CHAPTER 5 or STMP

PERIODIC ORBITS FOR SYMPLECTIC TWIST
MAPS OF T*T"
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29. Presentation Of The Results

Rewrite the ghost tori section (too silly!). Points to be made: parallele with Floer homology,
possible dynamic use (2 dim case and more). The proof of Corollary 33.2 can be made using
Conley theory only: do that if I get rid of Morse theory in TOPO

In this Chapter, we give some results on existence and multiplicity of periodic orbits of different rota-
tion vectors for symplectic twist map of 7*T". The introduction of more refined topological tools yield an
improvement on the results of Golé (1989)(see also Golé (1991)).

Similarly to the case n = 1, a point (g, p) € IR2n is called a m, d—periodic point for the lift F' of a map
fof T*T" if

F(q,p) = (g +m,p)

where m € Z" and d € Z™". The rational vector ™ is called the rotation vector of the orbit of (q,p).
In general, the rotation vector (when it exists) of a sequence {q,}rcz € (IR")% is given by the limit:
p(q) = limg— o G-

The maps that we consider here satisfy either one of the following two assumptions: F' = Fiy o...0 F}
is the product of lifts of symplectic twist maps of 7*T", with generating functions S, such that either the

following convexity or asymptotic linearity conditions:

Convexity There is a positive real a such that:

(291) (a) <3125k(q,Q).v,v> < —aH’uHQ, vanaUEIR‘nvke {L?N}
Equivalently:

0Q\
(20.1) (b) Fila.p) = (Q.P)  and <(ap) v,v> > alvl?, Voe R

uniformly in (g, p).

Asymptotic Linearity
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51(a.@) = 5(4(Q ~ 0).(@ ~ ) + Rela. Q)

with:
(29.2) (a) A = AL, det A #£0

N
(29.2) (b) det > At #£0

1

. VRi(q,Q)
29.2) (c im —= =0.
(20.2) (¢) le—gl—cc [|Q —q|
Equivalently:

Fi(q,Q) = (g+ A 'p+6(q,p), p+7(q,p))
with (29.2) (a) and (b) holding for Aj and:

lim = lim
Ipl—oo [Pl Ipll—cc ||p]|

(29.2) (C/) . @(‘Lp) . T(q,p) _

Theorem 29.1 Let ' = Fy o...o Fy be a finite composition of symplectic twist maps Fy, of T*T"
satisfying either the convexity condition (29.1) or the asymptotic condition (29.2) . Then, for each
relatively prime (m,d) € Z" X Z, F has at least n + 1 periodic orbits of type m,d. It has at least

2™ of them when they are all non—degenerate.

The proof of this theorem appeared in several pieces: the existence in the convex case was given by Kook
& Meiss (1989). Their proof of multiplicity was corrected by the author in Golé (1994). The proof of the
theorem with the asymptotic condition is the center of the author’s thesis Golé (1989)(see also Golé (1991)).
The proof we present here is also more unified, and hopefully simpler. It also improves on our previous results

where, in certain cases, we could not garantee the existence of more than 2"~ ! periodic orbits.

Comments on Conditions (29.1) and (29.2) . In Chapter STM, Proposition 26.5, we derived
g—g(q, p) = — (0125(q, Q))71 , by implicit differentiation of p = —9,5(g, Q). The convexity condition
(29.1) (a) thus translates to (29.1) (b). Note that (29.1) (b) means that F' has bounded, positive definite twist.
MacKay & al. (1989) imposed this condition on their definition of symplectic twist maps, a terminology that
we have taken from them. Remember that Proposition 26.4in Chapter STM shows that the bounded twist
condition (29.2) implies the global twist condition.

As for Condition (29.2) we stress that each Ay, is not necessarily positive definite, but only a nondegen-
erate symmetric matrix. This is what Hermann (1990)called the indefinite case. If we set R, = 0 in Sy, we
obtain a quadratic generating function for a linear symplectic twist map L (q,p) = (g + A,;l p, p). Thus, if
L = Ly o...o0 Lj,condition (29.2) implies that

dN

(29.3) L(q,p) = (g + Ap,p) with A= ZA;l
k=1

is a symplectic twist map. Hence Condition (29.2) can be expressed as saying that F' is asymptotically linear

(and asymptotically completely integrable), in that it is close to L at co: (29.2) (c”) shows that
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i F(@.p) - L(g, p)|

= 0.
llpl|—o0 Pl

We leave it to the reader to show that the generating function and map conditions in (29.2) are indeed equivalent.

