CHAPTER 8 or HAMP

PERIODIC ORBITS FOR HAMILTONIAN
SYSTEMS

March 14 1999

More about my recent results in the case T" (sphere linking)? Define the radius of injectivity.
Put HAMpartial here instead of in HAM? Add the proof of Theorem 33.57 Copy the precise
statement of Arnold’s conjecture.

We present here some results of existence and multiplicity of periodic orbits in Hamiltonian systems on
cotangent bundles. Our main goal is to show the power, and relative simplicity of the method of decomposition
by symplectic twist map as presented in Chapter HAM, which results into finite dimensional variational
problems. Some of the results in this chapter have recently been improved upon by other authors. However, this
was done at a high price, using hard analytic and topological method. Many of these, and other improvements
could probably be obtained through the method presented here.

Bla bla bla....

42, Periodic Orbits In The Cotangent Of The n-Torus

We present here two results of existence and multiplicity of periodic orbits for Hamiltonian systems in 7*T".
The are easy corollaries of the Theorems of existence of multiple periodic orbits for symplectic twist maps
proven in Chapter PSTM. The first one concerns a certain class of optical systems, the second one Hamiltonians

that are quadratic nondegenerate outside of a bounded set.

A. Optical Hamiltonians

Assumption 42.1 (Uniform Opticity) H(q,p,t) = H;(z) is a twice differentiable function on 7*T" x IR

(or T*M x IR, where M = IR™) and satisfies the following:

(1) sup HVZHtH <K

(2) The matrices Hpp (2, t) are positive definite and its smallest eigenvalue are uniformly bounded below by
C > 0.

Theorem 42.2 Let H(q,p,t) be a Hamiltonian function on T*T™ x IR satisfying Assumption 42.1.
Then the time 1 map h' of the associated Hamiltonian flow has at least n + 1 periodic orbits of type

m,d, for each prime m,d, and 2" when they are all non degenerate.
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Proof. We can decompose the time 1 map:

k+1

+

L
o...ohJ.

M=hk_,0...0h

N

=

k+1
and each of the maps h ¥ is the time % of the (extended) flow, starting at time % Proposition HAMde-

N
componeof Chapter 4 shows that, for NV big enough, such maps are symplectic twist maps. Moreover, we also
noted in Chapter HAM, Remark HAMremthat these maps also satisfy the convexity condition . The result
follows from Theorem STMPthesis. O

B. ASYMPTOTICALLY QUADRATIC HAMILTONIANS

We now turn to systems that are not necessarily optical, but satisfy a certain quadratic “boundary condition”

which makes them completely integrable outside a compact set:

Theorem 42.3 Let H : T*T" x IR — IR satisfy the following boundary condition:
1

Then h', the time—1 map of the Hamiltonian flow has at least n + 1 distinct m, d—orbits, and 2"
when they are all nondegenerate (i.e. generically). Furthermore, such an orbit lays entirely in the

set ||p|| < K if and only if the rotation vector m/d belongs to the ellipsoid:

E={zeR"||A (z-c)| < K}.

Proof. The boundary condition (42.1) is Assumption 2 preceeding Theorem 39.5, in which it is proven
that the time ¢ of such Hamiltonians are twist maps. Hence, as remarked in Proposition HAMdecomptwo,
the time 1 map can be decomposed into symplectic twist maps. To insure that these twist maps satisfy
the conditions of Theorem STMPtquad, we go back to the proof of that proposition, and note that, instead of
G(q,p) = (9+p, p),we cantake G(q,p) = (q+ Ap+c, p),the time 1 map of Hy(gq,p) = % (Ap,p)+ec.p,
obviously a symplectic twist map . Then, outside the set ||p|| < K, the maps Fay, Fz;—1 of the decomposition

are respectively the time 1 and the time (% — 1) of the Hamiltonian flow associated to Hy, that is:
Fy(q,p) = (g + Ap+c,p)

1-N
Fy.1(q.p) = (g + T(AP +¢),p).

