ(·). The greedy pseudo-triangulation created using this ordering
is called the greedy vertical pseudo-triangulation (GVPT ) and is denoted by G(P) (Figure 5 (ii)).
It is shown in [10] that G(P) can be constructed in O(k log n) time, provided that each polygon is
represented as an array storing its vertices in a clockwise (or counterclockwise) order.

The following local rule determines whether a free bi-tangent is in G(P).

Lemma 4.1 (Left-to-right property). A bi-tangent segment s is in G(P) if and only if θ(s) <
θ(s′) for each free bi-tangent s′ intersected by s (Figure 5 (iii)).

Recall that if we replace an edge in a pseudo-triangulation with its shadow edge, we still obtain
a pseudo-triangulation. It turns out that in G(P) the shadow edge of an edge s is minimal in the
ordering ≺ among all free bi-tangents crossing s. This implies the following property:

Lemma 4.2 (Local property). Suppose that s is an edge in T≺(P). Denote by ≺′ the same
ordering as ≺ except assigning s as the maximum element of ≺′. Then T≺′(P) can be obtained
from T≺(P) by replacing s with its shadow edge.

By this lemma, if the ordering of an edge changes, we just perform a local flip operation to fix
the greedy pseudo-triangulation.

4.2 Maintaining the greedy pseudo-triangulation

We now describe how to maintain G(P) as a KDS so that it can be updated efficiently as the polygons
in P move or deform. As described in Section 2.2, we maintain corner and reflex certificates for
each pseudo-triangle in G(P). In addition, for each diagonal edge s of G(P), we maintain a diagonal
certificate to certify that θ(s) < θ(s′), where s′ is the shadow edge of s in G(P). This adds the
requirement to maintain the shadow edges although such edges do not appear in G(P). Again, the
shadow edges can be maintained in the same manner by corner and reflex certificates. We will
show that these certificates are sufficient to maintain G(P).

As in Section 3, we can prove the following analogue to Lemma 3.1. The proof is omitted from
this version.

Lemma 4.3. If no diagonal certificate fails, then G(P) changes only when one of the corner or
reflex certificates fails.

When a corner or reflex certificate fails, we can update G(P) as described in Section 2.2, except
for one subtle issue in the case of reflex certificates. When an interior vertex p of a side chain
. . . pLppR . . . ceases to be a reflex vertex, we add the edge pLpR and we have to delete one of the
edges pLp and ppR. Instead of deleting one of them arbitrarily, we delete pLp if θ(pLp) > θ(ppR);
see Figure 6.

Next, we consider diagonal certificates. If the certificate of a diagonal edge s fails, then either s or
its shadow edge is vertical. When such an event happens, the slope ordering of an edge jumps from
the minimum to maximum, or vice versa. By the local property of greedy pseudo-triangulations,
we can simply perform a flipping operation to s to maintain G(P).
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Since G(P) has O(k) diagonals and pseudo-triangles, the number of corner and diagonal cer-
tificates is O(k). We assume that the polygons remain convex at all times, therefore it suffices
to maintain reflex certificates for a vertex only if it is adjacent to a diagonal edge, i.e., a free
bi-tangent. The number of such vertices is also O(k). Hence, we obtain the following:

Theorem 4.4. G(P) can be maintained by using a structure with O(k) certificates. Each event
can be processed in time O(log n).

This data structure works even if the polygons deform continuously over time, as long as they
remain convex at all times. What matters is the number of events. The rigid motion can give us
better bounds as stated in Theorem 4.6.

4.3 Combinatorial changes to G(P)

Next, we bound the number of changes to G(P) if the degree of motion of P is fixed. It can be
shown that a corner or reflex certificate fails when three polygons of P become collinear, i.e., a
line is tangent to three polygons. Hence, a combinatorial change in G(P) happens only when three
polygons of P are collinear or when a bi-tangent becomes vertical. The number of such events can
be bounded by the following lemma.

