Chapter 4 or STM

SYMPLECTIC TWIST MAPS

9/25/99

This is the version revised on January 12 1998. It minimizes the use of symplectic theory
or of homotopy (in the torus case). The general case could be moved to another chapter.
Birkhoff-Lewis: point to the idea of proof: intersection of Lag tori. Get the hyperbolic metric
right. Find page in Gallot on diffeo TM = M. Find the whereabouts of Eduardo’s picture
(which map, which orbit). State Birkhoff’s normal form for invariant diophantine tori (see
Yoccoz, page 754-07, Herman IMA?)

In this chapter, we generalize the definition of twist maps of the annulus to that of symplectic twist maps
in higher dimensions. In many cases, around elliptic fixed points, area preserving planar maps yield twist maps
of the annulus $* x IR. Likewise, symplectic maps in IR27 around their elliptic fixed points lead to symplectic
twist maps of T™ x IR", the cotangent bundle of the n dimensional torus. This is one among many other
reasons which make T™ x IR" one of the most natural spaces to study. Another reason is that, although these
notions are at least implicitly present, almost no knowledge of manifolds, fiber bundles and differential forms
is needed for the study of symplectic maps on this space. Hence we devote the first sections of this chapter to
defining symplectic twist map of T" x IR" and exploring their relationship with their generating functions.

Nonetheless, cotangent bundles of many other manifolds do occur in mechanics (eg. the configuration
space of the solid rigid body is SO(3)) and there too it is possible to define and make use of symplectic twist
maps. For this part of the chapter, the reader should be familiar with the notion of cotangent bundle, differential

forms as are given in Section 46 of Appendix 1 or SG.

23. Symplectic Twist Maps of T" x R"

A. Definition

Let T" = IR"/Z" be the n—dimensional torus. An analog to the annulus in higher dimensions which is most
natural in mechanics is the space T™ x IR", which can be seen as the cartesian product of n annuli. We give
T™ x IR™ the coordinate (q,p) = (q1,---,Gn,P1,---,Pn). In mechanics, ¢1,...,q, would be n angular
configuration variables of the system, whereas p1, . . . , p, would be their conjugate momentum, and T" x IR"™
is the cotangent bundle T*T" of the torus T".

The following is a generalization of the definition of twist maps of the cylinder:
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Definition 23.1 Let F be a diffeomorphism of IR2n and write (Q(q, p), P(q,p)) = F(q, p).Let F satisfies:

1) F(g+m,p) = F(q,p) + (m,0)
2) Twist Condition: the map v¥r : (g,p) — (q, Q(g, p)) is a diffeomorphism of IR2n.
3) Exact Symplectic: In the coordinates (g, Q),

(23.1) PdQ — pdq = dS(q,Q)
where S is a real valued function on IR2n satisfying:
(23.2) S(@g+m,Q+m)=5(q,Q), YmeZ".

Then the map f that F' induces on T" x IR" is called a Symplectic Twist Map.

As for maps of the annulus, S(q, Q) is called a generating function of the map F: Equation (23.1) is

equivalent to
p=-25(q,Q))

(23.3)
P 262‘5’((1’ Q)a

and thus F' is implicitely given by .S since
F(q,p) = (QoYr(q,p), 025 o¢hr(q,p)) with
/(l);l (qv Q) = <q7 _als(qa Q))

Note that the prescription of F' through its generating function S is often more theoretical than computa-

(23.4)

tional: it involves the inversion of the diffeomorphism 1" .

B. Comments on the Definition

(1) The periodicity condition F'(q+m, p) = F(q,p)+ (m, 0) implies that F induces amap f on T" x IR"™.
It also implies that (in fact is equivalent to) f is homotopic to /d (see the Exercise 23.1).

(2) The twist condition (2) of definition 23.0 implies the local twist condition often used in the litterature:
Condition(2") det 9Q/0p # 0,

We will explore in Section 26extra assumptions under which the local twist implies the global twist of
Condition (2).

(3) Interms of differential forms, PdQ —pdq = F*pdq— pdq. The periodicity of S givenby S(g+m, Q+
m) = S(q, Q) in the (g, Q) coordinates becomes S(q +m,p) = S(q, p) in the (g, p) coordinates (i.e.
applying ¥, 1Y.In particular S induces a function s on T™ x IR™ such that f*pdq — pdq = ds (q is seen
as coordinate on T"™ here). This last equality expresses the fact that f is exact symplectic. As is made

more precise in Chapter SG, if f is exact symplectic it is also symplectic:
/¥ pdq —pdq =ds = d(f*pdq — pdq) =0 = f*dp A dq = dp A dq.