Example 29.2 The generalized standard map satisfies both conditions (29.1) and (29.2)

Outline of the proof. In the convex case, we start by finding a minimum for a discrete action function
W, sum of generating functions. The convexity condition, as in the classical calculus of variation gives us
coercion on W, which implies the existence of the minimum. The multiplicity is given by Morse theory on
an adequately chosen sublevel set {WW < C'}.

The case with the asymptotic condition is a relatively easy consequence of Proposition 52.8: we find that
the action function W on the appropriate quotient space of the space of sequences is indeed quadratic at

infinity as required by that Proposition.
30. Finite Dimensional Variational Setting

Let F' = F o...o F; where each Fj, is the lift of a symplectic twist map with generating function S,. The
critical action principle in Chapter STM tells us that finding orbits of F' can be done by finding solutions of:

(30.1) O Sk(@k: Qegr) + 025k—1(ap—1,4,) =0
The appropriate space of sequences in which to look for solutions of (30.1) corresponding to 1, d—points of
Fis:
X ={g e (R")” | gpray = @1 +m}
which is isomorphic to (IR™)?": the terms (qy, - - . , ;) determine a whole sequence in X, and we will use

them as a coordinate system for this space. Finding a sequence satisfying (30.1) in X, is equivalent to finding

g = (q;,---,q,y) which is a critical point for the function:
dN
W(a) = Z Sk(qka qk+1)7
k=1

in which we set g;n 1 = q; . In fact, the proof of the critical action principle ( see Proposition 24.1and also

Corollary 5.2) reduces in this case to the suggestive formula:

dN

(30.2) dW (@) =Y (Pi1 — py)dgy.
k=1

The search for critical points of W will be made by studying the gradient flow solution of

dq(t)

T = —vW(a(t)

where t is an artificial time variable. Written in components, this equation is the differential equation:

4r = —01Sk(qy, Qk+1) — 025k-1(qk1,qy)
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which for C? functions Sj’s defines a local flow (! on X. This flow will certainly be defined for all ¢ € IR

whenever the second derivatives of the Si’s are bounded: the vector field — VW is then globally Lipschitz.
We need to complicate matters some more. First, notice that X has trivial topology, so we should take

advantage of the periodicity of W . Formally, this can be done by remarking that W is invariant under the

diagonal Z™ action: W o 7, = W, n € Z" where

Ta(q1s- -2 ay) = (@1 + 71,0 oy + 1)

Hence W induces a function on the quotient X /Z" . This operation takes in account the fact that the maps
F and F}, are all lifts of maps of 7*T". Without this condition it is easy to find maps of IR2n without
m, d-orbits,eq. (q,p) — (g,p+ a).

But we go one step further. We are not satisfied with finding distinct m, d—points, but we want to make
sure that different critical points of our function W correspond in fact to different m, d—orbits of F'. To this

effect, we note that 1V is also invariant under the N*" iterate oV of the shift map:
0Dk = Qpy1-

This is because Sy n = Sk, and thus 0¥ permutes circularly the terms of 1. Hence we can define W
succesively on the quotients:

X =X/r=X/Z" and

X =X/o" =X /(Z" x Z)
of X by the actions of 7,,, n € Z" and o'V Since the action of o on critical sequences corresponds to the
action of F' on points of 7*T", distinct critical points of W on X correspond to distinct orbits of F'.

The following lemma, due to Bernstein & Katok (1987), describes the topology of the problem:

Lemma 30.1 The quotient maps: X — X and X — X are covering maps , and thus so is X — X.

The space X is homeomorphic to T™ x (IR™)N—1

with base T" and fiber (IR™)4N 1.

