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Complete

There are, strictly speaking, no full generalizations of the Aubry-Mather Theorem in higher dimensions:
we will see in this chapter examples of fiber convex Lagrangian systems whose set of minimizers achieves
only very few rotation directions. However some attempts of generalizations in higher dimensions are quite
successful in what they try to achieve. In Section 47, we survey some results by de la Llave and his collaborators.
Their setting is explicitly non dynamical but generalizes naturally the Frenkel-Kontorova model to functions
on lattices of any dimension. They are entirely successful in proving an Aubry-Mather type theorem in this
setting, as well as in some PDE cases. In Section 48, we review the work MacKay & Meiss (1992) who
construct higher dimensional analogs of Aubry-Mather sets in symplectic twist maps that are close to the anti-
integrable limit: one where the potential term in the generating function of a standard type map dominates.
In Section 49, we survey the work of Mather on minimal measures in convex Lagrangian systems. This is
the closest to a generalization of the Aubry-Mather theory as one can get in the setting of general convex
Lagrangian systems (as well as symplectic twist maps ). We start in Subsection A with an introduction to such
minimizers and their relation to hyperbolic orbits. In Subsection B we give a quick review of some notions of
ergodic theory that are needed in Subsection C, where we introduce minimal measures in Lagrangian systems.
Subsection D explores, through examples, the intrinsic limitations of this theory. Section 50 shows that some

of these limitations can be alleviated if one considers systems on cotangent bundles of hyperbolic manifolds.

47.* Aubry-Mather Theory for Functions on Lattices and PDE’s.
A*. Functions on Lattices

Remember from Chapter 1 that the Frenkel-Kontorova model describes configurations of interacting particles
in a periodic potential. For simplicity, these configurations are assumed to be one dimensional, and the
interactions only involve nearest neighbors. The resulting energy function is the familiar:

W(z) = %;m ~o)? = Vi
where the potential function V' has period 1. W coincides with the energy function for the standard map with
generating function S(z, X) = (X — )2 — V(). The variational equation VIV = 0 for this energy function

is
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(—A:c)k — V’(l‘k) =0

where A(x), = 22k — 21 — 41 is the discretized Laplacian. Note that the configuration x can be seen as
afunction Z — IR which to the integer £ makes correspond the real zj. One obtains (see Koch & al. (1994) ,
Candel & de la Llave (1997) , de la Llave (1999)) a natural generalization of this model, relevant to Statistical
Mechanics, by asking that « : Z" — TR be a function on a lattice of dimension d. We assume nearest neighbor

interaction here. The energy becomes:

W(z) = 1 Z (zg — :cj)z — Z V(zg).

2
{(kg)€Z?| |k—jl=1} kez?

Again V is of period 1 and the corresponding variational equation is still of the form:
(47.1) (—Az), = V'(zx) =0

where (Ax), = ;1 ¥; — 2dzy is the d-dimensional discrete Laplacian. In fact, the theory in Candel
& de la Llave (1997) applies to substantially more general settings, where & can belong to a set A on which
a certain type of groups acts in a mildly prescribed way, and where the interactions involves not just nearest
neighbors, but all possible pairs of particles (with some decay condition at infinity).

Remember that the solutions « : Z — IR found by Aubry and Mather for the Frenkel-Kontorova model are
such that |z, — kw| < co. One way to express this is by saying that the graph of « : Z — TR is at bounded
distance from a line of slope w in IR x IR.. Likewise, the following generalization of the Aubry-Mather Theorem

finds configurations whose graphs are at bounded distances from planes of “slopes” w € R%:

Theorem 47.1 (de la Llave et. al.) For every w € IR,d, there exists a solution of (47.1) such that

sup |z —w - k| < oo.
kezd

The method of proof is very similar to the proof of the Aubry-Mather Theorem presented in GCchapter.
One considers the analog of CO sequences, called Birkhoff configurations by these authors. In complete

analogy to the CO sequences, they satisfy:
Tprj+ 1> a2k, VE€ZY or mpyy + 1< ay, Yk e Z
The analog to the set of CO sequences of rotation number w, which we denoted by C'O,, in GCchapter is:
B, ={x | « is Birkhoff and sup |z; — k- w| < 00}
kez?

In a way analogous to the proof of Theorem 15.1, one shows that the gradient flow of W (that these authors,
justifiably, call the heat flow) preserves order among configurations and is suitably periodic, so that the set
B,, is invariant under the flow. The same argument as in the proof of Theorem 15.1 is then used to show that
W must have a critical point inside B,,. So, as in the classical Aubry-Mather Theorem, one not only finds

solutions that have asymptotic slope w, but these solutions have strong order properties, expressed here in

terms of nonintersection: they are Birkhoff.
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B*. PDE’s

As Equation (47.1) suggests, the above theory smells of discretized PDE’s. It is therefore not too surprising
that the same kind of methods can be applied to certain PDE problems. The main ingredients necessary are
some translation invariance and a heat flow that satisfies a comparison principle © > v = ¢'u > ¢'v,
which occurs in parabolic PDE’s. The method can be applied (see de la Llave (1999)) to the following PDE
situations, to obtain solutions whose graphs are at bounded distance from planes with prescribed slopes, and

have nonintersection properties:
(47.2) Au+V'(z,u) =0

where V(z +e,u+¢) = V(z,u)Vz e RLuecR,ec Z* (€ Z.

k
(47.3) S L+ V/(2,u) =0
i=1
where L; are Z* periodic vector fields satisfying Hormander’s hypoellipticity conditions and V' is as in the

previous case.

(47.4) (—2A)Y2u + V' (z,u) =0

with V as above. de la Llave (1999) also looks at the following PDE:

Ou = ug — Uggy = —V(u) + f(z,t)
(47.5)
u(z+1,t) =u(z,t+T) = u(x,t)

where the function f also has the periodicity:
(47.6) flz+1,t) = f(z,t+T) = f(z,t).

We say that the real number 7' is of constant type if its continued fraction expansion is bounded. For instance,

noble numbers are of constant type.

Theorem 47.2 (de la Llave) Let 1" be a number of constant type, let f € L? satisfy (47.6) and let
V:IR — IR satisfy

(i) 0 < a < V' < B where o is any positive number and 8 only depends on T (in an explicit manner)
(ii) V" (2)] < K

Then there exists a weak solution v € L? to Equation (47.5) . Moreover, if f € H" and V € C"2
has small enough C"™*2 norm, then there is a solution uw € H" of (47.5) which is unique in a ball in

H" around the origin.

The method of proof is different from that of the above PDE’s, but still involves a variational approach.
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48.* Monotone Recurrence Relations

Angenent (1990) proposes a generalization of twist maps of the annulus to maps of $* x IR™Y which are defined

by solving a recurrence relation:
(49.1) Ak iy pm) =0

which generalizes 025 (i1, zk) + 01.5(zk, Tx+1) = 0 in twist maps, where k = [ = 1. The function A is
required to satisfy the conditions:

a) monotonicity A(x_y,...,T4y) is a non decreasing function of all the xj, except possibly for £ = 0.
Moreover, it is strictly increasing in the variables x_; and z,,.

b) periodicity A(Tp_iy. .., Thim) = A(Tp—y + 1, ..., Tprm + 1)

¢) coerciveness limy, 100 A(T_py. .. Tm) =limg, 100 A(T_1y. .., Tm) = £00

Under these conditions, Angenent calls (49.1) a monotone recurrence relation. Conditions a) and c)
imply that one can solve for x,, in terms of a given (xk_y,...,Zk1m—1). Hence this defines a map
Fa:(zp—ty- o Zhtm—1) — (Thit1, - Thym) from IR™™ to itself. Condition b) implies that this maps
descends to amap on $' x IR""™ !, Hence the NV above is N = [ +m — 1.

The notion of CO configurations, rotation number and partial order on sequences etc... of Chapter AM
and GCchapter are still entirely valid here, since the variables zj, are 1 dimensional (Angenent also calls CO
sequences Birkhoff). Aninteresting notion that Angenent (1990) introduces, inspired by PDE methods, is that of
sub— or supersolution of the monotone recurrence relation (49.1) : & is a subsolution if Az, ..., 2y ,,) <
0, Yk € Z and a supersolution if A(x)_;,... 2, .) >0, Vk € Z.

Theorem 49.1 (Angenent) Let x, T be sub— and supersolutions respectively, which are ordered: x < .

Then there is at least one solution of (49.1) , say x, for which x < x < T holds.

Using this theorem (whose proof is simple), Angenent (1990) is able to generalize a theorem of Hall (1984),
itself a generalization of the Aubry-Mather theorem: if a twist map of the annulus, which is not necessarily
area preserving, has a (m, n)-periodic orbit, then it must have a CO (m, n)-periodic orbit. If the map is also
area preserving, this implies, taking limits, the existence of CO orbits of all rotation numbers. Analogously,
Angenent proves that if there is an orbit of F'4 with rotation number w € IR, then F A must also have a CO
orbit of rotation number w.