Any symplectic map of IR2n is exact symplectic, but it is not true of maps of T" x IR": the map
f(qa,p) — (q.,p+m),m # 0 is symplectic but not exact symplectic. As for maps of the annulus, exact

symplecticity can be interpreted as a zero flux condition, but the flux is now an n dimensional quantity.
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Exercise 23.2 Each homeomorphism of the torus T™ is homotopic to a unique torus map induced by a
linear map A of Gl(n,Z) (the group of invertible integer n X n matrices). Likewise, each homotopy classes
of homeomorphisms of T™ x IR™ has exactly one representant of the form A x I'd where A € Gl(n,Z). Show
that any lift F' of a map homotopic to A x Id satisfies:

F(q7p):(Q7P):>F(Q+m7p):(Q+Am7p)

Exercise 23.3 Show that if F/(q,p) = (Q, P) is the lift of a symplectic twist map with generating function
S(q,Q), then F~(Q, P) = (g, p) is also the lift of a symplectic twist map with generating function —S(Q, q).

Exercise 23.4 Show that if ' and F’ are two lifts of the same symplectic twist map F, their corresponding
generating functions S and S’ satisfy:

S(a,Q) = 5'(¢,Q +m),

where m € Z™ is such that F' =T, o F.

C. The Variational Setting

As in the case of monotone twist maps of the annulus, the generating function of a symplectic twist map

induces a variational approach to finding orbits of the map.

Proposition 24.1 (Critical Action Principle) Let f1,..., fn be symplectic twist maps of T*T", and
let Fy, be a lift of Fy, with generating function Sy.There is a one to one correspondence between
orbits segments {(@y_1,Ppr1) = Fr(qy,py)} under the successive Fy.’s and the sequences {q,}rez
in (IR™)% satisfying:

(24.1) 1 Sk(ap- A1) + 2Sk-1(ap_1.q;) =0
The correspondence is given by: p;, = —01Sk(Qy: Qpyr)-

Proof. Ttis identical to the case n = 1 , Corollary 5.2. O

As in the case n = 1, Equation (24.1) can be interpreted as:

VIW(q) =

0 with

N—1

Z Sk(Q: Drer)-
0

25. Examples

Example 25.1 The Generalized Standard Map

The generalized standard map or standard family is the family of symplectic twist map whose lift is

generated by the following functions:
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53(@.Q) = 3 1Q — al* + VA(a).

where V), is a family of C? functions that are Z"—periodic, \ a parameter on some euclidian space and
Vo = 0.1t is trivial to see that .S satisfies the periodicity condition Sy(g + m,Q + m) = Six(q, Q). To find

the corresponding map, we compute:

p=-015(q.Q) =Q —q—VVi(q)
P =0,5\(q,Q)=Q —q
from which we immediately get:
Q=g+p+VVig)
P=p+VVi(q)

In other words, the standard map is given by:

(25.1) Fx(g,p) = (@+p+VVa(q),p+ VVa(q))

In the case n = 2, the following is the most widely studied potential. It is due to Froeschlé (1972)(see also
Kook & Meiss (1989), Froeschlé & Laskar (199?77)):

1
V@1, q2) = W{Kl cos(2mqq) + Ks cos(2mga) + hcos(2m(q1 + ¢2))}-

In this case A = (K, K»,h) € IR, and the standard family attached to this potential is a three parameter
family of symplectic maps of T? x IR?. The picture on the bookcover represents the stable and unstable
manifolds of a periodic orbit ??? for this map, with parameter???.

When A\ = 0, the map F), of (25.1) becomes:

Fy(q,p) = (g +p,p).

This is an instance of a completely integrable symplectic twist map: such maps preserve a foliation of T" x IR™
by tori homotopic to T™ x {0}. On the covering space of each of these tori, the lift of the map is conjugated
to a rigid translation. The term “completely integrable” comes from the corresponding notion in Hamiltonian
systems (see Example 25.3.)