, whereas X is a (not always trivial) fiber bundle

Proof. We make the change of variables:
1
q= IN 21: qy
Vp =qpy —q, —m/dN, ke{l,...,dN -1}
and think of q as the base coordinate and v as the fiber. In these coordinates:

(g, v) = (g +n,v)
m dN—1
o(q,v1,...,v4n-1) = | @+ d_N7v2a'--7de71;7 z:l v;
=
o™ (q,v) = (g+m, v)

(the reader should verify this...) From the first equality, we get:

X dgf X/Zn ~ Tn ~ (mn)del.
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and " induces a d-periodic, fixed point free diffeomorphism on X, and thus taking the quotient of X by
oV gives again a covering map. Finally, these coordinates show that X = X /o is a fiber bundle over
(R™/Z")) 3 Z ~T". O

31. Second Variation

In this section, we show how the second derivative of 11/ can be used to decide if a periodic orbit is nondegenerate

or not.

Definition 31.1 A periodic point z of period d for a symplectic twist map F is called nondegenerate if DFZ

has no eigenvalue 1.
Suppose F' = Fy o ... o F; where each F}, is a symplectic twist map and let W be defined as before.

Lemma 31.2 An m,d periodic point is nondegenerate for F' if and only if the critical point of W to

which it corresponds is nondegenerate.

Proof. Suppose that (q;,p;) = z1 is an m, d point for F'. We want to solve the equation:
(31.1) DFZ (v) = v

with v € T(T*T"),, . We follow MacKay & Meiss (1983): If g corresponds to the orbit of z; under the the
successive F}’s, it must satisfy:
oW (q)
dq,,

= 02Sk-1(qk—1,qx) + 01Sk(qy> @ y1) = 0.

Therefore, a “tangent orbit” dg must satisfy:

(31.2) S5 10qp_y + (ST + S5 1)dgy + S150q,q =0

where we have abbreviated:

Szkj = 8ijSk(qka Qk+1)-

Remark 31.3 This rather physical argument can be given a more mathematical footing. Consider the following:

T*R" = {((q1,p1): -+ (@ans Pan) € (T"R)™ | Fi(qy, Pr) = (@1, Prs1) }
~ {ge (R)™NH | VW () =0,k =1,....dN —1}

The first homeomorphism is between points in the space and their orbit segments of a given length, the second
is given by the correspondence between orbit segments and critical points of the action. If one expresses a
parametrization of an element of 7'(7*IR") with the first representation, one gets the orbit of a tangent vector

under the differentials of the F},’s. If one uses the second identification , one gets (31.2) .
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When g corresponds to a periodic point (g, p; ), Equation (31.1) translates, in terms of the §g, to:

(31.3) 0qyni1 = Aoqq

Equations (31.2) ,(31.3) can be put in matrix form as M (\)dg = 0 where M () is the following dNn x dNn

matrix:

SN + 81, Si, 0o ... 0 194N
S Sh+Sh S - 0
M) = 0 St ;
: - 0
0 0 SaN—1
SN 0 ... 0 giN-1 gdN—l o gdN

(each entries represents an n X n matrix.) Hence the eigenvalues of Dde1 are in one to one correspondence
with the values \ for which det M (\) = 0. More precisely, to each eigenvector of DFZd1 corresponds one
and only one vector §g solution of M ()\)dg = 0. Setting A = 1, we get M (1) = V2W, which finishes the
proof. a

Remark 31.4 The above relationship between eigenvalues of DF' and of V2T can be given a symplectic in-
terpretation: the Lagrangian manifolds graph(d1V) and graph(F’) are related by symplectic reduction. Lemma

31.2can then be restated in terms of the invariance of a certain Maslov index under reduction Viterbo (1987).

Lemma 31.2 proves in particular that the condition “all m, d orbits are nondegenerate” is equivalent to
“W is a Morse function”. The following proposition shows that both properties are true for generic symplectic

twist maps .