Suppose that two solutions « and w of (49.1) “exchange rotation numbers” in the sense that:

lim 2p/k>w; > lim wg/k
n—-+oo n——oo

and
lim wi/k<wo < lim xi/k
n—-+00 n——0o0

holds for some wy < w;. Then Angenent proves that there must be CO orbits of any rotation number
w € [wg,w1]. Moreover this exchange of rotation numbers condition implies chaos: the topological entropy
hiop(Fa) > 0,in that there is a compact invariant set semi conjugate to a Bernouilli shift. This also generalizes
shadowing results of Hall (1989) and Mather (1991a). Angenent proves a few other interesting results for the

map Fa.



49. Anti Integrable Limit 147

49.* Anti-Integrable Limit

MacKay & Meiss (1992) explore the existence of Aubry-Mather sets (as well as many other possible config-
urations) close to the anti-integrable limit, where the potential of a standard like map becomes all powerful.

Consider a family F. of symplectic twist maps of 7*T"™ given by the generating functions:

S(q:Q) =€T'(q,Q) +V(q)

where, for simplicity, we can assume )
T(qa Q) = §<Q - q)27

although many more general 7"s can be considered. As usual, orbits of F, correspond to solutions of

(49.2) 028(qp_1,qy) + 1 Sc(qy, q1) = 0.

Even though Fj is not defined, it is perfectly acceptable to set ¢ = 0 in Formula (49.2) . This is called the
anti-integrable limit , a notion that seems to have appeared independently in Aubry & Abramovici (1990) and
Tangerman & Veerman (1991). The force of this concept is that the solutions of (49.2) at e = 0 are perfectly
understood: they are simply allocations of g, to one of the critical points of V: (49.2) is just dV (g;,) = 0 when
e = 0.If V is a Morse function, it has finitely many critical points modulo Z" and they are all nondegenerate.

This has the following consequence:

Theorem 49.2 (MacKay-Meiss) Any solution q(0) of (49.2) for e =0 continues to a solution q(€)

when € is small.

Proof. Rewrite the infinite system of equations (49.2) in the form
G(e,q) =0

where G : IR x X — (IR")% is given by G(¢, q) = 025:(qj,_1, ;) + 015¢(qy, 411 ) and X is the Banach
space of sequences such that supy, ||g;, — ¢;(0)|| < oc. The Implicit Function Theorem on Banach spaces
(see Lang (1983) ) applies here to find, for small ¢, a g(€) such that G(e, g(¢)) = 0 as long as %(0, q(0)) is
invertible. But this is indeed the case since
e 0,000 = V" (a,(0)

so that %—2 (0, g(0)) is an infinite block diagonal matrix with the n x n diagonal blocks V"’ (g, (0)) all invertible
and uniformly bounded. Indeed these matrices are chosen among a finite set, since g, (0) is necessarily a critical
point of V', of which there are finitely many mod Z", by the assumption that V' is Morse. O
One can simultaneously continue compact sets of stationary solutions from the anti-integrable limit. Such sets
can be quite complicated, since the set of all stationary configurations of the anti-integrable limit can be seen
as a shift on as many symbols as there are critical points. In particular, one can find invariant Cantor sets for
F. One can also get orbits with all rotation vectors w € IR". To do so, consider the anti-integrable stationary

solution g(0) which is such that g, (0) is at some arbitrarily chosen critical point of V' and

44(0) = klw] + g¢(0),
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where [w] is the integer part of the vector w. Each g, (0) is thus on the same critical point as g (0), but translated
by the integer vector [w]. Since |g;,(0) — kw| < v/n, g(0) has rotation vector w. Now use Theorem 49.2 to
continue this to an orbit of F with rotation vector w. One can also continue simultaneously all anti—integrable
solutions as the above with rotation vectors in a compact set: they themselves form a compact set.

Even though this seems almost too easy, the anti-integrable limit is a very useful concept in order to understand
the spectrum of all possible dynamics of symplectic twist maps . It is fair to say that, to this date, the least

understood cases are those that are neither close to integrable nor to anti—integrable.
50.* Mather’s Theory of Minimal Measures

We now come to Mather’s theory of existence and regularity of minimizers. This theory is quite general: it
covers a wide class of convex Lagrangian systems on tangent bundles of arbitrary compact manifolds. Note
that similar, but less developed theories were created by Bangert (1989) in the setting of minimal geodesics
on compact manifolds and Katok (1992) in the setting of perturbations of integrable symplectic twist maps .
There is no doubt that Mather’s theory could be worked out for general symplectic twist maps . Even now, the
correspondences between Lagrangian systems and symplectic twist maps given in Chapter 6 (see in particular
the Bialy-Polterovitch suspension theorem 40.1) should allow an ample transfer of Mather’s results to the
symplectic twist maps case.

The lesson we get from Mather’s work is that, yes, minimizers in general manifolds behave very much
like those on the circle (the realm of the classical Aubry-Mather theory), in that they satisfy a graph property.
The bad news is that minimizers may be much scarcer than in the circle case: Hedlund (1932) had already
constructed a Riemannian metric on T (a setting encompassed by Mather’s) which is very small along 3 non
intersecting geodesics which generate H; (T3). All other minimizers of a certain length are then bound to
spend a good portion of their time close to these geodesics. In particular, these three geodesics are the only
possible recurrent minimizers. This limits the possible rotation vectors of minimizers to these three directions
only. Bangert (1989) (geodesic setting) and Mather (1991b) (Lagrangian setting) show that, in a precise sense,
this is the worst case scenario: there should be at least as many rotation directions represented by minimizers as
there are dimensions in H; (M, IR)). And, to end on an optimistic note, Levi (1997) construct, in this worst case
scenario of Hedlund’s example, “shadowing” locally minimizing orbits that spend any prescribed proportion
of time close to each of the minimizers. In particular, he constructs locally minimizing orbits of all rotation

vectors.

A*. Lagrangian Minimizers

Throughout this section and next, we consider time-periodic Lagrangian systems determined by a C?2-
Lagrangian function L : TM x $' — IR, where M is a compact manifold given a Riemannian metric

g. Remember (see Appendix 1 or SG and Chapter 6) that extremals of the action

b
A(y) = / L34, 1)t

satisfies the Euler-Lagrange equations % % — % = 0. Using local coordinates these equations yield a first

order time-periodic differential equation on 7'M , and thus in the standard way, a vector field on 7'M x $'. This
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can be viewed as the Hamiltonian vector field corresponding to the Lagrangian system, pulled back to 7'M by
the Legendre transformation. Since 7'M x $ is not compact it is possible that trajectories of this vector field
are not defined for all time in IR and thus do not fit together to give a global flow (¢.e. an IR-action). When
the flow does exist, it is called the Euler-Lagrange (or E-L) flow . The following quite general hypotheses are
the setting of Mather (1991b) .

Mather’s Hypotheses

LisaC? function L : TM x §' — 1R that satisfies:

(a) Convexity: g";& is positive definite.

(b) Completeness: The Euler-Lagrange flow determined by L exists.

(0) Superlinear: X1 — o0 when |[v]| — +oc.

Mather’s Hypotheses are satisfied by mechanical Lagrangians, i.e. those of the form
L2
L(?[?,’U,t): 5””“ *V(l‘,t),

where the norm is taken with respect to any Riemannian metric on the manifold. (In fact, one may allow the

norm to vary with time, under some conditions, see Man€ (1991) , page 44).

Minimizers. We know that, for twist maps, orbits on Aubry-Mather sets are minimizers in the sense of
Aubry. We have also seen in INVchapter that orbits on KAM tori are minimizers for symplectic twist maps .
These are natural reasons to look for minimizers in convex Lagrangian systems. Lagrangian minimizers are
defined in a way analogous to the discrete case. If Misa covering space of M (see Appendix 2 or TOPO), L
lifts to a real valued function (also called ) defined on TM x $*. A curve segment v : [a,b] — M is called
a M-minimizing segment or an M-minimizer if it minimizes the action among all absolutely continuous
curves (3 : [a,b] — M which have the same endpoints as v. A curve - : IR — M is also called a minimizer if
Via.s) is a minimizer for all [a, b] C IR. When the domain of definition of a curve is not explicitly given it is
assumed to be IR. In practice, the two main covering spaces that we will consider are the universal cover (in
next section) and the universal abelian cover (in this section, see Appendix 2 or TOPO for the definitions of
these covering spaces).

A fundamental theorem of Tonelli (see Mather (1991b) or Mang& (1991) ) implies that if L satisfies
Mather’s Hypotheses, then given a < b and two distinct points z,,z;, € M there is always a minimizer
with 7(a) = x, and v(b) = . Moreover such a + is automatically C? and satisfies the Euler-Lagrange
equations (this uses the completeness of the E-L flow). Hence its differential dv(t) = (y(t),%(¢)) yields a
solution (dv(t),t) of the E-L flow.