Lemma 4.5. Suppose that P1, P2, P3 are convex polygons with n1, n2, n3 vertices, respectively,
and the degree of their motion is constant. They can become collinear O(n1 + n2 + n3) and
O(n1n2 + n1n3 + n2n3) times for translational and rigid motions, respectively. The bi-tangent
between P1, P2 can become vertical O(1) and O(n1 +n2) times for translational and rigid motions,
respectively.

Applying this lemma to all triplets of P, we obtain the following weak upper bounds on the
number of changes to G(P).

Theorem 4.6. Let P be a set of k polygons with a total of n vertices. G(P) changes O(kn2) times
if the degree of motion of P is fixed. If the motion is translational, the number of changes is only
O(k2n). If the polygons may deform, the number of changes is bounded by O(n3).

5 Pseudo-Triangulation for Simple Polygons

In this section, we consider the case in which P is a set of k pairwise-disjoint simple polygons with
a total of n vertices. We will describe a method for maintaining a pseudo-triangulation of P by
combining our algorithm for convex polygons with the algorithm by Basch et al. [2] for two simple
polygons.
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(i) (ii)

Figure 7. The mixed pseudo-triangulation. (i) F1(P) and F2(P) are shaded differently. (ii) Mixed pseudo-
triangulation; thick edges denote the boundary between F1(P) and F2(P).

5.1 The mixed pseudo-triangulation

For each P ∈ P, define the relative geodesic cycle C(P ) of P to be the shortest cycle in F(P) with
the same homotopy type as ∂P . The region enclosed by C(P ) is called the relative convex hull and is
denoted by P . We decompose F(P) into two parts F1(P) = F(P)∩(

⋃
P ) and F2(P) = F(P)\⋃ P .

We compute pseudo-triangulations T (F1(P)) and T (F2(P)) separately. These two triangulations
together give the mixed pseudo-triangulation of P.

First, we consider F1(P). Since the interiors of all the relative convex hulls are pairwise disjoint,
we can compute a pseudo-triangulation of each of them separately. We triangulate each P as in
[2]. Following [2], we define the pinned relative geodesic cycle of P , with respect to a pinning
point set B (a subset of the vertices of P ), to be the shortest cycle in F(P) that passes through
the vertices in B and has the same homotopy type as ∂P . The pinned relative convex hull of P
with respect to B is the region enclosed by the pinned relative geodesic cycle. If B contains all
the vertices of P , the pinned relative convex hull of P is P itself. Consider a balanced binary
tree T (P ) with the vertices of P as leaves, in the order they appear on ∂P ; each internal node
stores the vertex from its left child. We can then build log |P | pinned relative geodesic cycles,
where the pinning set of each cycle is the set of vertices on the same level of T (P ). By overlaying
these layers, we can obtain a pseudo-triangulation of P \ P . This pseudo-triangulation is called
the external relative geodesic triangulation. Refer to [2] for the maintenance and bounds on the
number of changes of this structure. Now, we consider F2(P). In the following, we generalize the
greedy pseudo-triangulation, defined in Section 4, to a connected polygonal subdivision. Consider
a connected polygonal region F . A vertex v of F is called a corner vertex if the interior angle at
v is less than 180◦; otherwise, v is called a reflex vertex. For a point p on ∂F , a line segment pq
in F is called tangent to ∂F at p if p is a corner vertex or the line passing through p, q locally
supports ∂F at p. (The intuition behind the definition of “tangent” for corner vertices comes from
the case in which a corner is formed by two separate convex objects whose boundaries touch. Then
a “tangent” segment to the corner is indeed tangent to one of the two convex objects.) For two
vertices p, q on ∂F , the line segment pq is called a free bi-tangent if pq lies in F and is tangent to
∂F at both p and q. We now construct the greedy vertical pseudo-triangulation of F , as described
in Section 4. It can be shown that the algorithm constructs a minimal pseudo-triangulation of F .
The following lemma bounds the number of pseudo-triangles in such a pseudo-triangulation.

Lemma 5.1. If ∂F consists of k connected components and m corner vertices, the number of
pseudo-triangles in the greedy pseudo triangulation of F is O(k +m).

