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HAMILTONIAN SYSTEMS VS. TWIST MAPS

March 14, 1999

The last section (elliptic f.p.) also appears in SG. Decide where to put it.

In this chapter, we explore the relationship between Hamiltonian systems and symplectic twist maps on
cotangent bundles. In the first part of this chapter, we show how to write Hamiltonian systems as compositions
of symplectic twist maps. This is instrumental in setting up a simple variational approach to these systems,
which is finite dimensional when one searches for periodic orbits. We start in Section 38 with the geodesic
flow, which serves as a reference model for Hamiltonian systems: it plays a role similar to that of the integrable
map in the twist map theory. In Section 39, we expend our approach to general Hamiltonian or Lagrangian
systems satisfying the Legendre condition (which we see as an analog to the twist condition). In Section 3,
we show that, whether or not the Legendre condition is satisfied, the time 1 map of a Hamiltonian system
may be decomposed into finitely many symplectic twist maps . This method generalises the classical method
of broken geodesics of Riemannian geometry. Our main contribution is to make such a method available for
Hamiltonian systems that do not satisfy the Legendre condition.

In Section 41, we see how symplectic twist maps also arise from Hamiltonian systems as Poincaré section
maps around elliptic periodic orbits. From an opposite perspective, we show in Section 42 that in many cases,
a symplectic twist map may be written as the time 1 of a (time dependant ) Hamiltonian system. Most of this

last section is courtesy of M. Bialy and L. Polterovitch.

38. Case Study: The Geodesic Flow

A. A Few Facts About Riemannian Geometry
Let (M, g) be a compact Riemannian manifold. This means that the tangent fibers T,/ are endowed with
symmetric, positive definite bilinear forms:

(v,) = g(g)(v,v') forv,v" € TyM

varying smoothly with the base point g. We will denote the norminduced by this metric by [|v|| := /g(q) (v, v).

A curve g(t) in M is a geodesic if and only if it is an extremal of the action or energy functional:

t
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between any two of its points g(¢1) and g(t2) among all absolutely continuous curves 3 : [t1,t2] — M with
same endpoints. Geodesics are usually thought of as length extremals, that is critical points of the functional
[ 3 ||| dt. But action extremals are length extremals and vice versa (with the difference that action extremals
come with a specified parametrization). One usually chooses to compute with the action, since it yields simpler
calculations. For more detail on this, as well as a the more abstract definition of geodesic given in terms of a
connection see €.g. Milnor (1969) .

The variational problem of finding critical points of A has the Lagrangian

1 1.
Lo(a.v) = 59 (v.v) = 5 [lall*-

Following the procedure of Section ??? of Chapter SG, we use the Legendre transform to compute the

corresponding Hamiltonian function. In local coordinates q in M, we can write

9(q)(v,v) = <A(7q;v, v),
where (, ) denotes the dot product in IR", and A(q% is a symmetric, positive definite matrix varying smoothly

with the base point g. With this notation, we have

0L .
O—v(q’ v) = A

9Ly
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Inparticular, % is nondegenerate. Hence the Legendre condition is satisfied and the Legendre transformation

is, in coordinates:
L:(q.v) = (g.p) = (q, A ,v)

which transforms L into a Hamiltonian H:

Ho(a,p) = v~ Lo(a.0) = (b, Agp) — (A} Ap A@p) = 3 (A@p-D)
This Hamiltonian is a metric on the cotangent bundle:
Ho(q,p) = %<A<q)p,p> = %g?ﬁ) (p.,p)-
We will also denote the norm associated to this metric by ||p|| = g?z) (p,p). Note that the Legendre

transformation is in this case an isometry between the metrics g and ¢7: in particular, if (g, p) = £(q,v),
then ||p|| = ||v||. Hence the Hamiltonian is half of the speed and we retrieve, from conservation of energy
in Hamiltonian systems, the fact well known by geometers that extremals of the action are parametrized at
constant speed.

The geodesic flow is the Hamiltonian flow hf generated by Hy on T*M. It is not hard to see that
the trajectories of the geodesic flow restricted to an energy level project to the same curves on M as the
trajectories in any other energy level: the velocities are are just multiplied by a scalar (See Exercise 38.1).
For this reason, one often restricts the geodesic flow to the unit cotangent bundle Ty M = {(q,p) € T*M |
|p|| = 1}. Traditionally, geometers use the term geodesic flow to denote the conjugate £~ 1h} L on TM of
this Hamiltonian flow, as restricted to the unit tangent bundle. Remember that projections of trajectories of a
Hamiltonian flow associated to a Lagrangian satisfying the Legendre condition are extremals of the action of

the Lagrangian, and vice versa. (See Chapter SG, Section ???). In the present case, if (g(¢), p(t)) a trajectory
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of the geodesic flow, then g(t) is a geodesic. Conversely, if g(t) is a geodesic, it is the projection on M of the
solution (g(t), p(t)) of the geodesic flow with initial condition (g4, p,) = (g(0), A~1g(0)).

We now want to establish a fundamental result of Riemmannian geometry, which we will rephrase in the
next subsection by saying that the time ¢ of the geodesic flow is a symplectic twist map . The exponential map
is defined by:

expq, (tv) = q(1),

where q(t) is the geodesic such that ¢(0) = v. Note that any geodesic can be written in this exponential
notation. In terms of the geodesic flow, exp, (tv) = mwohfjo L(qy,v), where w : T*M +— M is the canonical

projection.

Theorem 38.1 The map Exp: TM — M x M

(38.1) (q,v) — (q,Q) = (g, expy(v))

defines a diffeomorphism between a neighborhood of the O—section in T M and some neighborhood of

the diagonal in M x M. Moreover, for (q,v) in that neighborhood:

Dis(g, expq(v)) = ||v||

One way to paraphrase this theorem is by saying that, any two closeby points are joined by a unique, short

enough, geodesic segment.

Proof. By definition, expy(0) = g and “eap,(sv) =vats =0,

DEzp| g0 = (Iod E) !
whose determinant is 1. Hence, Exp is a local diffeomorphism around each point of a compact neighborhood
of the 0-section. In particular we can assume that there is an e such that Fzp is a diffeomorphism of an e ball
in TM around (q,0) and a ball in M x M around (q, q), where e is independant of q.

We now show that Exp is an embedding when restricted to U, = {(q,v) € TM | ||v|| < €}, where € is
as above. It is enough to check the injectivity. Let two elements in U, have the same image under Fxp. Since
the first factor of Exp gives the base point, this can only occur if they are in the same fiber of U.. But, by our
choice of U, this implies these elements are the same.