The reason why the standard map has attracted so much research is that it is a computable example in
which one may try to understand questions about persistence of invariant tori as the parameter \ varies away

from 0, as well as study the various properties of its periodic orbits.
Examples 25.4 Hamiltonian systems

Historically, symplectic twist map appeared as Poincaré return maps in Hamiltonian systems. We develop
this idea in Section 19.

Hamiltonian systems in 7*T"™ have also another way of yielding symplectic twist maps: when restricted
to an appropriate domain, the time ¢ map of a Hamiltonian system is often a symplectic twist maps.

As a basic example, the Hamiltonian flow generated by:

1
H(q,p) = §<Ap,p> with A" = A, det A #0
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is completely integrable, in that it preserves each torus {p = p,} and its time ¢ map:

9'(q,p) = (¢ + t(Ap), p)

is a completely integrable symplectic twist map. If A is positive definite, g¢ restricted to { H = 1} is just the
geodesic flow for the flat metric %(A‘lv, v) on T". (See 26.)
More generally, if F'(g, p) = (Q, P) is the lift of the time ¢ of some Hamiltonian function H, then:
Q = q(e) = q(0) + e.H, + o(€?)
P =p(e) = p(0) — e.H, + o(€?),

and F satisfies the local twist condition “ %_cg (2(0)) is non degenerate” whenever H,, is non degenerate. This
remark was made by Moser (1986) in the dimension 2 case. From this local argument we will derive conditions
under which the time ¢ of a Hamiltonian is a symplectic twist map .

We will also see that, even if the time ¢ map of a Hamiltonian system is not twist, its time 1 map can, for
large classes of Hamiltonian systems, still be decomposed into the product of twist maps. Chapter 4 explores

these issues in detail.

Exercise 25.5 Compute the expression of the lift of a symplectic twist map generated by:

(AQ-4).(Q—q)) +c.(Q—aq) +V(q).

1
S(a.Q) =5

Where A is a nondegenerate n X n symmetric matrix. (This is yet a further generalization of the standard
map.)

26. More On Generating Functions

In this section, we explore more in detail the relationship between generating functions and symplectic twist

maps.

Proposition 26.1 There is a homeomorphism® between the set of lifts F' of C* symplectic twist maps

of T*T™ and the set of C? real valued functions S on IR2n satisfying the following:

(a) S(g+m,Q+m)=15(q,Q), YmeZ"

(b) The maps: ¢ — 325(q, Q) and Q — 015(q,, Q) are diffeomorphisms of R"™ for any Q, and
g, respectively.

(c) S(0,0) =0.

This correspondence is given by:

Proof. Let F be alift of a symplectic twist map and S(q, Q) be its generating function. For such F' and .S,
we have already derived (26.1) from PdQ — pdq = dS, and (a) is part of our definition of symplectic twist

4 In the compact open topologies of the corresponding sets
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maps . To show that S satisfies (b), first notice that, by (26.0) , @ — —91.5(q,, Q) is just the inverse of the
map p — Q(qy, p), which is a diffeomorphism since ¢r : (g, p) — (g, Q) is a diffeomorphism by the twist
condition. We also have the composition of diffeomorphisms:
(O F
(¢.Q) — (a,p) = (Q,P)

which implies that the map ¢ — P(q, p,) is a diffeomorphism (that is, F~! satisfies the twist condition),
which finishes to prove that S satisfies (b). Since two generating functions of the same F' only differ by a
constant there is exactly one such S(0,0) = 0.

Conversely, given an S satisfying (b), we can define a C'! exact symplectic map F of IR2n by:

F(q,p) = (Qovr(q,p), 025 or(q,p))
where %;1(% Q) = (qa 7815((17 Q))
It is easy to check that such a pair F', S satisfies (26.1) . Since .S satisfies (a), I a lift of a diffeomorphism

of T*T™ : (a) also holds for 915 and 025, which implies that F'(q + m,p) = (Q + m, P) whenever
F(q,p) = (Q, P).Exercise 23.2shows that F' must be homotopic to the Identity. Because of (b), F’ satisfies

(26.2)

the twist condition. Hence the map F' (uniquely) defined from (26.1) is a symplectic twist map and it is not
hard to see that the correspondence we built between the maps F and the functions .S is continuous in the C'"*
and C? compact open topologies respectively. O

In practice, to recognize whether a function S on IR2n is a generating function for some F', it is usefull
to have a criterion to decide when S satisfies condition (b) in Proposition 26.0. This is the purpose of the

following Propositions:

Proposition 26.2 Let S: IR2n — IR be a C? function satisfying:
(1)S(g+m.Q+m)=25(q,Q), YmeZ"
(26.3) (it)det D128 # 0

(iii)  sup  [[(0125(q,Q)) || = K < oo.
(g,Q)€R2n

Then S is the generating function for the lift of a symplectic twist map .