Minimizers vs. hyperbolicity. There is a general principle, first unveiled by Morse in Riemannian
geometry, which ties the index of the second derivative of the action of a segment of geodesic to the number of
conjugate points this segment has. In terms of more general Lagrangian systems, this number can be formulated
as a certain rotation index (the Maslov index) of Lagrangian subspaces under the differential of the flow along
an orbit segment (see Duistermaat (1976)). If the orbit is hyperbolic, the Lagrangian tangent subspace can be

chosen to be the unstable manifold. A strong illustration of this occurs in the realm of symplectic twist maps
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where Aubry et. al. (1991) found a striking correspondence between (local) minimizers and hyperbolicity,
which we now sketch. We first need some definitions.
Given a stationary configuration g for a symplectic twist map on 7*T"™ (i.e. the q coordinate of an orbit

of the map), we can define the Hessian or second derivative of the action as in the proof of 14.2 :

Bo a1 B

B oz [P
V2W(q) = B2 as
) ﬁq—l

an infinite matrix, tridiagonal by blocks, where

ap = 0225(q)_1,q;) + 0115(qy, Qk+1)7 Br = 0125(ak_1, qp)-

If q is a local minimizer, i.e. minimizes W locally on any finite segment, then the spectrum of V2W () is
positive. We say that g has a phonon gap if moreover Spec(V2W (q)) € [a,00), a > 0. An invariant set has

a phonon gap a if each of the orbits it contains does, and if their phonon gaps are all greater or than a.

Theorem 50.1 (Aubry—-Baesens—MacKay) Let A be a closed invariant set for a symplectic twist
map of R*™ and A’ be the associated set of critical sequences for W. Suppose that 8125(q,,, Qji1)s
(0129) @y Qit1), 0115(Qy, Qpr1) and 0225(qy, @pyr) are all bounded for q € A’k € Z. Then A is
uniformly hyperbolic if and only if A has a phonon gap.

B*. Ergodic Theory

Most of the material surveyed in this subsection can be found in Hasselblat & Katok (1995) . We start by
motivating this theory by the following trivial remark: if F' is a map of 7*T" and ¢(z) = 7n(F(z)) — 7(2)

(m: T*T™ — T" is the canonical projection) then, when it exists:

N - w(F"(2) — 7 (F(2))
Jm 5357 @) = Jim, - = pr(2).
the rotation vector of z under F. The expression lim,, .o + >°'_; ¢(F*(z)) for a general continuous function
¢ is called the time average of ¢. Hence the rotation vector of a point, when it exists, is the time average of

a specific ¢. The relevance of this is the following:

Theorem 50.2 (Birkhoff’s Ergodic Theorem) Let F' : (X, u) — (X, ) be a measure preserving

transformation for a Borel measure j on a space X, and ¢ € L' (X, i1). Then the time average ¢r(2)

of ¢: .
dr(z) = lim " 6(FH(z))
k=1
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exists for jn — a.e. z. Moreover, if ((X) < oo, [y ¢rdp = [y ¢dp.

Remember that a Borel measure on a topological space is one whose sigma-algebra of measurable sets is
generated by the open sets. That F' is measure preserving means /(F~1(A)) = u(A) for any Borel subset of

X . An immediate corollary of Birkhoff’s theorem is (one needs to compactify 7*T" with a point at co):

Corollary 50.3 Let F' be a volume preserving map (eg. symplectic) of T™. The rotation vector pg is

defined on a subset of full Lebesgue measure of T*T".

It turns out that the Lebesgue measure is only one of the many measures that a symplectic map F’ preserves.

Take z € T*T" to be a N-periodic point of F', for instance, and let :

1 N
n= N ;5%@)

where the Dirac measure d,, is the (Borel) probability measure concentrated at the point w ( §,,(A4) is 1 if
w € A and it is 0 if not). Since dpr () (F ' (A)) = dpr+1(z)(A), n is invariant under F. One of the many
differences between 7) and the Lebesgue measure is their supports. In general, the support of a Borel measure
1 is defined as:

Supp pu ={z€ X | u(U) >0 whenever z e U, U open }

Clearly, the support of the measure constructed above is the orbit of the periodic point z, whereas the support
of the Lebesgue measure is 7*T". Hence, the support of invariant measures is another way to conceptualize
invariant sets. Let F' : X — X be continuous. Then the support of any F'-invariant Borel measure 1 is closed,
F-invariant and its complement has zero py—measure. If 11(X) < oo, Poincaré’s Recurrence Theorem implies
that Supp p is contained in the set of F'—recurrent points. In fact, z € Supp u = 2z € w(z) € Supp pu.
Hence, to find recurrent orbits in a dynamical system, as we have been doing in this book, one can look for
invariant measures.

Coming back to rotation vectors, and the measure 7 supported on a periodic orbit, the rotation vector
pr(z) not only exist 7 — a.e., but it is constant on Supp 7. In fact, it can easily be checked that the time

average ¢ is constant on Supp 7 for any function ¢ € L*(T*T",n): the measure 7 is ergodic.

Definition 50.4 An F'-invariant probability measure ;o on a space X is ergodic if it satisfies one of the
following equivalent properties:

1) Every F-invariant set has has ; measure O or 1.

2)If ¢ € L' (X, p) is F-invariant then ¢ is constant a.e..

3) The time average ¢ equals the space average. f ¢du u—ae.

In terms of support, if 1 is ergodic then F has an orbit in Supp p which is dense in that support. Hence
ergodicity relates to topological transitivity. The Lebesgue measure may never be ergodic for twist maps:
whenever we have a chain of elliptic islands, it comprises an invariant set which is not of full Lebesgue
measure. On the other hand, twist maps do have plenty of ergodic measures. We have seen above the example

of a measure 7) supported on periodic orbits. More generally, Aubry-Mather sets can be defined as supports
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of ergodic measures, pull-back of measures on $* invariant under circle diffeomorphisms. Indeed, take the set
(M) in Theorem AMthmpropertiesam: it is the omega limit set 2(7") for a circle diffeomorphism 7". Now,
pick z € £2(T) and take the weak* limit of the probability measures p1y = 57— ZTN 07k ()" it defines an
ergodic measure for 7', and its pull back by 7 is ergodic for F' with support the Aubry-Mather set M . [the
weak* limit is defined by p,, — piff [ ¢y, — [y op for all continuous ¢].

Hence our main objects of study in this book, periodic orbits and Aubry-Mather sets, are all supports of

ergodic probability measures, part of the larger set M of all F-invariant Borel probability measures.

Remark 50.5 The existence of an ergodic measure with rotation vector (as defined by the space average) w
does guarantee the existence of at least one orbit with that rotation vector (the support of the measure is not

empty, and the time average is constant on it). This is not the case if the measure is not ergodic.

If X is a compact metric space, it turns out that the set M of all Borel probability measures is convex
and compact under the weak* topology. Moreover M r itself is a compact and convex subset of M for this
topology. A theorem of convex analysis (Krei-Millman) says that M r is then in the convex hull of its extreme
points : those u € M which cannot be written as 11 + (1 —t) u for two distinct p11, 12 € M p. Finally, the
extreme points are all ergodic measures. We will see in the next subsection that there is a strong correspondence
between the (strict) convexity of a certain projection of M r and the Aubry-Mather theorem.

As we will see in next section, Mather (1991b) , (1993) considers measures that are invariant under the
Euler-Lagrange (E-L) flow instead of a symplectic twist map . In the light of the suspension theorem of
Bialy-Polterovitch (Chapter ham), his setting encompasses a large class of symplectic twist maps . All the
statements that we made above are valid for E-L flows on 7*T" provided one compactifies 7*T" (as Mather

does) in order to use the compactness of the space of E-L-invariant probability measures.

C*. Minimal Measures

For a more detailed exposition the reader is urged to consult Mather (1991b) or Mang (1991) . There is also a
very nice survey of this theory in the beginning of Mather (1993) . Given a E-L invariant probability measure
with compact support 1. on TM x $, one can define its rotation vector p() as follows: let 31, Ba, . .. , Bn
be a basis of H'(M) and let \i,..., \, be closed one-forms with [\;] = 3; in DeRham cohomology.(!")
We refer the reader uncomfortable with (co)homology to Appendix 2 or TOPO and urge her/him to read
through this section thinking of the case M = T", taking [\;] = [dz;], as a basis for H*(T") ~ IR", where

(71,...,,) are angular coordinates on 7*T". Define the i*"

pi(p) = /Aidn-

component of the rotation vector p(u) as

Note that this integral makes sense when one looks at )\; as inducing a function from 7'M x $* to IR by first
projecting 7'M x $' onto 7'M, and then treating the form as a function on 7'M that is linear on fibers. The
rotation vector does depend on the choice of basis [3;, but because these 1-forms are closed, p;(x) does not
depend on the choice of representative \; with [A;] = ;. Since the rotation vector is dual to forms, it can be

1When homology and cohomology coefficients are unspecified they are assumed to be IR, so the notation
H:(M) means H:(M;IR), etc.
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viewed as an element of H; (M ). In the case M = T", one can check that, if (0) is a generic point of an

ergodic measure /i, the natural definition of rotation vector of a curve ~ coincides with p(1):

. /i(b) :Yi(a‘) — i 71 /d- /
() = 1 —_ 7 lim i i Pi
p ( /) b mm b—a b 1 b a o, T dzx du (,u)

where 7 is a lift of -y to IR™ and the second equality uses the Ergodic Theorem (again, dz; is seen as a function

TM x $' — IR). This prompts the following formula for the (i*” coordinate of the) rotation vector of a curve

v : IR — M for a general manifold M:

1
()= Tk A
pi(7) b,ériloo b—a /d’Y[a,b] ;

if the limit exists. As before, if v(0) is a generic point for an ergodic measure 1, p(7y) exists and coincides

with p(u). Next we define the average action of a E-L invariant probability on TM x gt

Alp) = / Ldy,
i.e. the space average of L, which equals, when ( is ergodic, to its time average along y-a.e. orbit :

b
Ay = tim o= [ L)

The set of E-L invariant probability measures, denoted by M, is a convex set in the vector space of all

measures, as we have seen in the previous subsection (It is also compact for the weak* topology if, as Mather

does, one compactifies T'M). and the extreme points of M, are the ergodic measures (see Mafie (1987) ).