Finally, we show that Dis(q, expq(v)) = ||v|| whenever ||v|| < e. We remind the reader that the distance
Dis(g, Q) between two points g, and @ in a compact Riemannian manifold is given by the length of the
shortest path between g and Q). As a length minimizer, the shortest path is also an action minimizer, and hence
a geodesic. Since Exp is an embedding of U, in M x M, expis 1to1on U, NTyM and the unique geodesic
that joins q and expy(v) in exp(U. N Ty M) is the curve t — g(t) = expq(tv). The length of this curve is
fol llg| dt = fol |lv|| dt = ||v|| (see Exercise 38.1 c)). The only way our formula may fail is if there were a
shorter geodesic joining g and expg(v) not in exp(U, N Ty M)). But this is impossible since this geodesic

would be of the form exp, (tw), t € [0, 1] with length [|w]|| > e.
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Exercise 38.1 a) Check that, in local coordinates, Hamilton’s equations for the geodesic flow write:

i= AP

38.2 DA
(38.2) p:_< a@p’p>
q

b) Verify that hif(q,p) = h&(q,sp). (Hint. if (q(t),p(t)) is a trajectory of the geodesic flow, then
(q(st), sp(st)) is also a trajectory).
c) Show that if ¢(t) = expy, (tv), [|a(t)|| = ||v]| for all ¢.

Exercise 38.2 Show that the completely integrable twist map (x,y) — (z + y,y) is the time 1 map of the
geodesic flow on the “flat” circle, i.e. the circle given the euclidean metric g, (v,v) = v

B. The Geodesic Flow As A Twist Map

Theorem 38.1 is the key to the following:

Proposition 38.2 The time 1 map h{ of the geodesic flow with Hamiltonian Ho(q,p) = %||p||2 is
a symplectic twist map on U. = {(q,p) € T*M | |||p|| < €}, for € small enough. More generally,
given any R > 0, there is an to > 0 (or given any to there is an R) such that hi,t € [—to,to], is a

symplectic twist map on the set Ur = {(q,p) | | ||p|| < R}. The generating function of hf is given
by S(g,Q) = LDis*(q, Q).

Proof. Since h} is a Hamiltonian map, it is exact symplectic. Define Exp# = Exp o L. By Theorem
38.1, Exp™ is a diffeomorphism between U, = {(q,p) | ||p|| = ¢} and a neighborhood of the diagonal in
M x M.But Ezp*(q,p) = (q,Q(q,p)), where Q = 7 o h}(q,p). Hence h} is a symplectic twist map
on Ue, and 41 = Exp*. The more general statement derives from the fact that Exp? (q, tp) = (q, q(t)),
where 5§ (q,p) = (q(t), p(t)).

We now show that %Dis2 (g, Q) is the generating function of h} when it is a symplectic twist map on a

domain U (the proof for A, is identical). Since A} is a Hamiltonian map,
(h§) pdq — pdg = dS, with S(q,p) = /pdq — Hodt
v

where ~ is the curve hf(q,p), t € [0, 1] (see Theorem ??? in Chapter SG). We now need to show that S,
expressed as a function of q, Q is the one advertised. In this particular case, since ¢ = A(4)p (see Exercise

38.1)and Ho = 3(Agp,p) = % |||, the integral simplifies:

! 1 i
[ pda—tiodi= [ 5 - 5 lp)Pd= [ S lp)*a
o 0 0

But the integrand is H, which is constant along ~. Hence, using Theorem 38.1, and the fact that £ is an
isometry, we get:

1 1. 1.
S(qap> = 5 ||p||2 = 5 ”sz = EDISZ(an(qap>)7

where (q,v) = £ (g, p). This makes S the advertised differentiable function of g and Q whenever (g, p) —
(g, Q) is a diffeomorphism. O
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Remark 38.3 As a simple example of what makes h{, cease to be a twist map when the domain U is extended

too far, take M to be the unit circle with the arclength metric. In a chart 6 € (—e, 2w — €), we have:

. - 0 when 0<m
Dis(0,0) = {27r -0 when 6>=
As aresult, the left derivative of %Dis2 (0, 8) is m, whereas the right derivative is —: the function Dis is not

differentiable at this point.
The following will be instrumental in the proof of Theorem 31.1. ???Put it there instead???

Corollary 38.4 Let h§(q,p) = (Q,, Ps) be the time s of the geodesic flow, then:

P,

(38.3) Dis(a,Q,) = —sign(s) 12,1

and 9:Dis(q, Q) = sign(s).

P
[l

Proof. From Proposition 38.2, we get:

1., . . .
—-pP= a1 §D152(q7 Ql) = DlS(q, Ql)alDls(qa Ql) = Hp” alDlS(qa Ql)

which proves 91 Dis(q, Q) = —ﬁ. Using Q, = 7 o h}(q, sp), one may replace p by sp in the previous
computation to prove the first equality. For the second equality, the fact that Dis(q, Q,) = Dis(Qj, ), that
q = 7o h{(Q,,—sPs) (see Exercise 38.2) and the first equality, enables us to write:

P,
P

& Dis(g, Q) = 01Dis(Qy, q) = sign(s)

C. The Method of Broken Geodesics

We now draw the correspondence between the variational methods provided by symplectic twist maps and
the classical method of broken geodesics, originally due to Birkhoff (???: check Milnor). As before, let h} be
the time 1 map(”) of the geodesic flow with Hamiltonian Hy . Fix some neighborhood U of the zero section
in 7* M. Proposition 38.2implies that if we decompose h} = (hoﬁ )™V, then for N big enough each hoﬁ isa
symplectic twist map in U. As a result, periodic orbits of period 1 for the geodesic flow Hy, i.e. fixed points

of h{ are given by the critical points of:

N

W(q) = ZS(qkaqurl)a with gy =qy,
k=1

where g belong to set Xy (U) of sequences in M such that (g, q;,,) € ¢(U), where ¢ = 1/1’ 1 We now
Yo

1
show that 1V is the action of a broken geodesic. Since h{’ is a symplectic twist map, the twist condition

1
implies that, given (qy, q; 1) in ¢)(U), there is a unique (py,, Py) such that A (qx. py) = (g1 1. P).ie.,

there is exactly one trajectory cy: [%, %] — T*M of the geodesic flow that joins (g, ;) to (g, 1. Pr).