These maps clearly satisfy the conditions of Theorem STMPtquad, which proves the existence of the advertised
number of m, d orbits.
To localize these orbits, note that an orbit starting in ||p|| > K must stay there, and the map h! on such an

orbit is just G. The rotation number of such an orbit is thus

(Q@-q)=Ap+c

from which we conclude that m/d is in the complement of £. ad

Remark 42.4 There is a distinction between periodic orbits of ~! and periodic orbits of the Hamiltonian

equations: for a general time dependent Hamiltonian flow, (k)™ # h™, and hence an m, d periodic orbit
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for h! is not necessarily one for the O.D.E. (which should satisfy h'T%(z) = h!(z) + (km,0) for all
t € [kd, (k+1)d), k € Z).However,if H is periodic in time, of period 1, the equality (k)™ = h" does hold,
and in this case the two notions coincide. In particular, this holds trivially for time independant Hamiltonians.
Unfortunatly, these cases are degenerate in our setting, since Dh?(z) preserves the vector field X, which
is thus an eigenvector with eigenvalue one. So in these cases, we can only claim the cuplength estimates for
the number of periodic orbits for the Hamiltonian flow in either Theorem 42.2 or 42.3. We think that some
further argument should yield, even in the time periodic case the sum of the betti number estimate for the
number of flow periodic orbits, when the periodic orbits are nondegenerate as orbits of the flow: i.e., the

only eigenvector of eigenvalue one for Dh%(z) is in the direction of the vector field X ;.

C. BIBLIOGRAPHY...
43. Periodic Orbits In General Cotangent Spaces

We now turn to the study of Hamiltonian systems in cotangent spaces of arbitrary compact manifolds. Our

main result, which first appeared in Golé (1994) is:

Theorem 43.1 Let (M, g) be a compact Riemannian manifold. Let F : T*M — T*M be the time 1
map of a time dependent Hamiltonian H on B*M , where H is a C? function satisfying the boundary

condition:

H(q,p.t) = g(q)(p,p) for |p|| > C.

where C' is strictly smaller than the radius of injectivity ??%have to define it somewhere???. Then
F has cl(M) distinct fized points and sb(M) if they are all non degenerate. Moreover, these fixed
points lie inside the set {||p|| < C} and can all be chosen to correspond to homotopically trivial

closed orbits of the Hamiltonian flow.

THE DISCRETE VARIATIONAL SETTING

Define
B*M = {(q,p) € T*M | g(q)(p,p) = ||p||” < C* < R?},

where R is the radius of injectivity of (M, g). Let 7 denote the canonical projection 7 : B*M — M. Let
F be as in Theorem 43.1. From Proposition HAMdecomptwoin Chapter HAM, we can decompose F' into a
product of symplectic twist maps :

F=Fy,yo...oF,

where Fyy, restrained to the boundary dB* M of B*M is the time 1 map h} of the geodesic flow with
Hamiltonian Hy (g, p) = 3 |p||°. Likewise, Fp_1 is h(TTN on 0B*M.

Let Sy, be the generating function for the twist map F}, and ¢, = ¢, the diffeomorphism (¢, p) — (¢, Q)
induced by the twist condition on F}. We can assume that v, is defined on a neighborhood U of B* M in
T*M.Let
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O={a=(q1,---,%n) € MY (k> @k41) € ¥i(U) and

(44.1)
(gan»q1) € Yan(U)}

O is an open set in M2V, containing a copy of M (the elements g such that q,, = q,, for all k).
Next, define :

2N

(4.2) W(q) = Zsk(%a Qps1);
k=0

where we have set g, ; = q;. Choosing to work in some local coordinates around q € M N weletp, =
—015k(qy» Qjot1) and Py, = 925k(qy,, Gj41)- In other words, (q;,, p,) € Ty M is such that ¢« (g, p) =
(ak>qpy1) and (g1, Py) € Ty, ., M is such that Fi(a,pr) = (@xy1, Pr). We let the reader check that
the following proofs can be written in coordinate free notation.

As in the case M = T", we have:
Lemma 44.1 (Critical Action Principle) The sequence q of O is a critical point of W if and only if the
sequence {(qy, Pr) Y ref1,...,2n,1} @5 an orbit under the successive Fy’s, that is if and only if (q,,p;)

is a fized point for F.

Proof. Because the twist maps are exact symplectic and using the definitions of p;,, P}, we have:

(44.2) Pdgy — prda, = dSe(ak, dps1);
and hence
2N
dW (q) = Z(Pk—l — Pi)dg,
k=1

which is null exactly when Py, = p,,ie. when Fi(q;_1,P;_1) = (4, ;). Now remember that we
assumed that g, = q;. ad

Hence, to prove Theorem 43.1, we need to find enough critical points for W. As before, we will study the
gradient flow of W (where the gradient will be given in terms of the metric g) and use the boundary condition
to find an isolating block. The main difference with the previous situations on 7*T" is that we cannot put
W in the general framework of generating phases quadratic at infinity. Nonetheless, thanks to the boundary
condition we imposed on the Hamiltonian, we are able to construct an isolating block and use Floer’s theorem

of continuation to get a grasp on the topology of the invariant set, and hence on the number of critical points.