Now consider the map M — H;(M) x IR given by:

= (p(p), Alp)) -

This map is trivially linear and hence maps M , to a convex set U7, whose extreme points are images of extreme
points of M, i.e. images of ergodic measures. Mather shows, by taking limits of measures supported on
long minimizers representing rational homology classes, that for each w, there exists an invariant (but not
necessarily ergodic) measure 1 such that p(z) = w and A(x) < 00.(*?) Since L is bounded below, the action

coordinate is bounded below on Uy, . Hence we can define a map 3 : H,(M) — IR by

Alw) = inf{A(u) | pe My, p(p) = w},

which is bounded below and convex: the graph of 3 is the boundary of Uy,. We say that a probability measure
w € My, is a minimal measure if the point (p(p), A(p)) is on the graph of 3. Hence, an extreme point
(w, B(w)) of graph(/3) corresponds to at least one minimal ergodic measure of rotation vector w. It turns
out that if 1 is minimal, y-a.e. orbit lifts to a E-L minimizer in the universal abelian cover M of M (whose
deck transformation group is H,(M; Z)/torsion, see Appendix 2 or TOPO). Conversely, if 4 is an ergodic
probability measure whose support consists of )/-minimizers, then / is a minimal measure.

Hence, each time we prove the existence of an extreme point (w,B(w)), we find at least one
recurrent orbit of rotation vector w which is a M-minimizer.
mnt reader may be tempted to proclaim, from this fact, the existence of orbits of all rotation

vectors. Alas, as we noted in Remark 50.5, we can guarantee that the rotation vector of orbits in the
support of a measure y are equal to p(u) only when p is ergodic
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B(x)

llll

Another important property of 3 is that it is superlinear,i.e — oo when ||z|| — co. We motivate this
in the simple case where L = 3 ||#]|> — V(z) and ||| comes from the Euclidean metric on the torus. If 1. is

any invariant probability measure, then

-2
A(u)—/Ld@/(@vmm) dy
2
20

50.1
( ) - VYmax
1 2
=5 - Vmam
5 1P(1)]

Y

where we used the Cauchy-Schwarz inequality for the second inequality. So we see that in this particular,
but important, case (3 grows at least quadratically with the rotation vector. The superlinearity of 3 implies
the existence of many extreme points for graph(3) (although in most cases still too few, as we will see in
the next subsection). Indeed, this growth condition implies that 3’s graph cannot have flat, or linear domains
going to infinity. Any point (w, 5(w)) is part of at least one linear domain of graph(/3), which we call S,
where the index c denotes the “slope” (normal vector) of the supporting hyperplane whose intersection with
Uy, is exactly the convex and flat domain S.. [Since ¢ acts linearly on homology classes w to give the equation
¢-w = aof S, it can be seen as an element of first cohomology.] Let X, be the projection on Hy (M) of
Se. The sets X are compact and convex domains which “tile” the space H; (M ). Extreme points of X, are
projections of extreme points of .S.. Hence there are infinitely many such extreme points, and infinitely many
outside any compact set. Their convex hull is H; (M), and in particular, they must span H; (M) as a vector

space. Since these extreme points are the rotation vectors of minimal ergodic measures, we have found that

Theorem 50.6 There exist at least countably many minimal ergodic measures and at least n =

dim H1(M) of them with distinct rotation directions.

In particular there are at least n rotation directions represented by minimal measures for a E-L flow on
T*T"™. We will see in Hedlund’s example that this lower bound is attained by some systems. Finally, the

generalized Mather sets are defined as
M, = Support(M.),

where M, is the set of all minimal measures whose rotation vectors lies in X..Let 7 : TM x §' — M x §!

denote the projection. Mather’s main result in Mather (1991b) is the following theorem.

Theorem 50.7 (Mather’s Lipschitz Graph Theorem) For all ¢ € HY(M), M. is a compact,
non-empty subset of TM x $'. The restriction of © to M, is injective. The inverse mapping m*

m(M.) — M, is Lipschitz.

In the case M = T", Mather proves that, when they exist, KAM tori coincide with the sets M, (see also
Katok (1992) for some related results in the symplectic twist maps context). The proof of the Lipschitz Graph
Theorem (see Mather (1991b) or Mané (1991) ), which is quite involved, uses a curve shortening argument: if

curves in 7 (M, ) were too close to crossing transversally, one could “cut corners” and, because of recurrence,
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construct a closed curve with lesser action than A,,,;,,. This argument by surgery is reminiscent of the proof

of Aubry’s Fundamental Lemma in Chapter AM.

Remark 50.8 An important special case is that of autonomous systems (¢.e. with time independent L). In
this case, one can discard the time component and view M. as a compact subset of 7'M/ . In this case, Mather’s
theorem implies that M, is a Lipschitz graph for the projection 7 : TM — M. To see this, suppose that
two curves z(t) and y(¢) in w(M,) have 2(0) = y(s) for some s. Mather’s theorem rules out immediately
the possibility that s is an integer, unless © = y is a periodic orbit. For a general s, consider the curve
z(t) = y(t + s). Then, 2(t) = §(t + s) and, by time-invariance of the Lagrangian, (z(¢), 2(¢)) is a solution
of the E-L flow. It has same average action and rotation vector as (y,¥) and hence it is also in M... But then
2(0) = z(0) is impossible, by Mather’s theorem, unless 2(0) = ¢(s) = #(0) and thus, by uniqueness of
solutions of ODEs, z(t) = y(t + s).

By using Theorem 40.1, one can translate the results of Mather to the realm of symplectic twist maps (see
Exercise 50.9) and deduce the existence of many invariant sets that are graphs over the base and are made
of minimizers. As noted before, one could also redo all of Mather’s theory in the setting of symplectic twist

maps (see Katok (1992), who considered the near integrable case).

D*. Examples and Counterexamples

Recovering past results. When Mather’s function 3 (see previous section) is strictly convex, each point
on graph(/3) is an extreme point and there are ergodic minimal measures (and hence minimal orbits) of all
rotation vectors. One can prove that this is true when M = $*, and Mather (1991b) shows how his Lipschitz
Graph Theorem implies the classical Aubry-Mather Theorem, by taking a E-L flow that suspends the twist
map. The fact that M. is a graph nicely translates into the fact that orbits in an Aubry-Mather set are cyclically
ordered: as pointed out by Hall (1984), the CO property corresponds to trivial braiding of the suspended orbit,
itself guaranteed by the graph property.

The graph of 3 is also strictly convex when L is a Riemannian metric on T?, and hence there are minimal
geodesics of all rotation vectors for any metric on the torus. This was known by Hedlund (1932), who had
basically worked out the same results as Aubry and Mather in that setting, albeit in a different language. [See
Bangert (1988) for a unified approach of the two theories.] Hence one could hope, as a generalization of the
Aubry-Mather theorem, that 3 is strictly convex for any Lagrangian systems satisfying Mather’s hypotheses.

This statement is false as we will see in the following examples.

Examples of gaps in the rotation vector spectrum of minimizers for Lagrangian on T?.
Take L : TT? — IR, given by L(z, i) = ||i: — X||” where X is a vector field on T?. The integral curves = of
X are automatically E-L minimizers since L = 0 on these curves. Mang (1991) chooses the vector field X to
be a (constant) vector field of irrational slope multiplied by a carefully chosen function on the torus which is
zero at exactly one point ¢. The integral flow of X has the rest point ¢(¢) = ¢, and all the other solutions are
dense on the torus. The flow of X (and its lift to 7T? by the differential) has exactly two ergodic measures:
one is the Dirac measure supported on (g, 0), with zero rotation vector, the other is equivalent to the Lebesgue

measure on T2 and has nonzero rotation vector, say w. Mafie checks that 37 1(0) (trivially always an X,) is
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the interval {\ w | A € [0, 1]}, and that no ergodic measure has a rotation vectors strictly inside this interval.

Thus the Mather set M is the union of the supports of the two above measures .

Boyland & Golé (1996a) give an example of an autonomous mechanical Lagrangian on T? which displays
a similar phenomenon, although we also show in that paper that all autonomous Lagrangian systems satisfying
Mather’s Hypothesis do have minimizers of all rotation directions. We also give in this paper a very precise
description of the 3 function for such systems and show that the support of minimal ergodic measures have

to be either a point, a suspension of a Cantor set or a torus.