The projection 7(ci) on M is a geodesic, parametrized at constant speed equal to the norm of p;,. As we

" The following discussion remains valid if we replace 1 by any time 7.
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have seen in the proof of Proposition 38.3, S(q;,, ;1) is the action of ¢: S(qy, @i 1) = ka pdq — Hdt.
Hence W, the sum of these actions, is the action of the curve C' obtained by the concatenation of the c’s. C'
is “broken”, i.e. has a corner at the point g, whenever Pj,_; # p,: via the Legendre transformation, Pj,_;
and p,, correspond to the left derivative and right derivative of the curve C' at g, .

If q is a critical point of W, Pj, = p, ,, and thus the left and right derivatives coincide: in this case C' is
a closed, smooth geodesic.

In conclusion, the function W (q) can be interpreted as the restriction of the action functional A(c) to a
finite dimensional subspace (the space of curves C arising from elements of X i (U'), which is homeomorphic
to X (U)) in the (infinite dimensional) loop space of 7™ M . One can further justify this method by showing
that the finite dimensional space X (U) is a deformation retract®) of a subset of the loop space and that it
contains all the critical loops of that subset. This was Morse’s way to study the topology of the loop space
(see Milnor (1969) , 16). Conversely, and this is the point of view in this book (and more generally that of
symplectic topology), knowing the topology of certain subsets of the loop space, one can gain information
about the dynamics of the geodesic flow or, as we will see, of many Hamiltonian systems. (Part of this in the
Intro??7?)

39. Decomposition Of Hamiltonian Maps Into Twist Maps
A. Legendre Condition vs. Twist Condition

In this subsection, we generalize Theorem 38.2 by proving that Hamiltonian maps satisfying the Legendre
condition are symplectic twist maps , provided appropriate restrictions on the domain of the map. We then
reformulate this result in the Lagrangian setting, giving a generalization of the fundamental Theorem 38.1.In
the next subsection, we focus on T*T", where, given further conditions on the Hamiltonian, we extend the
domain of these symplectic twist maps to the whole space.

Remember that Hamiltonian maps, which are time ¢ maps of Hamiltonian systems, are exact symplectic
(Theorem SGhamexactsymp) and, through the flow, isotopic to Id. Therefore, to show that a certain Hamil-
tonian map is a symplectic twist map, we need only check the twist condition. Clearly, not all Hamiltonian
maps satisfy it. Take F'(q, p) = (g + m, p) on the cotangent bundle of the torus, for example: it is the time
one of H(q,p) = m.p, and it is definitely not twist. Here is a heuristic argument, which appeared in Moser
(1986) in the context of twist maps, to guide us in our search of the twist condition for Hamiltonian maps.
The Taylor series with respect to € of the time e map of a Hamiltonian system with Hamiltonian H is:

q(e) = q(0) + e.H, + o(€?)

p(e) = p(0) — e.Hy + o(€%)

Thus, up to order €2, dg(€)/0p(0) = €.Hp,. This shows that whenever Hy, is nondegenerate, the time €
map s a symplectic twist map in some neighborhood of g(0), p(0). The problem is to extend this argument
to given regions of the cotangent bundle: the term o(¢?) might get large as the initial condition varies.

‘We now present a rigorous version of this argument, valid on compact sets of cotangent bundles of arbitrary
compact manifolds. We say that a Hamiltonian H : 7% M x IR — IR satisfies the global Legendre condition

if the map:

8 This retraction can be obtained by a piecewise curve shortening method.
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(39.1) p+— Hy(q,p:1)

is adiffeomorphism from 7, M +— T, M foreach g and t. We will say that H satisfies the Legendre embedding
condition if the map p +— H,, is an embedding (i.e. a 1-1, local diffeomorphism). Note that, although we
have written it in a chart of conjugate coordinates in 7 M, this condition is coordinate independant (prove
this!).

Examples 39.1 We give two classes of examples. In the first one, the Hamiltonian is not assumed to be
convex.

Let H(q,p) = %(A(qyt)p, p)+V(q,t)anddet A, # 0,then H satisfies (39.1). This is simply because
p — Hp = A(q1)p is linear and nonsingular. Note that no convexity is assumed here, only nondegeneracy of
H,,, (and its independance of p).

Less trivially, if H,,(q, p,t) is definite positive, and its smallest eigenvalue is uniformly bounded below
by a strictly positive constant, then H statisfies the global Legendre condition. This is a direct consequence
of Lemma STMdiffeo.

If we remove the lower bound on the smallest eigenvalue, one can show (see Exercise 39.1) that the map
p — Hyp is not necessarily a diffeomorphism any more, but remains an embedding and thus / satisfies the
Legendre embedding condition.

Such an embedding condition, and a version of Theorem 39.2, are also satisfied if Hy, is positive on a

compact set U invariant under the flow (see Exercise 39.2).

Theorem 39.2 Let M be a compact, smooth manifold and H : T*M x IR be a smooth Hamiltonian
function which satisfies either the global Legendre condition (39.1) or the Legendre embedding con-
dition. Then, given any compact neighborhood U in T* M and starting time a, there exists ¢g > 0
(depending on U ) such that, for all € < € the time € map of the Hamiltonian flow of H is a symplectic

twist map on U.

Proof of Theorem 39.1 Choose a Riemannian metric g on M . Define the compact ball bundles:
U(K) ={(g.p) e T"M | | p|| < K}.

The nested union of these sets covers 7 M . Hence any compact set U is contained in a U (K) for some K
large enough, and we may restrict the proof of the theorem to the case U = U(K). Since the Hamiltonian
vector field of H is uniformly Lipschitz on compact sets, there is a time 7" such that the Hamiltonian flow
hatt(z) of H is defined on the interval ¢ € [0, T] whenever z € U(K).

In the rest of the section, we fiz a and abreviate h%Tt by ht (the time t of the flow with starting time
a.

By continuity of the flow, h[%T!(U/(K)) is a compact set. We now show that we can work in appropriately
chosen charts of 7 M. Since M is compact, we can find a real » > 0 such that 7% M is trivial above each
ball of radius 2 in M. (Indeed, there exist such a ball around each point. If one had a sequence of points
whose corresponding maximum such 7 converged to zero, a limit point of this sequence would not have a

trivializing neighborhood, a contradiction). Take a finite covering { B;} of M by balls of radius r, and let B,
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be the ball of radius 27 with same center as B;. Choose ¢3 < 7' such that w o hl%)(7=1(B;)) C B]. Such
an €3 exists since there are finitely many B;’s and since the flow is continuous. From now on, we may work
in any of the charts 7—!(B;) ~ B; x IR", and know that for the time interval [0, 3], we will remain in the
charts 7~ 1(B}) ~ B} x IR™. We let (g, p) denote the conjugate coordinates in these charts.