Proof. The proof is an immediate consequence of Lemma 26.3 applied to the two maps ¢ — 925(g, Q)
and Q — 915(qo, Q) (note that ||(021.5) || = ||(9125) ! |)) and of Proposition 26.1.

Lemma 26.3 Let f : RY - R" be a local diffeomorphism at each point, such that:
sup ||(Dfx)*1H =K < 0.
zeRN

Then f is a global diffeomorphism .

We postpone the proof of this lemma to the end of the section.
O

The following Proposition gives a condition under which the local twist condition can be made global.
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Proposition 26.4 Let F(q,p) = (Q, P) be a symplectic map of R2n with F(g+m,p) = (Q+m, P).
Suppose that

(26.4) sup  [|(0Q(q,p)/dp) " || < 0.
(g,p)€R2n

Then F is the lift of a symplectic twist map .

Proof. By Lemma 26.3, for each fixed q, the map p — Q(q, p) is a global diffeomorphism of IR". This
implies that ¢r: (g, p) — (g, Q) is a global diffeomorphism of IR2n. O

Proof of Lemma 26.0 We first prove that f is onto. Let yo = f(0) and take any y € IR". Let y(t) =
(1 — t)yo + ty. By the inverse function theorem, f~! is defined and differentiable on an interval y([0, ¢)).
Let a be the supremum of all such e in [0, 1]. If we prove that f ! is also defined and differentiable at a, then
a = 1, otherwise, by the inverse function theorem, we get the contradiction that f ! is defined on [0,a + «),

for some « > 0. For any ty,¢1 € [0, a), we have:
1 w(t) = £ wto))|| < sup [[DfHy@)| Iy — voll [t1 — tol
tel0,a)
< K |ly = yol| |t1 — to] .

So that, for any sequence ¢, — a, the sequence f ~!(y(t)) is Cauchy. This proves the existence of £~ (y(a)),
which implies that f is onto. Since f is onto and open, it is a covering map from R to R".Sucha covering
has to be one sheeted, since IR” is connected and simply connected. (See Appendix Covering spaces.) This
finishes the proof. O

Finally, we end this section with a useful formula.

Proposition 26.5 The following formula relates the differential of a symplectic twist map F to the
second derivatives of its generating function:

*0115.(0128)71 *(0125)71
DFqp) =

p

8215— 8225.8115.(({“)123)71 —8225’.(8128)71

where all the partial derivatives are taken at the point (q,Q) = ¥r(q,p).

Proof. We will show that %—g = —(0125)"1(q, Q), where, as usual, we have set F'(q,p) = (Q, P).
Differentiating the equality: p = —9;.5(q, Q) with respect to p, viewing Q as a function of g, p, one gets:
oQ
Id = —0128 —
12 (q ) Q) op
The computations for the other terms are similar. O

Exercise 26.6 a) Show that if instead of Condition (1) in the definition of symplectic twist maps we ask F’
to be homotopic to A x Id, where a lift A of A is in GI™ (n, Z), then Proposition 26.5 remains true, replacing
(a) by: ~

S (g+m.Q+ A(m)) = S(q.Q).

b) Find the map generated by
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5a.Q) = 3(a—A"'Q* + V()

Note that this exercise shows, in particular, that there are plenty of examples of exact symplectic maps of
T*T"™ that are not homotopic to I'd and hence cannot be Hamiltonian maps.

Exercise 26.7 Let IB" denote a compact ball in IR™. Show that if f : IB" — IR™ is a differentiable map
satisfying :
inf (dfyv,v) > a{v,v), VveR"

reIB™

then f is an embedding (diffeomorphism on its image) of IB™ in IR™.

27. Symplectic Twist Maps on Cotangent Bundles of General Compact
Manifolds

If the manifold M is not covered (topologically) by IR™, problems occur when we want to make the definition
of symplectic twist maps of 7* M as global as in 7*T": there cannot be a global diffeomorphism from a
fiber of 7* M to the universal cover M. This is why we must restrict ourselves to a neighborhood U of the
O—section in 7™ M, feeling free to take U = T M whenever possible.