Hedlund-Bangert’s counterexamples. Consider in IR? the three nonintersecting lines given by the
x-axis, the y-axis translated by (0,0, 1/2) and the z-axis translated by (1/2,1/2, 0). Construct a Z>- lattice
of nonintersecting axes by translating each one of these by integer vectors. Take a metric in IR® which is the
Euclidean metric everywhere except in small, nonintersecting tubes around each of the axes in the lattice. In
these tubes, multiply the Euclidean metric by a positive function A which is 1 on the boundary and attains its
(arbitrarily small) minimum along the points in the center of the tubes, . e. at the axes of the lattice. Because the
construction is Z*> periodic, this metric induces a Riemannian metric on T2. One can show (Bangert (1989)),
if X is taken sufficiently small, that a minimal geodesic (which is a E-L minimizer in our context) can make
at most three jumps between tubes. In particular, a recurrent E-L minimizer has to be one of the three disjoint
periodic orbits which are the projection of the axes of the lattice. Thus there are only three rotation directions
that minimizers can take in this example, or six if one counts positive and negative orientations. In terms of
Mather’s theory, the level sets of the function 3 are octahedrons with vertices (+a, 0, 0), (0, %a, 0), (0,0, +a)
(we assume here that the function ) is the same around each of the tubes). Since we are in the case of a metric,
one can check that (3 is quadratic when restricted to a line through the origin (a minimizer of rotation vector
aw is a reparameterization of a minimizer of rotation w). Hence a set .S.. is either a face, an edge or a vertex of
some level set {3 = b}, and the corresponding M. is, respectively, the union of three, two (parameterized at
same speed) or one of the minimal periodic orbits one gets by projecting the disjoint axes. Note that, instead
of the function 3 of Mather, Bangert uses the stable norm. Mather’s function (3 is a generalization of that

norm.

Levi’s counter—counterexample. It is important to note that the nonexistence of minimizers of a certain
rotation vector w does not mean that there are no orbits of the E-L flow that have rotation vector w. For example,
Levi (1997) has shown the existence of orbits of all rotation vectors in the Hedlund example. He construct,
using some broken geodesic methods, local minimizers shadowing any curve made of segments (of sufficient

length) of the minimizing axes and jumps between the axes. This makes for extremely rich, chaotic dynamics.

Exercise 50.9 Find hypotheses on the generating function of an symplectic twist map F' which translate
to Mather’s hypotheses for the Lagrangian that suspends F (Hint. You may want to include Bialy and
Polterovitch’s conditions of Theorem 40.1 for F' to have a convex suspension. Note that completeness of the
flow is for free: F' is defined everywhere.)
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51.* The Case Of Hyperbolic Manifolds

We start this section with another counterexample to the strict convexity of Mather’s 3 function. The setting
is that of a metric on the two-holed torus, the simplest example of a compact hyperbolic manifold. However,
we finish the section on a positive note, by quoting a result of Boyland & Golé (1996b), in which we introduce
another definition of rotation vector suited to hyperbolic manifolds and show the existence of minimal orbits
of all rotation directions for a class of Lagrangian systems on hyperbolic manifolds only slightly smaller than
that considered by Mather.

A*. Hyperbolic Counterexample

Take the metric of constant negative curvature on the surface of genus 2 (the two-holed torus) which has
a long neck between the two holes (see Figure 51. 1). A minimizer here is a minimizing geodesic for the
hyperbolic metric. With a and b as shown, the minimal measure for the homology class [a] + [b] is a linear
combination of the ergodic measures supported on I, and [}, where I, and [} are the closed geodesics in
the homotopy classes of a and b, respectively. Indeed, [, and I}, must “go around” the same holes as a and
b, and any closed curve that crosses the neck will be longer than the sum of the lengths of I, and 3. Hence
([a] + [], B(a] + [b])) cannot be an extreme point of graph(S3).

= ——— o)

Fig. 51. 1. The surface of genus two and the loops a and b. No minimal measure with rotation vector [a]+ [b]
can have support passing through the long neck. In particular, a curve in the homotopy class of ¢ cannot
yield a minimizer in the abelian cover.

B*. All Rotation Directions in Hyperbolic Manifolds

As the previous example shows, the notion of minimizers in the abelian cover is too restrictive, as it rules out
many geodesics. Instead of working on the universal abelian cover, we work in the universal cover and define
minimizers and rotation vectors with respect to that cover.

All manifolds of dimension n which admit a hyperbolic metric of constant curvature —1 have the Poincaré
n—disk as universal covering space IH". Hence a hyperbolic manifold M is the quotient IH" /71 (M) where
m1 (M) acts on IH" as the group of deck transformations. To visualize IH", assume n = 2, which covers any
orientable surface of genus greater or equal to two. IH? is the usual Euclidean unit disk which is given the
hyperbolic metric % . The ratio between the corresponding hyperbolic distance and the euclidean one
tends exponentially to co as points approach the boundary of the disk. Geodesics for the hyperbolic metric
are arcs of (euclidean) circles perpendicular to the boundary TH? of the disk.

The minimizers we consider in this section lift to curves in the universal cover which minimize the action
between any two of their points. We also assume that the Lagrangian L satisfies Mather’s hypotheses (time
periodic C? function with (a) fiber convexity, (b) completeness of the E-L flow) except that we replace his

condition (c) of superlinearity by one of superquadraticity:
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(¢’) superquadraticity: There exists a C' > 0 such that L(z,v,t) > C ||v|*.
(This, again, is satisfied by mechanical systems: if the potential is not positive, one can add a constant to it

without changing the solutions to the system).

Theorem 51.1 (Boyland-Golé) Let (M, g) be a closed hyperbolic manifold. Given a Lagrangian L which
satisfies Hypotheses (a), (b), (¢’), there are sequences ki, ki, T; in R™ depending only on L, with k;
increasing to infinity, such that, for any hyperbolic geodesic I' C TH" = M, there are minimizers
vi : R — M with dist(yi, Io) < ki, vi(£00) = Io(£0), and k; < dist(vi(d),7i(c)) < kit

whenever d — ¢ > T;.

Theorem 51.2 (Boyland—Golé) Let (M, g) be a closed hyperbolic manifold with geodesic flow g;. Given
a Lagrangian L which satisfies Hypotheses (a), (b), (¢’) with E-L flow ¢y, there exists sequences k;
and T; with k; increasing to infinity, and a family of compact, ¢i-invariant sets X; C M so that for
all i, (X;, ¢¢) is semiconjugate to (T1 M, g;) and k; < %dist(d)T(a}), do(x)) < ki1, whenever T > T;
and x € X;.

Hence the geodesic flow and the foliation of invariant ball bundles in 7 M continues to exists, in a weak
sense, in any of our general Lagrangian systems.

‘We now interpret Theorem 51.1 as saying that there exist minimizers of all rotation directions, with a new
definition of such a concept valid only for hyperbolic manifolds. Let us first reinterpret the rotation vector on
T*T" geometrically: a curve v on T™ has rotation vector v € IR" if its lift 4 in the universal cover IR" is
“asymptotically parallel” to the straight line supporting v and if the average of ||¥(t)|| over all ¢ € IR is equal
to ||v|| (we let the reader make these statement precise and rigorous). Now given two points on OTH?, there
is exactly one geodesic [, that goes to the first as ¢ — —o0, to the other one as t — +00. We can declare a
curve -y to be asymptotically parallel to /| iff v and I” have same endpoints. This will insure that points of
v are always at a bounded hyperbolic distance from I". We also declare that the rotation vector exists iff ¥
has the same endpoints at +co as a geodesic Iy, and if the average |p(v)| of ||¥]| over ¢ € IR exists, and we
define the rotation vector to be the pair p(y) = (1o, |p(7)]) (average direction and average speed). In that
language, Theorem 51.1 states that, given any geodesic I, there are infinitely many E-L minimizers with I”
as a rotation direction.

The naive definition of rotation vector that we just outlined has some major flaws:

1. p(y) (if it exists) does not belong to a linear space.
2. Two lifts of the same curve v will have different rotation vectors.
3. Rotation direction is not constant ;1 — a.e. for many ergodic measures for the geodesic flow.

To remedy that, let 1 (M), seen as deck transformation group, act on geodesics in IH? and declare that
two geodesics are parallel iff they belong to the closure of the same 71 (M )-orbit. Consider the set of tangent
vectors at all points of all the geodesics in the closure of a 71 (M) orbit. This forms a closed subset of the unit
tangent bundle of IH?. The projection by the differential of covering map of this set on the unit tangent bundle
of M is the support of a measure 1 which is invariant under the geodesic flow. Because of this, Boyland (1996)

defines the rotation direction of a curve to be a measure invariant under the geodesic flow, weak* limit of



52. Hyperbolic Manifolds 159

measures supported by geodesics joining two points of the curve. This rotation vector being defined through
ergodic theory, it is constant ;s — a.e. for any E-L ergodic ;.. Theorem 51.2 implies the existence of minimizer
of all rotation directions, in this new sense of the word.

Note that there are many more such “homotopy” directions than there are “homology” directions. For
instance the “long neck” metric of Figure 51. 1 has no homology minimizer with rotation direction c, as
argued in the previous subsection, but it will have infinitely many homotopy minimizers with that direction.

On the negative side, the counterexamples of Man& (1991) and Boyland & Golé (1996a) on T2 probably
have counterparts on hyperbolic manifolds, even with our new definition of rotation vector and we think there

is little chance to prove the existence of minimizers of all rotation vectors, even on these manifolds.
52.* Concluding Remark

So what, in the end, are the chances of finding orbits of all rotation vectors for symplectic twist maps or
Lagrangian system, in say, 7*T"? Previous attempts at this problem yielded incomplete results. Bernstein
& Katok (1987) “almost” found, for minimizing periodic orbits of symplectic twist maps close to integrable,
some uniform modulus of continuity, which they hoped would unable them to take limits and get orbits with
the limiting rotation vectors. In my thesis, I hoped that proving some regularity of the ghost tori (invariant set
for the gradient flow of the periodic action) might enable one to do the same. This is how ghost circles came
about.