Let € < e3 and write h°(q,p) = (g(¢), p(e)). Consider the map ¥ : (g,p) — (g, g(¢)). We need to
show that ¢y, is an embedding of U(K) in M x M. By compactness, it suffices to show that ¢y« is a local
diffeomorphism which is 1-1 on U (K'). Write the second order Taylor formula for g(€) with respect to € (this

is a smooth function since the flow is smooth):

q(e) = g+ eHy(q,p,a) + €R(q, p, €).

The smoothness of the Hamiltonian flow garantees that R is smooth in all its variables. Indeed, its precise

expression is (see Lang (1983) ,p. 116):

1 te
Rlap = [ (-2 0Py
A ot

and the integrand is smooth since the flow is. The differential of 1), with respect to (g, p) is of the form:

potan) = (" §). A= a0+ R0
Since det Hp, # 0 by the Legendre condition and since I?, is continuous and hence bounded on the compact
set U(K) X [0, €3], there exists €5 in (0, €3] such that det D1y = det A # 0onU(K) x (0, €3] (we have used
the fact that there are finitely many of our charts B; covering U (K)). Hence 1y is a local diffeomorphism
for all € € (0, €e2]. We now show that, by maybe shrinking further the interval of ¢, 1, is one to one on
U(K). Suppose not and ;< (q, p) = pe(q’,p’) for some (q,p),(q’',p’) € U(K). The definition of 1.
immediately implies that ¢ = ¢’. Also, since 'y, is a local diffeomorphism on U(K), we can assume that

lp —p'|| > ¢ for some 6 > 0. Using Taylor’s formula, we have:
q(ﬁ) - q/(E) = G(Hp(‘Lpa a) - Hp(qapla a)) + EZ(R(q,p, 6) - R(qap/a 6))

Define the compact set P(K) := {(¢,p,q,p/) € U(K) x U(K) | |[p—p/|| > 0}. Since p — Hp is
a diffeomorphism, the continuous function || H,(q, p,a) — Hp(q,p’, a)| is bounded below by some K; >
0 on P(K). The continuous function (g, p,e) — ||R(q,p,€) — R(q,p’,¢€)| is bounded, say by K5, on
P(K) x [0, €3] and hence

la(e) — ¢ ()l = (eK1 — €K2) >0

whenever € € (0,¢;] and €; is small enough. Now choosing ¢ = min{ey, €5} finishes the proof of the
theorem. O

The following proposition, which is a reformulation of Theorem 39.2 in Lagrangian terms, is a generaliza-
tion of the fundamental Theorem 38.1. It garantees the existence and uniqueness of Euler-Lagrange solutions
between any two closeby points. A time that the solution is traversed has to be specified within a compact
interval. In Chapter MIN, we will encounter Tonelli’s theorem which implies, for fiber convex Lagrangian

systems, that these solutions can also be assumed to be action minimizers.
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Proposition 39.3 Let M be a compact manifold and L : TM x IR — IR be a Lagrangian function
satisfying the global Legendre condition: v — Ly(q,v,t) is a diffeomorphism. Then, for all starting
time a and bound on the velocity K there exists an interval of time [a,a + €g] such that, for all
€ < €, there exists a neighborhood O of the diagonal in M x M such that whenever (q,Q) C O,
there exists a unique solution q(t) of the Fuler-Lagrange equations such that ¢ = q(a), Q = q(a+¢€)
and [|g(a)]| < K.

Remark 39.4 Note that, in the case of the geodesic flow, the curves joining the same points g, Q in differ-
ent time intervals in this proposition are geometrically all the same geodesic, traversed at different speeds.
The dependence on the time interval chosen and the speed chosen of the geometric solutions of the Euler-
Lagrange equations is one of the main difference, and source of confusion, when trying to generalise notions

of Riemannian geometry to Lagrangian mechanics.

Proof. The Legendre condition enables us to define the Legendre transform £ : (q,v) — (q,p = L,) and
the Hamiltonian function H(q,p,t) = pg — L(q, q,t), where it is understood that ¢ = ¢ o L~1(q, p) (see
Section hamsys ??? in SG). H satisfies the global Legendre condition and £~ (g, p) = (g, Hp) (see Remark
777), In particular Theorem 39.3applies to the Hamiltonian /7. Let

U=V(K)={(g,p) | Hp(g p,a)l < K}.

This set is compact since it corresponds, under the Legendre transformation, to
LHV(K)) ={(a.9) | la(a)]| < K}

in the tangent bundle. Theorem 39.3 tells us that, for all ¢ € (0, o] with ¢y small enough, the map h€ is a
symplectic twist map on V (K). Define
O = ¢pe(V(K)).

We now show, maybe by decreasing ¢, that O is a neighborhood of the diagonal in M x M. Let Vi (K) =
7 Y(g) N V(K) and write h'(q,p) = (q(t),p(t)) where, as before, h* denotes h2*. The curve g(t) is a
solution of the Euler-Lagrange equation satisfying ¢ = g(a) and if (g, p) € V4(K), then ||g(a)|| = || Hp|| <

K. As in the proof of Theorem 39.2, we write the Taylor approximation of the solution:

7o h(q,p) = q(e) = q +eH, + 2R(q, p,¢).

At first order in e, the image of V(K') under 7 o h€ is {q + eH,(q,p) | (g,p) € Vg(K)}, which is a solid
ball centered at g. When adding the second order term €2 R, g will still be in 7 o h¢(V,(K)), provided that
e is small enough. By compactness ¢ can be chosen to work for all g. Thus (g, q) € h¢(V(K)) = O for all
q € M, as claimed.

The rest of the proof is a pure translation of the statements of Theorem 39.2: by construction, if (g, Q) € O,
then (q, Q) = (g, q(€)) where q(t) = o h'(q, p) and (g, p) € V(K).Hence q(t) is a solution to the Euler-
Lagrange equation starting at q at time a, landing on Q at time a+¢.Moreover, since (g, p) € V(K), ||g(a)| =
|Hp(g,p,a)|| < K. Finally, this solution is unique. Otherwise, by the uniqueness of solutions of O.D.E.s,
there would be p # p’ such that 7 o h*(q, p) = 7 o h(q, p’), a contradiction to the twist condition. O
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Exercise 39.1 Show that a C! map f : R™ — IR™ which satisfies (Df, - v,v) > 0 for all v and = in IR™ is
an embedding, i.e. it is injective with continuous and differentiable inverse. Deduce that a Hamiltonian such
that Hpyp is positive definite satisfies the Legendre embedding condition.