45. Proof Of Theorem 43.1
THE ISOLATING BLOCK

In this subsection we prove that the set B defined as follows:

(45.1) B={q€0]|lp(q,qr1)ll <C}

is an isolating block for the gradient flow of W, where O is defined in (44.1) , C is as in the hypotheses of
Theorem 43.1 and p;, = —015k(qy, gy 1) Note that when ||pk(qk, qu)H =C,
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= 1 if k is even

, _ g
(45.2) Dis(qy; gy11) = |ax|C Whefe{ak LN if ks odd

Clearly B contains the constant sequences, a set homeomorphic to M .
Proposition 45.1 B is an isolating block for the gradient flow of W.

Proof.  Suppose that the point g of U is in the boundary of B. This means that ||p, || = C for at least one k.
As noted in (45.2) , this means that Dis(qy, g5 1) = |ax|C for some factor a;, only depending on the parity
of k. We want to show that this distance increases either in positive or negative time along the gradient flow

of W . This flow is given by:
(45.3) q;, = Ak(Pr_1—py) = VIWi(q)

where A, = A(qy,) is the inverse of the matrix of coefficients of the metric g at the point q,,. Remember that
we have put the product metric on O, induced by its inclusion in M2~ (see Remark HAMgradon the definition
of the gradient of a function).

We compute the derivative of the distance along the gradient flow at a boundary point of B, using Corollary
HAMpartialand the fact that h¢* (q. p) = (qp4 1. Pr):

d_.. . _
—Dis(qy, Qk+1)’t:0 = 01Dis(qy, @y+1) - VWi(q)

dt
+ 92Dis(qy,, @it 1) - VIWi+1(Q)

. w4
= szgn(ak)m «Ap(Pr-1 — pg)
k

(45.4)

Py

E A (P — py
||Pk|| k+1( k k+1>

+ sign(ag)

We now need a simple linear algebra lemma to treat this equation.

Lemma 45.1 Let (, ) denote a positive definite bilinear form in R", and ||.|| its corresponding norm.
Suppose that p and p’ are in R" ,that ||p|| = C and that ||p’|| < C. Then :

p,p —p)<0.

Moreover, equality occurs if and only if p’ = p.

Proof. From the positive definiteness of the metric, we get:
(P =p.p —p) 20,
with equality occuring if and only if p’ = p. From this, we get:
2(p,p') < (PP )+(pp)

Finally,
(p,p')—(pp)) <0

N =

(@ -p)hp)=(p.p)—(p,p) <

with equality occuring if and only if p’ = p. O
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Applying Lemma 45.1 to each of the right hand side terms in (45.4) , we can deduce that %Dis(q ks Qig1)
is positive when £ is pair, negative when & is odd. Indeed, because of the boundary condition in the hypothesis
of the theorem, we have || Py|| = ||p;.|| whenever ||p,|| = C: the boundary 9 B* M is invariant under F' and
all the F},’s. On the other hand g € B = ||p;|| < C'and || P;|| < C, for all [, by invariance of B* M . Finally,
ay, is positive when k is even, negative when £ is odd.

We have shown that the gradient flow exits B at all the points of 0B except perhaps at the edges of 5.
These edges are the sets of points g such that more than one p,, has norm C'. The problem at these edges occurs
p,|| = C = ||P;] and VW;(q) = 0.

It is now crucial to note that {[,...,m} can not cover all of {0,...,2N}: this would mean that q is a

when £ is in an interval {/, ..., m} such that, for all j in this interval,

critical point corresponding to a fixed point of A} in 9 B* M . But such a fixed point is forbidden by our choice
of C': orbits of our Hamiltonian on the set ||p|| = C' are geodesics, but geodesics in that energy level can not
be fixed loops since C' > 0, and they can not close up in time one either since C' is less than the injectivity
radius.

We now let £ = m in (45.4) and see that the flow must definitely escape the set B at g in either positive

or negative time, from the m*" face of B. a

Remark 45.2 If the Hamiltonian considered is optical and we decompose its time 1 map into a product of NV
1
twist maps as in HAMdecompone, all the F},’s coincide with /" on the boundary of B* M. In that case, all

the ay’s in the above proof are positive, and B is a repeller block in this case.