One thing is clear: one cannot hope for global minimizers to achieve all possible rotation vectors. However,
the shadowing methods to construct local minimizers of all rotation vectors of Levi (1997) on the Hedlund
counterexamples indicate a possible approach to the general case. The recent work of Mather on existence
of unbounded orbits (see Delshams, de la Llave & Seara (1998)and the end of INVchapter), also shows
that, for general systems, hyperbolic and variational techniques can combine powerfully to construct orbits
shadowing successive minimizers. One possibility to attack this problem would be to try to construct, in a
manner analogous to Levi (1997), orbits shadowing the different supports of the ergodic measures which are
extreme points of one generalized Mather set M .. Doing so, one may manage to “fill in” the corresponding

set of rotation vectors X with rotation vectors of actual orbits, may they be local minimizers.
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CHAPTER 10 or CZ

GENERATING PHASES AND SYMPLECTIC
TOPOLOGY

July 15 1999

Look up Siburg’s work on capacity vs symplectic twist map . What about the title of this
Chapter? What about the manifold of points that only move radially? Otherwise, declare this
Chapter done, after a last reading.

In Appendix 1 or SG, Section 46, we remark that the differential of a function W : M — T*M gives
rise to the Lagrangian submanifold dW (M) of T*M. As a generalization of this fact, one can construct
Lagrangian submanifolds of 7% M as symplectic reductions of graphs of differentials of generating phases,
which are functions on vector bundles over M .

Generating phases are the common geometric framework to the different discrete variational methods
in Hamiltonian systems, including the method developped in this book. Applications of generating phases
range from the search for periodic orbits to the Maslov index, symplectic capacities and singularities theory.
Generating phases are a viable alternative to the use of heavy functional analytic variational methods in
symplectic topology.

This chapter intends to be a basic introduction to generating phases. We first present Chaperon’s method,
which he used to give an alternate proof of the theorem of Conley & Zehnder (1983) . This theorem, which
solved a conjecture by Arnold on the minimum number of periodic points of Hamiltonian maps of T*", is
considered by many as the starting point of symplectic topology('®). We then survey the abstract structure of
generating phase, highlighting the common geometric frame for the symplectic twist maps method and that

of Chaperon (as well as many others).
53. Chaperon’s Method and the Theorem of Conley-Zehnder

Chaperon (1984) introduced a method “du type géodesiques brisées” for finding periodic orbits of Hamiltonians
which did not make use of a decomposition by symplectic twist maps. This method has been the basis of later
work by Laudenbach, Sikorav and Viterbo.

Until now, we have studied exact symplectic maps that come equipped with a generating function due to
the twist condition. The concept of generating function is more general than this, however: we now show how
an exact symplectic map of IR2n  which is uniformly C' close to Id may have another kind of generating

131n the sense that it implies that the C° closure of the set of symplectic diffeomorphisms is strictly included
in the set of volume preserving diffeomorphisms.
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function. The small time ¢ map of a large class of Hamiltonians satisfy this condition. Hence, the time one
map of these Hamiltonians can be decomposed into maps that posess this kind of generating function, leading

to a new variational setting for periodic orbits. Let

F :1R2n — IR2n
(g,p) — (Q, P)

be an exact symplectic diffeomorphism:
(53.1) PdQ — pdq = F*pdq — pdq = dS,

for some S : R2n — IR (remember that all symplectic diffeomorphism of IR2n are in fact exact symplectic.
We stress exzact symplectic here in view of our later generalization to 7 M .) The following simple lemma is

crucial here.

Lemma 53.1 Let F': IR2n — IR2n be an exact symplectic diffeomorphism. Then, if |[F — Id||o. is

small enough, the map
¢:(q,p) =~ (Q,p)

is a diffeomorphism of IR2n .

Proof. Q(q,p)is C* close to q and thus ¢ is (uniformly) C* close to Id, hence a diffeomorphism. a
We now show how, a way that is slightly different from the twist map case, F' can be recovered from S.
We define

5(Q.p) =pq+5(Q,p), where q=q(Q,p);

then
(53.2) dS = PdQ + qdp

and thus S generates [, in the sense that:

S
(53.3) g?

Remark 53.2 Note that Id is not a symplectic twist map and thus it cannot be given a generating function in
the twist map sense. One of the advantages of the present approach is that Id does have a generating function,

which is

5(Q.p) =pQ

As an illustration, fixed points of F" are given by the equations:
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a8
= =P
oQ ’

S
Q*%*%

which are equivalent to the following equation:
d(S - pQ) = (P —p)dQ + (¢ - Q)dp = 0.

Hence have reduced the problem of finding fixed point of an exact symplectic diffeomorphism C* close to
Id on IR?" to the one of finding critical points for a real valued function. We now apply this method to give
Hamiltonian maps of T?" a finite dimensional variational context. It can also be used for time one maps
of Hamiltonians with compact support in IR2n, or Hamiltonian maps that are C° close to Id in a compact
symplectic manifold.

Let H : IR2n x IR be a C? function with variables (g, p,t). Assume H is Z*" periodic in the variables
(g, p) (i.e., H is a function on T?" x IR). As in Appendix 1 or SG, we denote by hi (a,p) = (q(t),p(t)) the
solution of Hamilton’s equations with initial conditions q(to) = q. p(to) = p. By assumption, h}  can be
seen as a Hamiltonian map on T*". We know that hio is exact symplectic (see Theorem 47.7). Furthermore,
by compactness of T*", when |t — to| is small, hf is C1 close to Id (the Hamiltonian vector field of a C?
function is C', hence so is its flow). For |t — to| small enough, we can apply Lemma 53.2 to get a generating

function for hio. To make this argument global, we decompose h! in smaller time maps (see Exercise 47.4):

N_1 i 1
(53.4) R*=hi i oh¥,0...0hT ohly
N N N

and thus, for a large enough N, h! can be decomposed into N maps that satisfy Lemma 53.2. [The farther
h! is from Id, the bigger N must be.] We can then apply the following proposition to h':

Proposition 53.3 Let F = Fy o...0 F| where each F}, is exact symplectic in T*IR™, C* close to Id,
and has generating function Sj, (Q,p). The fixed points of F are in one to one correspondence with

the critical points of :

N
W (Q1,pP1.---,Qn:PN) = ng(lepk) —PQr

k=1

where we set Qy = Q -

Proof. We will use the notation
(Pr, Q1) = Fr(qy, pr)

where we know from (53.3) that P}, and g,, are functions of Q,,, p;.. Then, using Equation (53.2) ,

N
dW(Q,p) =) PrdQy + a,dp), — pdQ;_; — Q;_,dp,
k=1
(53.5) N-1 N
= Z (Pr — Ppy1)dQy + Z(Qk — Qi_1)dpy,
k=1 k=2

+(Py —p1)dQy + (g1 — Qn)dp;.
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This formula proves that (Q, ) is critical exactly when:

Fk(qk,,pk) = (qk+1apk+1)’Vk € {1,...,N - 1}7
Fn(ay:py) = (@1,P1);

that is, exactly when (q,, p; ) is a fixed point for F'. O
As with the function W in Chapter 6, W has the interpretation of the action of a “broken” solution of the

Hamiltonian equation. This time, the jumps are both vertical and horizontal:

p
P1yq1/'~\\ Py 4, DP;s4q;
LN Y
\\ k PN;ql
t \ P> Qi 1, Ry tn t
\\
Yk ~— 1Py, Oy

Pi1> Qs N-1

Fig. 53. 1. Interpretation of W as the action of a “broken” solution I, concatenation of the solution segments
v, and “corners” in the t = ¢ planes.

Each curve 7 in Figure 53. 1 is the unique solution of Hamilton’s equations starting at (g, py,, tx)
where t;, = £ and flowing for time 1/N. Since Sk(Q,,p;) = Sk(qy,Py) + Pray and Si(qy. pp) =
ka pdq — Hdt (see Theorem 47.7), W measures the action of the broken solution /™

N N
W(QlaplaQNapN):Zpk(qkakfl)_‘_Z/ de*de
(53.6) k=1 k=1Y "k

= /pdq—Hdt.
Jr

This is the definition given by Chaperon (1984) and (1989).

The following theorem, solved a famous conjecture by Arnold in the case of the Torus. It was hailed as the
start of symplectic topology, as it shows that symplectic diffeomorphisms have dynamics necessarily different
from that of general diffoemorphisms, or even volume preserving diffeomorphisms. The original proof of
Conley and Zehnder also reduces the analysis to finite dimensions, but by truncating Fourier series of periodic

orbits. Chaperon’s proof avoids the functional analysis altogether.

Theorem 53.4 (Conley-Zehnder) Let h' be a Hamiltonian map of T?". Then h' has at least 2n + 1

distinct fized points and at least 2™ of them if they all are nondegenerate.