Exercise 39.2 Let U be a compact region which is invariant under the flow of a Hamiltonian H. Assume
also that Hp, is positive definite on U. Show that the time ¢ map is a symplectic twist map for all £ > 0
sufficiently small. (Hint. First prove, as in the previous exercise, that p — Hp is an embedding of Ty M N U
for each gq. Then adapt the proof of Theorem 39.2).

B. The Case of the Torus

When the configuration manifold is T", there is hope to show that the time ¢ maps of a Hamiltonian system
is a symplectic twist map on the whole cotangent bundle. We present here some condition under which this is

true. No doubt one could find other, even weaker conditions as well.

Assumption 1 (Uniform opticity)

H(q,p,t) = Hy(z) is a twice differentiable function on 7*T" x IR and satisfies the following:

(1) sup HV2Ht H <K

@) Clv|° < (Hpp(z, t)v,v) < C! ||v||? for some positive C' independant of (2, ¢) and v # 0.
Sometimes Hamiltonian systems such that H,, is definite positive are called optical. This is why we refer

to Assumption 1 as one of uniform opticity.

Assumption 2 (Assymptotic quadraticity)

H(q,p,t)is a C? function on T*T" satisfying the following:

(1) det Hpp # 0.

(2) For [|jp|| > K1, H(g,p,t)=(Ap,p) +c.p, A'= A det A#0.

Here A denotes a constant matrix, and c a constant in IR™. We stress that A (and hence H,p) is not necessarily

positive definite.

Theorem 39.5 Let he be the time € of a Hamiltonian flow for a Hamiltonian function satisfying any
of the Assumptions 1 or 2. Then, for small enough €, h€ is a symplectic twist map of T*T™ ( or on

U, respectively).

Remark 39.6 Proposition 39.5 holds for 1! "¢ whenever it does for h€: hi € is the time € of the Hamiltonian
G(z,s) = H(z,t + s), which satisfies all the assumptions H does.

Proof. We prove the proposition with Assumption 1, and indicate how to adapt the proof to the other
assumption. We can work in the covering space IR2n of T*T", to which the flow lifts. The differential of i
at a point z = (g, p) is solution of the linear variational equation ©)

% Tn general, if ¢¢ is solution of the O.D.E. 2 = X;(z) then D¢! is solution of U(t) = DX, (¢'2)U(t), U(0) =

Id. Heuristically, this can be seen by differentiating %qﬁt(z) = X;(¢*(z)) with respect to z (see e.g. Hirsh
& Smale (1974)).
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(39.2) Ut) = JV2H(h' (2)U(1), U(0) = 1Id, J—<10d _(fd>

We first prove that U (e) is not too far from Id:
Lemma 39.7 Consider the linear equation:

U(t) = A)U(t), Ulte) = U

where U and A are n x n matrices and || A(t)|| < K,Vt. Then :
U () — Usll < K ||Ug|| |t — t0|eK‘t*t0\.

Proof. LetV(t) = U(t) — Up, so that V (t) = 0. We have:

V(t) = A(t) (U(t) — Uy) + A()Uy
AV () + A(t)Uq

and hence:

V@O = [1V(£) = V() S/t K| V(s)llds + [t = tol K [|Us]|

For all |t — to| < €, we can apply Gronwall’s inequality (see Hirsh & Smale (1974)) to get:

VO < ek [[Ul 1!

and we get the result by setting € = |t — ¢|. O

We now proceed with the proof of Proposition 39.5. By Lemma 39.7 we can write:

Ue) — Id = / JV2H(h%(2)).(Id + O (s))ds

where ||O1(s)|| < 2K s, for ¢, and hence s, small enough.
Let (g(t),p(t)) = h'(q,p) = h'(z). The matrix b.(z) = dq(€)/Op, is the upper right n x n matrix of
U (e). It is given by:

(39.3) b(z) = /0 " Hy (h*(2))ds + /0 "0y (s)ds

where | [; O2(s)ds| < K?¢>. From this, and the fact that

(39.4) Clol* < (Hpp(2)v, ) < C™ v]?,

we deduce that:

(39.5) (eC — K22 |[v||” < (be(2)v,v) < (eC™F + K2€%) |0

so that in particular b.(z) is nondegenerate for small enough e. Since b.(z) is periodic in z, the set of

nonsingular matrices {b.(z)},cman is included in a compact set and thus:
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(39.6) sup b, (2)]| < K,
zeR2n
for some positive K’. We can now apply Proposition 26.4to show that A€ is a symplectic twist map with a

generating function S defined on all of IR2n.

Remark 39.8 The above proof shows that h¢ satisfies a certain convexity condition which can be useful in

finding minimal orbits (see Chapter MIN):

9 ~1
(39.7) (b7 v, v) = <(£(e)> 'U,v> >a|v|®, VYvelR™
where a is a positive constant. To see that it is the case, note that, denoting by

m = inf ||b;1(z)H

= m
lv]|=1, zéR2n

and M the corresponding sup, (39.5) implies:

m(eC — K2 |v||” < (b (z)v,v) < M(eC™* + K2¢2) ||v]|”.

We now adapt the above proof to Assumption 2. Note that under this assumption, we can still derive
(39.3) : the boundary condition (2) implies that V2H is bounded. Since H is C?, and Hp, = A outside a
compact set, Hpp(h°z) is uniformly close to Hpp(z) for small s, and thus the first matrix integral in (39.3)
is non singular for z and small s. Thus b.(z) is also nonsingular for small e. Since b.(z) = €A outside of
the compact set ||p|| < K7, the set of matrices {b.(2) | |z € IR"} is compact and hence (39.5) holds, which

proves the proposition in this case. a

C. Decomposition Of Hamiltonian Maps Into Twist Maps

When, as is the case in Theorems 39.2and 39.5, the time e maps of a Hamiltonian system are all symplectic twist
maps , one can readily decompose the time 1 map into such twist maps. Take a time dependent Hamiltonian,

for example. Its time 1 map h' can be written:

and, for N large enough, each hv isa symplectic twist map . It is only slightly more complicated when H is

time dependent. In this case we can write:

1 1 N_1 Bt1 1
(39.8) ht=hnx_10o(hy¥,)o...h,} o...hf
N N N
Et1
and each i, is an symplectic twist map by assumption on our Hamiltonian. as the next Proposition shows.
N

What may be more surprising, and gives strength to this method, is that there is a large class of Hamiltonian
systems which, even though their time e is not twist, can be decomposed into a product of symplectic twist
maps. This is a generalization of an idea that LeCalvez (astérisque) applied in his variational proof of the
Poincaré-Birkhoff Theorem.