END OF PROOF OF THEOREM 43.1

To finish the proof of Theorem 43.1 we use Floer’s theorem TOPOfloerthmof continuation of normally

hyperbolic invariant sets. We consider the family F)\ of time 1 maps of the Hamiltonians:
Hy,=(1—-XHy+ \H.
Corresponding to this is a family of gradient flows ¢}, solution of

d
—q = VW,y(q
i A(),

where W), is the discrete action corresponding to the decomposition in symplectic twist maps of the map F.
We take care that this decomposition has the same number of steps 2V for each \. The manifold on which
we consider these (local) flows is O, which is an open neighborhood of B in M 2N Each of the F) satisfies
the hypothesis of Theorem 43.1, and thus Proposition 45.1 applies to ¢% for all A in [0, 1]: B is an isolating
block for each one of these flows. Hence the maximum invariant sets G for the flows (} in B are related by
continuation. The part of Floer’s Theorem that we need to check is that GG is a normally hyperbolic invariant

manifold for ¢f.

Lemma 45.2 Let Gy = {q € B | q;, = q1,Yk}. Then Gy is a normally hyperbolic invariant set for

¢t Go is a retract of O and it is the mazimal invariant set in B.
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Proof. The only critical points for Wy in B are the points of (G, which correspond to restpoints of the
geodesic flow, i.e. the zero section. Indeed, critical points of W}, in B corresponds to periodic points of period
1 for the geodesic flow in B* M. Our definition of that sets precludes nontrivial periodic geodesics in B* M.
We now show thatthe maximum invariant set for ¢§ in B is included in G. Since ¢{ is a gradient flow, such an
invariant set is formed by critical points and connecting orbits between them. The only critical points of W)
in B are the points of Gi. If there were a connecting orbit entirely in B, it would have to connect two points
in Gy, which is absurd since W, = 0 on GG, whereas W, should increase along non constant orbits.

G\ is a retract of M 2N under the composition of the maps:

7=(q1,---,qn) = €1 — (21,915, 1) = a(q)
which is obviously continuous and fixes the points of G.

It remains to show that (G is normally hyperbolic. Since Gy = M is an n-dimensional manifold made of
critical points, saying that it is normally hyperbolic is equivalent to saying that kerV2Wj(q) has dimension n:
indeed, if it is the case, the only possible vectors in this kernel must be tangent to Gy, and thus he differential
of the flow is nondegenerate on the normal space to 7'G:y. In the present situation, the second variation formula
of Lemma 31.2says that the 1-eigenspace of Dh is isomorphic to the kernel of V2W;. Hence it is enough
to check that at a point (q,0) € B*M corresponding to g, 1 is an eigenvalue of multiplicity exactly n for
Dh(q;,0). Let us compute Dhi(q;,0) in local coordinates. It is the solution at time 1 of the linearized (or
variation) equation:

U = JV?Hy(q,,0)U

along the constant solution (¢(t), p(t)) = (g4, 0), where .J denotes the usual symplectic matrix ( BI é) .

An operator solution for the above equation is given by exp (tJ V2Hy(q, O)) On the other hand:

V?Hy(g,,0) = (8 A((«)n) )

which we computed from Hy(q,p) = A(q)p.p, the zero terms appearing at p = 0 because they are either

quadratic or linear in p. From this,

Dhij(gy,0) = exp (JV*Ho(qy,0)) = (é A(;h)>

is easily derived. This matrix has exactly n independent eigenvectors of eigenvalue 1 ( it has in fact no other
eigenvector). Hence, from Lemma 31.2, VQW@) has exactly n vectors with eigenvalue 0, as was to be
shown. O

We now conclude the proof of Theorem 43.1. We have proved that the gradient flow (?, has an invariant
set Gy with H*(M) — H*(G1). From this we get in particular:

cl(G1) > cl(M) and sb(G1) > sb(M).