The relative geodesic triangulation T (F1(P) and greedy pseudo-triangulation T (F2(P)) to-
gether form a pseudo-triangulation of F(P), which we call the mixed pseudo-triangulation (Fig-
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ure 7). Next, we bound the size of the mixed pseudo-triangulation.
We call a diagonal edge of the mixed pseudo-triangulation a bridge edge if it connects two

different polygons of P. As we will see later, bridge edges play an important role in maintenance
of the pseudo-triangulation.

Lemma 5.2. ∂F2(P) consists of O(k) connected components and O(k) bridge edges and corner
vertices.

Lemmas 5.1 and 5.2 imply the following.

Corollary 5.3. The greedy triangulation T (F2(P)) of F2(P) has O(k) pseudo-triangles.

Next, we bound the size of T (F1(P)). We will focus on the bridge edges in F1(P). Basch et al. [2]
have shown that any line segment lying inside F(P) crosses O(log n) bridge edges, and thus the
number of bridge edges is O(τ log n), where τ is the size of the min-link separator between two
simple polygons. Here, we generalize their result to our setup by arguing that any free line segment
can cross at most two relative convex hulls.

Lemma 5.4. Any free line segment crosses O(log n) bridge edges of T (F1(P)).

A minimum link subdivision is a polygonal subdivision of the plane, using as few (line segment)
edges as possible, such that each P ∈ P is contained in its own face of the subdivision. A minimum
link separator for a polygon P ∈ P is a simple polygon homotopic to ∂P with as few edges as
possible.

Consider any Jordan cycle C in F(P) that is homotopic to ∂P . Clearly, C must intersect all
the bridge edges incident to P because C separates P from other objects in P. Suppose that C
consists of τ line segments. Since each line segment on C crosses at most O(log n) bridge edges
connected to P and each bridge edge is crossed at least once, we can conclude that the number of
bridge edges incident to P is bounded by O(τ log n). Therefore, we have the following result on the
number of bridge edges.

Lemma 5.5. The number of bridge edges in T (F1(P)) is bounded by O(κ log n), where κ is the
number of edges in a minimum link subdivision of P. For each polygon P in P, the number of
bridge edges connected to P is bounded by O(τ(P ) log n), where τ(P ) is the number of edges in a
minimum link separator of P .

Thus, we obtain the following bounds on the size of the mixed pseudo triangulation by combining
Corollary 5.3 and Lemma 5.5.

Theorem 5.6. The size of the mixed pseudo-triangulation is O(n), and among all the diagonal
edges, only O(κ log n) edges are bridge edges, where κ is the number of edges in a minimum link
subdivision of P.

5.2 Maintaining the mixed pseudo-triangulation

As shown in [2], the external relative geodesic triangulation can be maintained by corner and reflex
certificates only, and there are local rules to decide which edge to select when a reflex certificate fails.
Therefore, the mixed triangulation can be easily maintained, although it comprises two completely
different structures. As argued before, the number of certificates in the certification structure of
T (P) is proportional to the number of bridge edges in T (P). According to Lemmas 5.2 and 5.5,
we may bound the certificates for certifying T (P) as follows.
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Theorem 5.7. The number of certificates in T (P) is bounded by O(κ log n), where κ is the number
of edges in the minimum link subdivision of P. For each polygon P in P, the number of certificates
involving P is bounded by O(τ(P ) log n+ k), where τ(P ) is the number of edges in the minimum
link separator of P .

A trivial bound on the number of changes to the mixed pseudo-triangulation for polygons in
rigid motion is O(n3), which is the number of times when three vertices become collinear.

6 Conclusions

We have shown how to efficiently maintain pseudo-triangulations of the free space for points, convex,
and simple polygons moving around in the plane. In addition to collision detection, the pseudo-
triangulation structure provides a simple way for walking around the free space and performing
operations such as ray shooting and other visibility queries. Unlike any previous collision detection
method, our deforming tilings can be adapted to work for deformable objects, thus enabling new
applications where simulation of flexible shapes is important. An extension of our ideas to 3D
presents the next obvious challenge.
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