Proof. Let W be defined as in Proposition 53.3 for the decomposition of /! into symplectic maps close to

1d given by (53.5) . We will show that W is equivalent to a g.p.q.i. on T?", and hence it has the prescribed
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number of critical points, corresponding to fixed points of h'. We refer the reader to Section TOPOsecgpgi
for the definition and properties of generating phases that are relevant here. We first note that 17 induces a
function on (IR2n)N /Z*" where Z*" acts on (IR2n)" by:

(mQ7mP)‘(Q17p17'-'7QN7pN) = (Ql +mg,p+my,...,Qn+my, Py +mp)

The fact that W is invariant under this action is most easily seen from (53.6) . Indeed, since the Hamiltonian
flow is a lift from one on T>", the curve fyk + (mgy, m,, 0) is the solution between (g, + mg, p;, +m,) and
(Q), + my, Py +m,,) starting at time “=L of that flow. But

/ pdq+Hdt:/ (p+mp)dqudt:mp(Qk—qk)+/ pdq — Hdt
7k+(mq7mp70) Tk Yk

Hence the action of 7, changes by m,(Q,, — q,,) under this transformation. On the otherhand, under the
same transformation, the sum Zﬁ;l P (g, — Qp_,) of Formula (53.6) changes by ij,vzl mp(q, — Qr_1)-
Summing up the actions of the ., these changes cancel out, from which we deduce that W is invariant under
the Z>" action.

We now show that WV is equivalent to a g.p.q.i. over T>". Let E = (IR2n)N — IR2n be the bundle given
by the projection map onto (Q ,p,) and let x : E — F be the bundle diffeomorphism given by:

X(Qlapla"'aQNapN) = (alablv'"aaNflabelaQNapN)

where
ap = Qk - Qk—l (Qo = QN)
b = p, — Pn-
I induces a function W

on (IR2n)V~1 x T?". We now need to show that W is in fact a g.p.q.i. Define W, (resp. Wp) to be the

In these new coordinates, the Z>" action only affects (Q -, Py ), so that W o y—

functions W (resp. W) obtained when setting the Hamiltonian to zero. Since Sk(Q > Pr) = DL Q) in this
case, Wo(Q, D) = Zﬁf:l P, (Q — Q,_1) and hence a simple computation yields

WO(E', 57 QNapN) = Z ak-bk

which, as easily checked, is quadratic nondegenerate in the fiber.
Finally, we need to check that -2 (W, — W) is bounded, where v = (a, b). It is sufficient for this to check
that d(W — W) is bounded. Us1ng (53.5) , we obtain:

N
Zpk_karl ko+Z —Qy_1)dp;,
k=1 -

N

=) Q= Qy_1)dp;, — Z(pk_pk+1)ko

=

B
Il
—
-~
—

p"qz

(a1 — Qr)dpy + Z Py —p;,)dQ,
k=1 k=1

where we have set throughout Q, = Qn, Py, = P;. Since by definition (Q, Px) = Fi(qy,p;) where
F, = h . lifts a diffeomorphism of T>", the coefficients of the above differential must be bounded. We can

conclude by applying Proposition 52.8. In fact, Proposition TOPOproptrivialgpqi is enough here. a



166 CH 10 or CZ: GENERATING PHASES (July 15 1999)

Remark 53.5 Since the lift of the orbits we find are closed, the orbits in T are contractible. In general, one
cannot hope to find periodic orbits of different homotopy classes, as the example Hy = 0 shows. It would
be interesting, however, to study the special properties of the set of rotation vectors that orbits of h' may
have, i.e., to find out if being Hamiltonian implies more properties on this set than those known for general

diffeomorphisms of T?".

54. Generating Phases and Symplectic Geometry

In Section TOPOsecgpqi, we define generating phases as functions W : ¥ — IR, where E is a vector bundle
over the manifold M. We then give conditions under which lower estimates on the number of critical points
of W can be obtained from the topology of M. In this section, we show how such functions give rise to
Lagrangian submanifolds of 7 M, hence the adjective “generating”. In particular, we show that the action
function obtained either in the symplectic twist map setting or in the Chaperon approach generate a Lagrangian
manifold canonically symplectomorphic to the graph of of the map F' under consideration. More generally,

this construction unifies the different finite, and even infinite, variational approaches in Hamiltonian dynamics.

B. Generating Phases and Lagrangian Manifolds

Let W be a differentiable function M/ — IR. We have seen in Section 46.C that:

dW (M) = {(q,dW(q)) | g € M}

is a Lagrangian submanifold of 7 M . Note that this manifold is a graph over the zero section 03, of T M.
Heuristicly, we would like to make it possible to similarly “generate” Lagrangian submanifolds that are not
graphs. One way to do this is to add auxilliary variables and see our Lagrangian manifold as an appropriate
projection in 7* M of a manifold in some bundle over 1. This is what is behind the following construction.

Letw : E — M beafiber bundle over the manifold M .Let W (g, v) be areal valued function on an open set
U C E.The derivative %—VX : E — E* of W along the fiber of E is well defined, in the sense that if U is a chart
on M and 91,15 : U x V — 71 (M) are two local trivializations of E/,and W; = W o b, Wy = W o)y,

then

LOW, _OW,
(g av (q,’u)dv - av (Q(q)v))dv

where & = 1py01); ! is the change of trivialization. We assume that the map: (q, v) — %—VX (g, v) is transverse

to 0. This means that the second derivative (in any coordinates) (%, B;T‘QV) is of maximum rank at points

(g,v) where %—‘;}V (g,v) = 0. With this assumption, the following set of fiber critical points is a manifold of

same dimension as M
ow
(541) s ={(@v) e pl G @v -0},

[For a proof of this general fact about transversality, see eg. the theorem p.28 in Guillemin & Pollack (1974) ]
Define the map:
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iW : EW —T*M
ow
(qa ’U) - <q7 8_q<q7 U))

Exercise CZexoimmersion shows that this is an immersion. We now show directly that this immersion is
Lagrangian:

iwpdq = oW dq =dW

lypdg = 5 ~(¢.0)dg = dW|,, (g.v)
and hence:

iy (dg N dp) = d2W|2W =0.

We will say that W is a generating phase for a Lagrangian immersion j : L — T*M if j(L) = iw (Xw).

Exercise 54.1 Show that iw : Yw — T"M is an immersion, i.e. that Diw |, has full rank (Hint. Use
w
the transversality condition to show that KerDiw N1 Xw = {0}.)

B. Symplectic Properties of Generating Phases

We start with the trivial, but important:

Proposition 54.2 Suppose the Lagrangian submanifold L C T*M is generated by a function W :
E — IR. The points in the intersection of L with the zero section 0}, of T*M are in a one to one

correspondance with the critical points of W.

Proof. iw(q,v)is in L if and only if 4% (q,v) = 0.Itis in 0}, if and only if %—Vg(q, v) = 0. O
In TOPOsecgpqi, we find that critical points persist under elementary operations on generating phases: if

Wi : E1 — IR,and W5 : E — IR are two generating phases such that
W20¢:W1+Ct, or
Wa(q,v1,v2) = Wi(q,v1) + f(q,v2)

where @ is a fiber preserving diffeomorphism and f is nondegenerate quadratic in v2, then W; and W5 had
the same number of critical points. The first operation is called equivalence, the second stabilization. This

persistence is now geometrically explained by Proposition 54.2 and the following:

Lemma 54.3 Two equivalent generating phases generate the same Lagrangian immersion. This is

also true under stabilization.

Proof. Let Wy o ¢ = Wi + cst where @ is a fiber preserving diffeomorphism between Fq; — M and
Ey — M. Writing
gp(qa ’U) = (qa ¢(q7 ’U)) = (qa vl)a

where v — ¢(q, v) is a diffeomorphism for each fixed g. we have:

Wa(q,¢(q,v)) = Wi(q,v) + C

and thus
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oW, oWy’ 09

o[22 ) 22
ov ov ov

This implies that Xy, = @(Xw, ), and we conclude the proof of the first assertion by noticing that:

(@0 = 2 @(q.0),

Now let
WZ(qa V1, v2) = Wl(qa vl) + f(qan)

where f is quadratic and nondegenerate. we have:

oW, /0v =0 v,=0 and OW;/0v1 =0

so that Xy, = Xy, % Og,, where Op, is the zero section of Ey. Moreover 0f/ 8q| (w20} — 0 so that, at
points (g, v1,0) of Xs,
GWQ ow 1
<qa aq (qvvla )) (q7 aq (qvvl))
O

C. The Action Function Generates the Graph of I’

We examine here the twist map case, and let the reader perform the analysis for the Chaperon case in Exercise
54.4.Let M be an n—dimensional manifold and F' be a symplectic twist map on U C T*M , where U is of
the form {(g,p) € T*M | ||p|| < K}.Let S(q, Q) be a generating function for a lift F' of F. S can be seen
as a function on some open set V' of M x M, diffeomorphic to U. % Since PdQ — pdq = dS (q,Q),we
can describe the graph of F as:

2 @.Q1Q ggm,@) (@.Q) e v} (TN,

Graph(F) = { <q, —

which is canonically symplectomorphic to:
08
) aQ

One can easily check that this manifold has S as a generating phase. In other words the generating function

{(¢@50a j0@a) [@Qev|crurm,

of a symplectic twist map F is a generating phase for the graph of F.
We expand in more details for the more general case where F' = F)y o... o F} is a product of symplectic

twist maps of U C 1™ M . This time, the candidate for a generating phase is:

N

W(q) = Z Si(rs Tiey1)
k=1

where we do not identify qn 1 and q; in any way. Then, writing
v=_(qs---,qy), q= (qlan—&-l)’
we will show that 1 (q, v) is a generating phase for Graph(F) C (T*M)?. Let

in the case where M = T™, and the map is defined on all of T*T™, we have V = U = R2n.