Theorem 50.2 tells us that ¢* must have at least cl(G1) rest points in the set G, and sb(G) if all rest points
are nondegenerate. But Lemma 31.2tells us that nondegeneracy for V2 at a critical point is the same thing
as nondegeneracy of a fixed point for F' (no eigenvector of eigenvalue 1). This proves the existence of the
advertised number of fixed points of the map F'. In the following section, we will see that all these fixed points
of the time 1 map correspond to periodic orbits may be chosen to be homotopically trivial. This concludes the
proof of Theorem 43.1. O
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FREE HOMOTOPY CLASSES

Since each Fy, is close (or equal) to hg* for some positive or negative ay, we have: g is in the set vy, (B:‘I‘ M)
and, since By M — 1y,(B* M) is a diffeomorphism, we can define a path c (¢, Q) between ¢ and a point Q)
of ¢y, (B, M) by taking the image by 1, of the oriented line segment between ¥y '(g) and ¥, ' (Q) in ByM.
In the case where F}, = h{, this amounts to taking the unique geodesic between ¢ and @ in v, (ByM) .

If we look for periodic orbits of period d and of a given homotopy type, we decompose £ into 2N d twist

maps, by decomposing F' into 2/N. Analogously to (4.1), we define :

O4=1{7=(q1,---,q2va) € M*N|(q, qrr1) € ¥x(U) and
(92nd, 01) € Yana(U)},

remarking that the 1/;’s here correspond to the decomposition of F'¢ into 2Nd steps (U is as before a
neighborhood of B* M).

To each element g in O, we can associate a closed curve ¢(q), made by joining up each pair (gj, gx+1)
with the curve ¢y (qx, gi+1) uniquely defined as above. This loop ¢(q) is piecewise differentiable and it depends
continuously on @, and so do its derivatives (left and right). In the case of the decomposition of A} , taking
Fy=h}, this is exactly the construction of the broken geodesics (see Section 38.0). Now any closed curve

(10)

in M belongs to a free homotopy class m. To any d periodic point for F', we can associate a sequence

q(x) € Oy of q coordinates of the orbit of this point under the successive F},’s in the decomposition of F'¢.

Definition 45.3 Let z be a periodic point of period d for F'. Let g be the sequence in O, corresponding to .
We say that « is an (m, d) point if ¢(g(x)) is in the free homotopy class m.

This definition has the advantage to make sense for any map F' of 7% M which can be decomposed into
the product of symplectic twist maps . If F' is also the time 1 map of a Hamiltonian, it agrees with the obvious

definition:

Proposition 45.4 If z is an m,d periodic orbit, then the projection m(z(t)),t € [0,d] of the orbit of

z under the Hamiltonian flow is a closed curve in the free homotopy class m.

Proof. Left as an exercise (Hint. Use the geodesic flow to construct the homotopy between c(g(z)) and

m(2(1)))

Let
(45.5) Om,a={q€0]c(q) €m}

Since ¢(q) depends continuously on ¢ € O, Oy, 4 is a connected component of O. The reader who wants to

make sure that, in the proof of Theorem 43.1, the orbits found are homotopically trivial, can check that the

10 We remind the reader that free homotopy classes of loops differ from elements of 71 (M) in that no base
point is kept fixed under the homotopies. As a result, free homotopy classes can be seen as conjugacy
classes in 7 (M), and thus can not be endowed with a natural algebraic structure. Two elements of a free
class give the same element in H;(M). Hence free homotopy classes form a set smaller than 1 (M), bigger
than Hi(M). All these sets coincide if 71 (M) is abelian.
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proof we gave in last section works identically when one replace the space O, by its connected component
O.,1, where e is the homotopy class of the trivial curve. Another place where one uses this decomposition of

O in different homotopy components is the following:

Theorem 45.5 Let (M,g) be a Riemannian manifold of negative curvature and H be as in Theorem
1. If v denotes the (unique) closed geodesic of free homotopy class m, F has at least 2 (m,d) orbits
in B*M when length(ym) < dC' .

The proof of Theorem 45.5 (see Golé (1994), Theorem 2) has the same broad outline as that of Theorem
1. We work in O,;, 4 instead of O. The normally hyperbolic invariant set that we continue to in this setting is
given by the set G of critical sequences corresponding to the orbits under the hy*’s of the points on +,,,. The
normal hyperbolicity of G derives this time from the hyperbolicity of the geodesic flow in negative curvature.
77?7 Add the proof in? ???

46. Linking Of Spheres: Toward A Generalization Of The Theorem Of
Poincaré And Birkhoff

As stated in the introduction , Arnold conjectured in 1965 a generalization of the Theorem of Poincaré-Birkhoff
for Hamiltonian maps of T™ x IB" (where IB" is the closed ball in IR").