Proposition 31.5 For generic symplectic twist maps , all periodic orbits are nondegenerate and hence

all the functions W are Morse

Proof. We remind the reader that a property is generic on a topological space if it satisfied on a residual set
of that space, i.e. a countable intersection of open and dense sets. Robinson Robinson (???), in his theorem
1Bi, proves that the set of C* symplectic maps with nondegenerate periodic points is residual in the space of
all C'* symplectic maps. He proceeds by induction on the period d of the points(®), We want to adapt his proof
to the space ST M of C! of symplectic twist maps . First note that, since the twist condition is open, ST M
is an open set in the space of C'! exact symplectic maps. The only thing that we have to check, therefore,
is that the perturbations that Robinson uses to kill degeneracy transform exact symplectic maps into exact
symplectic maps. But this is not hard to check: each of these perturbations is given by composing the original
map f with the time one map of the hamiltonian flow associated to a bump function in a small neibourghood
of a given periodic point. Hence the perturbed map is the composition of the original exact symplectic map
with the time 1 map of a Hamiltonian, also exact symplectic by Theorem 47.7. The composition of two exact

symplectic maps being exact symplectic, we are done. ad

6 C.Robinson actually deals with higher order resonnances as well, i.e, roots of unity in the spectrum of
Dfg.
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32. The Convex Case

The standing assumption in this section is that /' = Fy o ... o I} where F, is a symplectic twist map with

generating function S}, satisfying the convexity condition:
(291) <8125k(q7Q)'vvv> < 70“”1)”2’ Vq,Q,v EH{”,kE {177N}

The central part of the proof of the convex case, due to Kook & Meiss (1989)consists in proving that the
function W is proper, and hence has a minimum. This is something we have already done in the case n = 1
(see ), and the proof in higher dimensions is identical. (??? Change this sentence if I put the min part of AM
in a MIN chapter)

Lemma 32.1 Let S be the generating function of a symplectic twist map satisfying the convezity

condition. Then there is an o and positive 3 and ~y such that:

(32.1) S(@.Q) >a-Bla—Ql +~la- Q.

Corollary 32.2 Let F satisfy the convexity condition (29.2) . Then there is a minimum for the

corresponding action function W (and hence an m,d—point for F'.)

We have thus found at least one m, d—orbit corresponding to a minimum of W. The reader should be
aware that, unlike the 1 degree of freedom case, this does not imply that the orbit is a global minimizer (see
Hermann (1990) and Arnaud (1989)).

We now turn to the multiplicity of orbits.

This proof can be rewritten using Conley theory only. I should do that if I’'m going to get
rid of the section on Morse theory in Appendix 2 or TOPO... Outline: Use 51.1(about the
retraction): The isolating block W* with empty exit set, so H*(W¥,(W¥)™) = H*(W¥). Also
there is the requisite retraction....

Remember that X is a bundle over T" . Let 7 = T" be its zero section. Let K > supg. s; W (q) . Trivially,
we have:

scwKkYGgex | w<K}

( since W is proper, for almost every K, WX is a compact manifold with boundary, by Sard’s Theorem.)

From this we get the commutative diagram in homology:

H(2) —™  H.(X)
(322) i\ ar
H, (W)

where i, j, k are all inclusion maps. But k. = Id since X’ and X have the same homotopy type. Hence 7, must
be injective.

If all the m, d—points are nondegenerate, W is a Morse function (a generic situation by Proposition 32.0)
and according to Morse Theory ( Milnor (1969) , Section 3) WX has the homotopy type of a finite CW
complex, with one cell of dimension & for each critical point of index % in W% . In particular, we have the

following Morse inequalities:
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#{critical points of index k} > by,

where by, is the kth Betti number of W, b, > (}) in our case since H, (T") < H.(W ). Hence there are
at least 2 critical points in this nondegenerate case.

If W is not a Morse function, rewrite the diagram (32.2) , but in cohomology, reversing the arrows and
raising the stars. Since k* = Id, j* must be injective this time. We know that the cup length c/(X) =
cl(T™) = n + 1. By definition, this means that there are n cohomology classes o, ..., a, in H*(X) such
that o U ... U, # 0. Since j* is injective, j*a; U ... U j*a, # 0 and thus cl(W¥) > n + 1. WX being
compact, and invariant under the gradient flow, Lusternik-Schnirelman theory implies that 1/ has at least n+ 1
critical points in W% (The proof of Theorem 1 in CH.2 Section19 of Dubrovin & al. (1987) , which is for

compact manifolds without boundaries can easily be adapted to this case.) ad
33. Asymptotically Linear Systems

In this section we swap the convexity condition (29.1) for asymptotic linearity of the map (29.2) . In this case,
the periodic action function W does not necessarily have any minimum. The topological tool we use here is
Proposition 52.8.