54. Generating phases. 169

U={(@r-a) | (@ qxin) € Ue(0)]

where 1), is the “Legendre transformation” attached to the twist map F},. Let 3 : MY+ — M x M be the
map defined by: (q;,...,qx,1) — (g1, qx. 1) The bundle that we will consider here is:

U— BU)C M x M.

Proposition 24.1 states that %(q7 v) = 0 exactly when § = (g, v) is the g component of the orbit of
(g1, P1(q;,9>)) under the successive F},’s. This means that the set of orbits under the successive Fj,’s is
in bijection with the set Xy = {9¥(q,v) = 0} as defined in (54.1) . Since this set is parametrized by
the starting point of an orbit, it is diffeomorphic to U, hence a manifold.

For g € X3, we have:

F(qlvpl(qlvq2)) = (qN+1aPN+1<qN7qN+1))

but: ~
oW
P1(q1,92) = —0151(q1,q2) = *8—(‘11;‘1N+1a'v)
q,
oW
PN+1(QN7‘JN+1) = aZSN(quqN+1) = 8—(‘11qu+17”)
dN+1

In other words, the graph of FinT*M x T*M can be expressed as:

. oW oW
Graph(F) = {(‘ha 7%(‘17’0)an+13 W(qvv)> ' (q,v) € EW} .
1 +1

To finish our construction, we define the following symplectic map:
j+ (TN TN =@y & 245 ) = (T(V x ND), 241, )
(qapa Qa P) - (q7 Qa -D; P)

where (2x denotes the canonical symplectic structure on 7 X . Clearly:
§(Graph(F)) = iy (Zy),

that is, W generates the Lagrangian manifold Gmph(F). Note that the fixed points of F' correspond to
Graph(FYNA(T*M xT*M),ie.toq € Xy, suchthatg, = gy, and —0:51(qy,q5) = 25N (qn, An11)>

which are critical points of W = W’ (qi=qy. .} 3S WE well know.
1—4IN41

Exercise 54.4 Show that the generating function W of Chaperon (see Proposition 53.3) generates the
graph of the Hamiltonian map F : T?" — T?". (Hint. If you are stuck, consult Laudenbach & Sikorav (1985)

D. Symplectic Reduction

We introduce yet another geometric point of view for the generating phase construction. We will see that if
a Lagrangian manifold L C 7™M is generated by the phase W : E — IR, than in fact L is the symplectic
reduction of the Lagrangian manifold dW (E) C T*E. We introduce symplectic reduction in the linear case,

and only sketch briefly the manifold case, refering the reader to Weinstein (1979) for more detail.
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Consider V, {2, be a symplectic vector space of dimension 2n. Let C' a coisotropic subspace of V. Let
A(V) be the set of Lagrangian subspaces of V' (a Grassmanian manifold). The process of symplectic reduction
gives a natural map A(V) — A (C/C") that we now describe. By Theorem 43.1, we know that we can find

coordinates for V' in which:

C= {(qla"'aqnapla"'apk)}
and we have C = {(qx+1,---,¢,)} C C.Then

C/CJ_ = {(Qb coesqEgyP1y - apk)}

which is obviously symplectic. It is called the reduced symplectic space along C'. We denote by Red the
quotient map C' — C'/C . The symplectic form {2 of C/C* is natural in the sense that it makes Red into

a symplectic map:

(54.2) Qc(Red(v), Red(v')) = 2(v,v").

Proposition 54.5 Let L C V be a Lagrangian subspace and C C V a coisotropic subspace. Then
Lo =Red(LNC)=LNC/LNC*

is Lagrangian in C/C*.
We say that L¢ is the symplectic reduction of L along the coisotropic space C'.

Proof. Formula (54.2) tells us that L is isotropic. We need to show that dimL¢c = %dz’mC /C*. Linear
algebra tells us that:
dimLc = dim(LNC) — dim(L N C™).

As would be the case for any nondegenerate bilinear form, the dimensions of a subspace and that of its
orthogonal add up to the dimension of the ambient space. Also, the orthogonal of an intersection is the sum
of the orthogonal. Hence:

dimV = dim(L N C™*) + dim(L N CH)* = dim(L N C*) + dimL + dimC,
since L+ = L. Thus

dimL¢c = dim(L N C) — dimV + dim(L + C) = dimL + dimC — dimV

= dimC — %dimV (54.3)
But
dim/(C/C*) = dimC — dimC* = dimC — (dimV — dimC')
= 2dimC — dimV (54.4)
We conclude that dim Lo = %dim(C’ /C1) by putting (54.3) and (54.4) together. O

We now sketch the reduction construction in the manifold case. Let C' be a coisotropic submanifold of a
symplectic manifold (M, (2). Then TC* is a subbundle of 7'C (that is, the fibers are of same dimension and
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vary smoothly) so we can form the quotient bundle 7'C'/T'C'*, with base C' and fiber the quotient 7,C/7,C*
at each point g of C'. It turns out that this quotient bundle can actually be seen as the tangent bundle of a
certain manifold C'/C~, whose points are leaves of the integrable foliation 7C'. Moreover one can show
that the naturally induced form {2 is indeed symplectic on C//C. Finally, we define red : C — C/C*
as the propjection. Its derivative is basically the map Red defined above. One can show that, if C' intersect a
Lagrangian submanifold L transversally, then Lo = red(L) is an immersed symplectic manifold of C'/C+,
which is the reduction of L along C.

We now apply this new point of view to the generating function construction. Let & = M x RY. We
show that if L = iy (Xw) C T*M is generated by the generating phase W : E — IR, then L is in fact the
reduction of dW (F) C T*FE along the coisotropic manifold C' = {p, = 0}, where we have given 7*F the
coordinate (g, v, p,, P, ). This is just a matter of checking through the construction. We know that dW (E) is

Lagrangian in 7™ E. Its intersection with C' is the set:

dW(E)NC = {(q,v,pq,pv) ET'E| pg= %—Z/(q,v), Py = %—v:(q,v) = 0}
=dW (Xw).
where Yy is the set of fiber critical points. Since by the tranversality condition in our definition of generating
phase Xy is a manifold, so is dW (E) N C: for any W, the map dW : E — T*FE is an embedding. The
bundle 7'C'* is the one generated by the vector fields % and thus C//C* can be identified with T*M =
{(g.p,)}. The image of dW(E) N C under the projection red : C — C/C* is exactly iw (Zw) =
{(q, %—V;(q, v)) | 2¥(q,v) = 0} = L. Note that because £ = M x IRY, the above argument is independent
of the coordinate chosen (e.g. C' is well defined.) With a little care, the argument extends to the case where F/

is a nontrivial bundle over M .

Exercise 54.6 Show that, in the Darboux coordinate used above, the ¢ plane and the p plane of V' both
reduce to the ¢ and p-plane (resp.) of C/C™.

E. Further Applications of Generating Phases

The symplectic theory of Generating Phases does not only provide a unifying packaging for the different
variational approaches to Hamiltonian systems. It can also serve as the basis of symplectic topology, where
invariants called capacities play a crucial role. Roughly speaking, capacities are to symplectic geometry what
volume is to Riemannian geometry: they provide obstruction for sets to be symplectomorphic, or for sets to
be squeezed inside other sets. Viterbo ( 1992) uses generating phases to define such capacities, in contrast
to prior approaches by Gromov (1985)who uses the theory of “pseudo-holomorphic curves”. The basis fo

Viterbo’s definition of capacity is a converse statement to Lemma 54.3:

Proposition 54.7 If W, and Wy both generate h'(0%,), where h' is a Hamiltonian isotopy, then after

stabilization W1 and W5 are equivalent.

In view of this, Viterbo is able to define a capacity for a Lagrangian manifold . Hamiltonian isotopic to

07, by choosing minimax values of a given (and hence any) generating phase for L.
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In another work, Viterbo (1987) shows that a certain integer function called Maslov Index on the set
of paths in the Lagrangian Grassmannian is invariant under symplectic reduction. It can be shown that the
Lagrangian Grassmanian A(1) has first fundamental group 71 (A(V)) = Z. Very roughly, we can interpret
this by saying that A(V") has a “hole” and the Maslov index measures the number of turns a curve makes around
that hole. Now let W, be generating phases for a Hamiltonian isotopy h¢. The set dWr(F) is Lagrangian
in 7*E and its reduction is graph of h’. The Maslov Index in A(T*E) detects the change in Morse Index
of the second derivative of W;, whereas on the graph of A!, it detects a non transverse intersection with the
plane {(g,p) = (Q, P)}. This can be used to give a neat generalization to Lemma 31.2and to explain the
classical relationship discovered by Morse between the index of the second variation of the action function
and the number of “conjugate points”(see Milnor (1969) for the classical, Riemannian geometry case, and
Duistermaat (1976) for the more general convex Lagrangian case.) Finally, we refer to Weinstein (1979) ,

Lecture 6, for further survey on generating phases (called Morse families there) .

Proposition CZproplagrim is 41.5, Exercise CZexoimmersion is CZexoimmersion