Arnold’s Linking of Spheres Conjecture

Generalized Arnold Conjecture Let M/ be a compact manifold, and F' be a Hamiltonian map of a ball bundle
B*M in T M. Suppose that each sphere 9 B; M links with its image by " in 0B* M. Then F' has at least
cl(M) distinct fixed points, and at least sb(M ) if they are nondegenerate.

In Banyaga & Golé (?7?)(see also Golé (1994)), we proved the simple case:

Theorem 46.1 Let F' be a symplectic twist map of B* M which links spheres on the boundary 0B*M .

Then F' satisfies the generalized Arnold Conjecture.

Proof. The proof of this theorem is trivial once one understands the meaning of the linking condition. If one
looks at the Poincaré-Birkhoff situation, an easy equivalent condition to the boundary twist condition (points
on the two boundary components go in opposite directions for some lift of F) is that a vertical fiber {x = 2}
and its image by F' should have a nonzero algebraic intersection number (i.e. the number of intersections
counted with orientation). Let us take this for the moment as a working definition of the linking of spheres in

the general case:

Definition 46.2 (Boundary Twist: version 1) We say that a map F': B*M — B* M satisfies the boundary
twist condition if each fiber Ay, = 7 !(q,) intersects its image by F’ with a nonzero algebraic intersection

number
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We will see later on (for the reader who is comfortable with a little algebraic topology) that this intersection
number condition is equivalent to linking of the boundary spheres as is usually defined in algebraic topology
(and was probably meant by Arnold). The importance of this is that the boundary twist condition is indeed a
topological condition on the action of the map on the boundary.

If F' is a symplectic twist map, a fiber A, and its image under F' may intersect at most once. Hence the
boundary twist condition means in this case that all the fibers intersect their image ezactly once. Fixed points
of F correspond to critical points of ¢ — S5(q, q). This function is well defined since, by what preceeds, the
diagonal in M x M is in the image of B* M by the embedding 'r. Hence F' has as many fixed points as
the function ¢ — S(q, q) has critical points on M. Morse and Lyusternick-Schnirelman’s theories give the
advertised estimates. ad

We now show that, in the case considered by Arnold, our working definition of boundary twist is indeed
equivalent to the classical one of algebraic topology. We first remind the reader of the classical definition
of linking of spheres. Let A, be a fiber of B*M as before. Then 94 is an n dimensional sphere. It make
sense to talk about its linking with its image F'(04,) in 0B *T": the latter set has dimension 2n — 1 and the
dimensions of the spheres add up to 2n — 2. The linking number F'(0A,) with 04, is given by the class
[F(0Aq)] € Hp—1 (OB*TH\OA(I) More precisely, we have:

H, 1(0B*T"\94y) = H, 1 (S"~" x (R" — {0}))

Kunneth
~

>~ H, (8" Yo H, 1(R" - {0})

(46.1)

Thus, taking 04, from OB*T" creates a new generator in the (n — 1)st homology, i.e. the generator b of
Hy—1(R" = {0}).

The linking number of the spheres F'(0A,) and 04, is given by the H,,_1(IR" — {0}) = IR coefficient
in the decomposition of the homology class [F'(94)] in the direct sum in (46.1) . If the linking number is

nonzero, we say that the spheres 0, and its image by F' /ink.

Definition (Boundary Twist: Version 2) We will say that the map F’ satisfies the boundary twist condition
if forall g € T" these spheres link in OB*T" .

Lemma 46.3 If F is the lift of a diffeomorphism of B*T™ = T™ x B", the two definitions of the
boundary twist condition are equivalent. More precisely, the algebraic intersection number #(Aq N

F(Ay)) and the linking number of the spheres 0Aq and F(0Aq) are equal.

Proof. We complete (46.1) into the following commutative diagram:

Hn_1(0B*T"\04,) = H,_1(IR" — {0}) & H,_1(5")
i | 4

anl(B*Tn\Aq) = anl ((IR” - {O} X Bn))

where ¢, j are inclusion maps. It is clear that j.b generates

Hp1 (IR" —{0}) x B") = Hp—1 (IR" — {0}) x R").
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The last group measures the (usual) linking number of a sphere with the fiber A, in B *T" = IR*". But it is

well known that such a number is the intersection number of any ball bounded by the sphere with the fiber
Ay, counted with orientation.

O

??7more about my recent results in the case T"???

Theorem HAMPthmfp is 43.1, Theorem HAMPthmhyp is 45.5