We remind our reader of our assymption (29.2) : F' = Fiy o... o F} is a product of lifts of symplectic

twist maps of 7*T". The generating function Sy, of F}, satisfies:

51(@.@) = 5(4(Q - 0).(@ - a)) + Rela. Q)

with:

N
(29.2) Ap = A}, det Ax #0, det Y AT #0, lim Vi Q) _ 0
1

IQ=dll—oc [|Q —q|
We view R as a global perturbation term. As before we let Ly (q, p) = (g+ A;lp) and L = Lyo...0oL;.
Then L(q,p) = (¢ + Ap) with A = Ziv A, '. L and all the L’s are completely integrable symplectic twist
maps .

As before, we are looking for critical points of:

dN dN dN
_ 1
W(q) = Z Sk(@r: qs1) = Z B <Ak(Qk+1 = qi), (Qry1 — Qk)> + ZRk(qu Qjt1)-
k=1 k=1 k=1

where g € X ie., g v, = q;. The first sum in the right hand side is quadratic, call it Q’. It is the action
function for the symplectic twist map L defined above. We change coordinates ¥ : (q,...,qgn_1) — (g, v)

as in Section 30:
A
q= Wzquk
Vi = Q1 —q —m/dN, ke{l,...,dN —1}.

In these coordinates, W is of the form:
W(gq,v) = Q(v) + R(q.v)

where Q is the homogeneous quadratic function:
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1 dN -1 dN—-1 1 dN -1
Qv) = —5 <AdN( D Uk)> T3 Y (Ao, vr)

k=1

and R = Z’fN Ry, o W, Postponing the proof that Q(v) is nondegenerate, we conclude the proof of the
theorem.

The maps 7, and ¢ introduced in Section 30 all map fibers to fibers diffeomorphically and linearly in the
trivial bundle X — IR" with projection (q, v) — q.Hence Q(q,v) = Q(v) which is quadratic nondegenerate
in the fibers induces in the quotient X of X a function Q which is also quadratic nondegenerate in the fibers
of the bundle X — T™. Finally, it is easy to see that the asymptotic condition on Ry, given in (29.2) implies
that 1 0 1 OR
m%(W* Q)= Tol 90 -0 as |v||—
in X and hence also in its quotient X . We apply Proposition gpqi to conclude the proof of Theorem 29.1.

We now turn to the proof that, given the asumption (29.2) , Q(v) is nondegenerate. The reader could work
the linear algebra out directly. We prefer to give a dynamical argument which might enlight us a bit on the
linear asymptotic condition. Critical points of v — Q(v) form the kernel of Q. On the other hand, critical
points of (g, v) — Q(gq,v) = Q(v) are in one to one correspondence with the m, d orbits of the linear map
L. Since L is a linear completely integrable symplectic twist map , these orbits form an n dimensional plane
parallele to the O section of 7*T". Since the generating function of L is quadratic and the above change of
coordinate ¥ is affine, this plane corresponds 1-1 to an n-plane of critical points of Q(q,v) in X. But the
n-plane {v = 0} is made of critical points of Q(q, v). Therefore, there cannot be any other critical points for
Q(q,v), and hence Q(v) has trivial kernel. O

34. Ghost Tori

Let F' be as in Theorem (29.2) , and W be the corresponding action function for m, d orbits on X. In the proof
of Theorem 29.1(with the asymptotically quadratic condition), we showed that the set of bounded solutions
G = G of the gradient flow of W continues, in the sense of Conley, the one for the completely integrable

map with action function Wy, and that:
H*(Gy) = H*(T") < H*(G)

where (3 is the torus made of critical points of Wj.

Definition 34.1 Let W the action function for a compostion of symplectic twist map F' = Fy o...o F} on
the space X of m, d sequences. A set G in X is called a ghost torus if it is compact, invariant by the gradient
flow of W and if:

H*(T") — H*(G).