This will work with either of the following, very broad, assumptions:
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Assumption 3.

H is a C? function on T* M x [0, 1], and the domain U is a compact neighborhood in 7* M.

Assumption 4.

H(z,t) = Hy() is a function on 7*T" x IR satisfying sup | V2 H|| < K.

Proposition 39.9 (Decomposition) Let H(z,t) be a Hamiltonian function satisfying Asssumptions 3 or
4, or the hypothesis of either Theorem 39.2o0r Theorem 39.5. Then the time 1 h' of its corresponding

Hamiltonian system can be decomposed into a finite product of symplectic twist maps:

h'=Fyyo...0F,.

Proof. We have given the trivial proof above for Hamiltonians that satisfies the hypothesis of Theorems
39.2and 39.5. We now prove the proposition when H satisfies Assumption 3. Pick a ball bundle U (K) =
{(g,p) | ||p|]| < K} with K large enough so that U C U(K).Let G be the time s of the geodesic flow, where
s 1is chosen so that G is an symplectic twist map on U (K). That such an s exists is proven in Proposition 38.2
. We can write:
ht=Go (Giloth;l) oGo...o0 (Gloh?> o...0Go (Gilohoﬁ)

N

N

(39.9)

=I5y o...0F].

One can check that, at each successive step of the decomposition, the points remain in U (K'). Our new G is
an symplectic twist map , by assumption, and G~ o h% is an symplectic twist map by openess of the set of
twist maps on a compact neighborhood (see Exercise SNTMstmopen).

Suppose now that H satisfies Assumption 4. Let G(q, p) = (q + p, p), our favorite symplectic twist map
(see, eg. Example STMstandardexample) on T*T" . Decompose h! as in Equation (39.9) . We now show that
G lo hl "V isalsoa symplectic twist map. Lemma 39.4 implies that s{ " satisfies || Dh; ™ — Id|| < eKe*°.

Hence

B

1
<(C—e

DG-'.Dh'¥ — DG
e N

k11

for some positive constant C'. Thus G~! o b, is twist for N large enough, since the sufficient conditions
N

det 9Q/0p # 0 and ||(0Q/dp)~*|| < oo are both open with respect to the C* norm.

40. SUSPENSION OF SYMPLECTIC TWIST MAPS BY HAMILTONIAN FLOWS

Moser (1986) showed how to suspend a monotone twist map of the annulus into a time 1 map of a (time de-
pendant) Hamiltonian system satisfying the fiber convexity H,, > 0.In subsection A we present a suspension
theorem for higher dimensional symplectic twist maps announced by M. Bialy and L. Polterovitch, which
implies Moser’s theorem in two dimensions. These authors kindly agreed to let their complete proof appear

for the first time in this book. In subsection B, we give the proof, due to the author, of a suspension theorem
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where we let go of a symmetry condition assumed by Bialy and Polterovitch. The price we pay is the loss of

the fiber convexity of the suspending Hamiltonian.

A. SUSPENSION WITH FIBER CONVEXITY

Theorem 40.1 (Bialy and Polterovitch) Let F' be a symplectic twist map with generating function S
satisfying:

(40.1) 0125(q, Q) is symmetric and negative nondegenerate.

Then there exists a smooth Hamiltonian function H(q,p,t) on T*T™ x [0,1] convez in the fiber
(i.e. Hpp is positive definite) such that F' is the time 1 map of the Hamiltonian flow generated by

H. The Hamiltonian function H can also be made periodic in the time t.

Proof. Following Moser, we will construct a Lagrangian function L(q,v,t) on IR2n x [0, 1] with the
following properties:

(40.2) (a) The corresponding solutions of the Euler-Lagrange equations connecting the points g and @ in the
covering space IR" in t:he1 time interval [0, 1] are straight lines ¢ + ¢(Q — q);

(@02) () 5(0.Q) = [ Lla+H@=a).Q-a.0)

(40.2) (c) L is strictly convex with respect to v : g% is positive definite.

(40.2) (d) L(q + m, v,t) = L(q, v, t) for all m in Z".

If such a function L is constructed, its Legendre transform H satisfies the conclusion of Theorem 40.1:
(40.2) (a) and (b) imply that F' is the time 1 map of the Hamiltonian I, (40.2) (c) implies that [, is convex
(see Exercise 47.2) and (40.2) (d) that the Euler-Lagrange flow of L takes place on 7T'T" and hence the
Hamiltonian flow of H is defined on 7*T".

Note that if (40.2) (c) is satisfied then (40.2) (a) is equivalent to the following equation:

32 0’L  OF
40.2 =
(40.2) (&’ ) LR P
%S .
Lemma 40.2 Set R;j(q,v,t) = —m(q —tv,q + (1 —t)v). Then the following holds:
q;0;

(403) (a) Rij = Rji;

8Rij - 8Rik‘
(10.9) () 2 = G

ORU _ ORy
(10.9) (¢) G = 5

BRl 8R
(40.3) (d) =52 + 3 5 Lo =

1

for all i, 7, k.

2
The proof is straightforward and uses the fact that the matrix (’)E;_F)% is symmetric.

1
Lemma 40.3 Set L(q,v,t) = / (1-2X) Z Ri;j(g, M, t)v;vidA. Then the following holds:
0

,J
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(40.4) av / ZRM q,7v,t)d
)

02
(40.4) (b) duon; Ry;

(40.4) (c) L satisfies Equation (40.2) (a’).

Proof. Rewrite L as follows:

1,1 1 s
L(q,’l],t) :/ / dSZRij(q,A’U,t)’UindA:/ dS/ d)\ZR”(q, A’U,t)’l)i’Uj
0 JA Iy 0 0 i.j
1 1 1
:/ ds/ SZRij(q,ST’U,t)’UindTZ/ Zviai(q,sv,t)ds
0 o %7 05

(40.5)

1
where «;(q,v,y) = / E R;;(q, v, t)vjdT. We can rewrite the last integral of (40.5) as a path integral:
0 -

1
i\, ) ds = zd )
/()Xi:va(qsvt)s /Wzi:av

where v(s) = (q, sv,t). Fixin g and ¢, Equation (40.3) (b) implies that the form ), a;dv; is closed, and,
because v € IR", exact, say ) . a;dv; = d A for some function A(v) on IR". Then the Fundamental Theorem
of Calculus yields:

L(q,v,t) = A(v) — A(0).
Since ), a;dv; = dA = g—ﬁdv, Equation (40.4) (a) follows. The proof of (40.4) (b) is similar. We now prove
(40.4) (c). In view of (40.4) (a), the left hand side I of (40.2) (a)’ can be written as follows:

1 1
orq; OR;;
I:E v,/ g Y ,TU,t’U'dT-‘r/ g Y , TV, t)vdT

1
+/ 1-0> ‘9(;;’3 (g, \v, t)v;v;dA.

0 ij

=ay + az — as,

where ay, is the k" integral in the above expression. Rewrite a3 using (40.3) (c) as follows:

as = / Z UlU]dT / Z

The first term is equal to a; . Therefore:

’Uﬂ)JTdT

ORy ;
/Zv] U q’Tv’t)"’_ZWl.’]Tvl dr.
L, !

Equation (40.3) implies that the bracket, and hence I, vanish. a
Given any function (g, v, t), set

1(q,Q) = / L(q +1Q—q),Q — q.0)dt
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Lemma 40.4 Assume that L satisfies (40.2) (a’). Then the following holds:

oL oL
(40.6) (a) 50 au(q ,Q —q,0);
oL
2L 2L
(40.6) (c) 9000, ~  udv; (¢.Q —q.0).

Proof. Equation (40.6) (¢) is a consequence of (40.6) (a), which we now prove. The same argument also

proves (40.6) (b). It is not hard to check that if L satisfies (40.2) (a)’ then:

d (0L oL
dt{auﬁq“(Q—q%Q—q,t)} =5, @ +1@-0.Q-a.1).

Therefore,

oL
o0 (¢.Q) =

/01{ 2L(Q+t(Q 9),Q—q,t)+(1—1)— ( )Q—q,t))}dt

L a OL
:/O E{(l_t)OT(qH(Q q),Q—q,t } qu q,0).

Given any two differentiable functions (g, v, t), f(q,t), set:

of

of
g

L¢(g,v,t) = F(q,v,t) + q,t)v—l—a(q,t).

Lemma 40.5

(40.7) (a) Ly(a,Q) = L(g. Q) + f(Q.1) = f(a,0);
(40.7) (b) If L satisfies (40.2) (a’) then Ly satisfies it as well, for all f.

The proof of this lemma is straightforward. We are now in position to finish the proof of Theorem 40.1.
Let L be the function defined in Lemma 40.3. From (40.6) (c) and (40.4) (b), we get:
L L 0?S

0Qi0Qj (q, Q) - (9’()18’0] (q Q q 0) 8 aQJ (qa Q)a

and therefore

L(g,Q) = S(q,Q) + A(q) + b(Q)
for some differentiable functions a and b. Set
fla.t) = (1—1t)A(q) — tb(Q).

We claim that the function L satisfies (40.2) (a)-(d). We prove these properties one by one.
1. We proved in (40.4) (c) that L satisfies (40.2) (a’), and hence (40.2) (a). Equation (40.7) (b) proves that L ¢

does as well.
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2. From (40.7) (a), we get:

L(a.Q) = L(q,Q) — b(Q) — Alq) = S(g.Q),

which proves (40.2) (b).
27 2F 2
.() f:a_:(Rij):_aS
Ov? Ov? 0qoQ
(40.1) , so is the first one.

4. Since S(g + m, Q + m) = S(g, Q), the function L is periodic in g. We need to check that % and % are

(g — tv,q + (1 — t)v). Since this last matrix is positive definite by

also periodic in q. Using the definitions and (40.6) (a) and (b), one can easily check that

. L oL
L(g,q) = %(q, q) = %(q,q) = 0.

From the definitions of the functions ¢ and b we obtain that

da S b a5

A(q) +b(q) = —S(q,9), 9 *yq(q,q), %(q) = *@(q, q)-

Because of the periodicity of S, all these functions are periodic in g. Since

P I

both % and g—g are periodic. This finishes the proof of our claim, and hence that of Theorem 40.1. O

B. SUSPENSION WITHOUT CONVEXITY

If we let go of the symmetry of 5—8‘2 (but keep some form of definiteness) in Theorem 40.1, we can still
suspend the twist map F' by a Hamiltonian flow. The cost is relatively high however: we can no longer insure
that the Hamiltonian is convex in the fiber. The proof, quite different from that of Theorem 40.1, first appeared
in Golé (1994c) .

Theorem 40.6 Let F'(q,p) = (Q, P) be a symplectic twist map of T*T" whose differential b(z) =

%ﬁf) satisfies:

(40.8) sup (b7'(2)v,v) > allv|, a>0, Vo #£0ecR"
zeT*T™

Then F is the time 1 map of a (time dependant) Hamiltonian H.
Remark 40.7 Condition (40.8) tells us that F' does not twist infinitely much.

Proof. Let S(q, Q) be the generating function of F'. Since p = —9;.5(q, Q), we have that b = 9Q/0p =
— (0125(4q, Q))fl. Hence equation (40.8) translates into:

(40.9) sup  (—0125(q, Q)v,v) > aljv||, a>0,Yv#0eR"
(q,Q)eR2n

The following lemma show that (40.9) implies the hypothesis of Proposition 26.4, which in turn shows that
whenever we have a function on IR2n which is suitably periodic and satisfies (40.9) , it is the generating

function for some symplectic twist map.
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Lemma 40.7 Let {A,}zca be a family of n x n real matrices satisfying:
sup [(Ayv,v)| > allv]|?, VYo #0eR™
zeA

Then :

sup ||A;1H <a t
e

We postpone the proof of this lemma to the end. We now construct a differentiable family S;, ¢ € [0, 1]
of generating functions, with S; = S, and then show how to make a Hamiltonian vector field out of it, whose

time 1 map is F'. Let

0 —al* for0 <
2

®1Q —gl* + (1= £())S(q,Q) for 3 <t

where f is a smooth positive functions, f(1) = f/(1/2) = 0, f(1/2) =1 and lim; g+ f(¢) = +00. We will

ask also that 1/ f(¢), which can be extended continuously to 1/f(0) = 0, be differentiable at 0. The choice of

f has been made so that S; is differentiable with respect to ¢, for ¢ € (0, 1]. Furthermore, it is easy to verify
that:

_ ) zaf
St(an) - { ;af

sup <7812St(qa Q)’U,’U> >a ||’U||2 ’ a> O,V’U 7é 0e IRnat € (07 1]
(¢,Q)€R2n

Hence S; generates a smooth family F}, ¢ € (0, 1] of symplectic twist maps, and in fact Fi(q,p) = (g +
(af(t))ip,p), t < 1/2),so thatlim, .o+ F; = Id, in any topology that one desires (on compact sets).
Let us write

st(q,p) = St o Yr(q,p).
where ), is the change of coordinates given by the fact that Fy is twist. It is not hard to verify that ¢;(q, p) =
(g.q— (af(t))~'p), t<1/2.s0 that:

se(a,p) = 5 (af (1) 2ol

In particular, by our assumption on 1/f(t), s; can be differentiably continued for all ¢ € [0, 1], with Sy = 0.