Comments 34.2
(a) If F has an invariant torus made of m, d periodic orbits, the orbit of each point on it corresponds to

a critical point in X. Hence the map invariant torus is diffeomorphic to a torus of critical points in X,
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(b)

©

d
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which is trivially invariant under the gradient flow of . This torus is hence a ghost torus, we will call it

a completely critical ghost torus (see Exercise 34.3.)

The spooky connotation in the terminology “ghost tori” can be justified in the following way. One of the
essential avenues for the study of symplectic twist maps is the standard family, which fits quite well in
the setting of Theorem ???. The paradigm expressed by the standard family is that of a deformation of
an integrable map Fy. We have seen that to such a map corresponds a foliation of 7*T" by invariant
tori, one for each rotation vector. In particular there is exactly one m, d periodic invariant torus for Fj,
corresponding to a completely critical ghost torus in the space X for each m, d. One of the fundamental
questions in the theory is to understand what happens to these invariant tori as one deforms Fj. 7??By
now, this should have been stated a hundred times already??? What Theorem ??? shows is that a “ghost”
of the invariant torus for F{ remains, as the parameter s varies, namely G, but in the space X. This
ghost torus is invariant by the gradient flow of W, but does not necessarily corresponds to an Fs—
invariant torus anymore. Indeed, generically, the only dynamically “visible” part of G is formed by
the (at least 2", but finite number of) critical points that it contains, which correspond to the m, d periodic
orbits. G is in fact a collection of critical points for W and their connecting orbits for the gradient flow :
intersections of stable and unstable manifolds for the critical points (this is true of any compact invariant
set for a gradient flow.) Here is a table that might be helpful in understanding the analogy we are trying

to draw:

Silly Table
Real World T*T", F
Yonder World X W
Live Being Invariant Torus for F’
Ghost Ghost Torus G for 4q = VIV (q)
Soul H*(T™) — H*(G)
Time Parameter in the Standard Map

Transcending Map 7 from 7*T" to X:

7(q1:p1) = (@1, Qan)> Where (@1, Pri1) = Fi(gy py)-
Appearing Map A from X to T*T":

A(ql; cee aqu) = (q17p1<q17 q2>)

Instead of thinking of G5 as a subset of X, one can remember that the set G is the projection of the 7

and oV invariant set G, in X C (IR")Z .

If F'is as in Theorem 29.1(convex case), one can reword the proof of that theorem in order to deduce
the existence of a ghost torus: we have shown in ??? that a map satisfying the convexity condition ???
could be deformed to a completely integrable one, through a path of symplectic twist maps satisfying
this condition. Let Fs be such a path and W the corresponding action function. Since we have seen in
the proof of Theorem ??? that they were no critical points outside of a set WX for K big enough (we
can make K uniform in s € [0, 1]), the set G'; of bounded solutions for the gradient flow of W must be

included in WX and thus (see ???) the sets G; are related by continuation. G is normally hyperbolic, as
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in the proof of Theorem ??? and thus we can conclude this alternate proof of Theorem ??? (convex case)
as in ??? (formno...), and in particular G = (; is a ghost torus for F' = F}.

(e) Ghost tori are quite reminiscent of the set of connecting orbits that supports Floer’s homology complex , as
it is applied to Hamiltonian systems on the cotangent bundle of T" (the space that Cieleback (1992)calls
X in .) It is quite probable that, at least at the (co)homology level, when the map F' is Hamiltonian and
satisfies the hypothesis of Theorem ???, these sets are identical.

(f) We put the title “Rational ghost tori” to this section, because they live in spaces of sequences with rotation
vector m/d. We will discuss later the occurence of irrational ghost tori ???, and their connection with
the KAM and Aubry—Mather theory.

Exercise 34.3 Show that the Transcendence of an F—invariant torus is a completely critical ghost torus.
Show that one is a Live Being if and only if one is the Appearence of one’s own Transcendence. In general,
reread the previous paragraphs and give them more rigorous sense with the help of the maps A and 7.

Theorem thesis is 29.1

Condition STMPtquad is (29.2)

Lemma STMPlemsecvar is 31.2, Proposition 31.5is STMPpropgeneric Condition STMPconv is (29.1) ,
Lemma STMPlemquadconv is 32.1