Hence, in the g, p coordinates, we can write:
F/pdq — pdq = ds;, t€][0,1].
By Theorem 47.7, F} is a Hamiltonian isotopy. O

Proof of Lemma 40.7

For all non zero v € IR”, we have:

A
l'lf |< g;’U,2’U>| >
ved o
But: o '
2V, U . .
inf ————=— = inf |[(A,v,v)| < inf ||A,v
S o e Al S B A

so that inf ¢ 4 ianvH:l HA;E’U” > a.But:

A
inf [|Azv]|= inf ”
l[vfl=1 veR"—{0} ||v]|
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so that, finally:

1
sup |[AZY| = [ inf inf Iv] ) <a™l.
xeg” z H (zeAveIR"{O} | Az 0|

41.1 Return Maps In Hamiltonian Systems
A. RETURN MAPS OF HAMILTONIAN SYSTEMS ARE SYMPLECTIC

Consider a time independent Hamiltonian on IR?" "2, with its standard symplectic structure 2, = Soro dap A
dpy.. Assume that we have a periodic trajectory ~y for the Hamiltonian flow. It must then lie in the energy level
H = H(v(0)), since H is time independent. Take any 21 + 1 dimensional open disk 3 which is transverse
to v at v(0), and such that X intersects  only at ~(0).

Fig. 41. 2.

Such a disk clearly always exists, if -y is not a fixed point. In fact, one can assume that, in a local Darboux
chart, 3 is the hyperplane with equation ¢y = 0: this is because in the construction of Darboux coordinates,
one can start by choosing an arbitrary nonsingular differentiable function as one of the coordinate function
(see Arnold (1978), section 43, or Weinstein (1979) , Extension Theorem, lecture 5.)

Define ¥ = X N {H = Hy}. It is a standard fact (true for periodic orbits of any C! flow ) that the
Hamiltonian flow /! admits a Poincaré return map R, defined on X around z(, by R(z) = ht(*)(z), where
t(z) is the first return time of z to X’ under the flow (see Hirsh & Smale (1974), Chapter 13).

We claim that R is symplectic, with the symplectic structure induced by {2; on Y.

Since X is transverse to v, we may assume that:

; oOH
qo_aT?o#O

on X. Hence, by the Implicit Function Theorem, the equation

H(O7q1"'7qn7p07"'7pn) :HO

implies that pg is a function of (q1,...,qn,P1,...,Pn). This makes the latter variables a system of local

coordinates for Y/, and since dgy = 0 on X, the restriction of {2 is in fact
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w= !20!2 = quk/\dpk.
k=1

To prove that R is symplectic, remember that, by (41.-1) , for any closed curve in 2/, or more generally

/ pdq—Hdt:/pdq—Hdt
Re c

since ¢ and Rc are on the same trajectory tube. Here Rc represent the chain in IR*"™2 x IR given by
(R(e(s)), ).
This equality implies that the function S(z) = fzzo R*(pdq — Hdt) — (pdq — Hdt) is well defined. But,

on Y, the differential of the form inside this integral is R*w — w, since both dqg and dH are zero there. Hence

for any closed 1—chain cin X,

R*w—w =d%2S = 0,ie., R is symplectic. 0

B. TWISTING AROUND ELLIPTIC FIXED POINTS

We now follow Moser (1977). If 0 is an elliptic fixed point, that is D R(0) has all its eigenvalues on the unit

circle, a normal form theorem ???(find ref.) says that (generically?) the map R is, around 0 given by:

Qr = qrcosPi(q, p) — pesin®y(q, p) + fu(q.p)
Py = qusin®i(g, p) + prcosPi(q, p) + 9x(q, p)
n
Pi(q,p) = ar + Zﬂkz(ﬁ +p7)-
1=1

where the error term f}, gi, are C'! and have vanishing derivatives up to order 3 at the origin. We now show
how this map is, in “polar coordinates” a symplectic twist map of 7*T", whenever the matriz {By;} is non
singular. Let V be a punctured neighborhood of 0 such that: 0 < >°, (¢2 + p?) < e. We introduce on V' new
coordinates (ry, 0)) by:

4, = V2rpecos2rl),  pr = \/2ryesin 270y,

where 0, is determined modulo 1. One can check that V' is transformed into the “annular” set:

1\2 1
U:{(Tkaf)k)ET"xIR”|Z<2rk_n> <
k

2 4n?

Since the symplectic form dg A dp is transformed into edr A d@, R remains symplectic in these new
coordinates, with the symplectic form dr A d@. In fact, it is exact symplectic in U. Remember that to check

this, it is enough to show that, for any closed curve v:

/ rdOz/rdO.
Ry v

It is easy to see that 2erdfy, = prdqr — qrdpy, so by Stokes’ theorem:

2e/rd0:/ pdq—qdp:—2/w
v oD D

where D is a 2 manifold in V' with boundary 0D = +. Since R preserves w in V/, it must preserve the last
integral, and hence the first. To see that R satisfies the two other conditions for being a symplectic twist map,

we just write it in the new coordinates:
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O =0 + ’(/Jk(r) + o0 (6)
Ry, =7y + 01(e)

Y=oy +e€ Z 2Bkt

+1

where ¢ 101 (¢, 0, ) and its first derivatives in 7, @ tend to 0 uniformally as ¢ — 0. We can rewrite this as:
R(O,7) = (0 +eBr+a+o1(€),r + 01(e)) .

So for small ¢, the condition det 9@ /9r £ 0 is given by the nondegeneracy of B = {3k, }, one uses the fact
that R is C" close to a completely integrable symplectic twist map to show that R is twist in U (the twist
condition is open.) The fact that it is homotopic to /d derives from Exercise 23.2.

Note that the set V' and therefore U are not invariant under R. However, it is still possible to show the
existence of infinitely many periodic points for R: this is the content of the Birkhoff— Lewis theorem (see
Moser (1977)) .

Remarks HAMrem and HAMgrad are 39.8 , Corollary HAMpartial is 38.4 , Proposition HAMdecom-
pone and HAMdecomptwo are (39.8) and 39.9, Theorem HAMexp is 38.1 , HAMhamstm is 39.2. Section
HAMsecgeom is 38.0, Theorem HAMthmbp is 40.1