In the following U will denote an open subset of 7" M such that:

(27.1) 771 (q) NU ~ interior(IB™)

where 7 : T* M — M is the canonical projection, and IB” C IR™ denotes the n-ball. Hence U is a ball bundle
over M , diffeomorphic to 7 M , but relatively compact in 7 M . In practice , the neighborhood on which we

let our maps act will be of the form:
U={(a.p) eT"M | H(q,p) < K}

for some function H convex in p. When it makes sense, we canlet U = T*M or U = T* M (e.g., when M

is covered by IR™). As in Appendix 1 or SG, we denote by ) the canonical one form on 7* M.

Definition 27.1 A symplectic twist map F' is a diffeomorphism of an open ball bundle U C 7™M (as in
(27.1) ) onto itself satisfying the following:

(1) F is homotopic to Id.
(2) F is exact symplectic: F*\ — \ = S for some real function valued S on U.
(3) (Twist condition:) the map ¢r : U — M x M given by g (z) = (7(2), 7 o F(z)) is an embedding.

The function S = S o 1/);1 on ¢ (U) is called the generating function for F'.

We leave the reader to check that, in coordinates, this is an obvious generalization of the definition of
symplectic twist map of T*T", with the appropriate restrictions of domains. If M/ = IR", one can take

U = T* M and modify the above definition slightly to make it more global by changing (2) into:

@) If F: T*M — T*M is alift of F,the map ¢z : U — M x M given by 15(2) = (7(2), 7o F(z)) is
a diffeomorphism (of IR2n).
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It is not hard to adapt the proof of Proposition 26.1 to the more general:

Proposition 27.2 There is a homeomorphism between the set of pairs (F,U) where F is a C*

symplectic twist map of U C T*M and the pairs (S,V) , where S is in the set of C? real valued

functions S on an open set V. (diffeomorphic to U) of M x M satisfying the following:

(i) The map q — 025(q,Qq) (resp. Q — 015(qy, Q)) is a diffeomorphism of the open set
{(g,Q)}INV (resp. {(gy, @)} NV) of M into <T50M> NU (resp. (T;OJW) NU) for each
Qo (resp. qq.)

(it) S(do,q0) =0, for a given q,.

This correspondence is given by:

(27.2) F(g,p)=(@Q P) & {11):__ 5285351(,%?)?)

Remark 27.3 As noted before, if M 22 IR", we can choose U = M x IR" = IR2n in the above definition

and proposition. In this case Corollaries 26.2 and 26.4 also remain valid.

Exercise 27.4 a) Prove Proposition 27.2. Verify that, although we have written things in local coordinates,
everything in Proposition 27.4 has intrinsic meaning (e.g. 015(qq,Q)is an element of Ty M, which only
depends on the point g, and not the coordinate system chosen).

b) Prove that if M in Proposition 27.2is the covering space of a manifold N with fundamental group I,
and if S satisfy S(vq,v7Q) = S(q, Q) as well as (i) and (ii), then the symplectic twist map that S generates
is a lift of a symplectic twist map on .

Exercise 27.5 Show that the set of C' twist maps on a compact neighborhood in the cotangent bundle of
a manifold is open (Hint: prove first that the twist condition is an open condition).

A. The Standard Map on Hyperbolic Manifolds

The examples of symplectic twist maps in general cotangent bundles will mainly come from the next chapter,
as time ¢ of Hamiltonian system satisfying the Legendre condition. In this section, we generalize the standard
map further to cotangents of hyperbolic manifolds. We assume a little background in Riemmannian geometry,
some of which we review in 26. Recall that a hyperbolic manifold M of dimension n is one that is covered
by the hyperbolic half space H" = {(x1,...,2,) € R" | 2,, > 0} given the Riemmannian metric ds? =
9%2 Z? dz? (?77), which has constant curvature -1. Geodesics on IH" are open semi circles or straight lines
pgrpendicular to the boundary {z,, = 0}. The relevant property of the geometry of IH", and hence of any
hyperbolic manifold, is that the exponential map is a global diffeomorphism exp : TIH"” — H™ x IH", a
corollary of the Hopf-Rinow Theorem (Gallot, Hulin and Lafontaine (1987), Section ???). The generalization

of the standard map that we present now is in fact valid for any Riemmanian manifold with this property.

Proposition 27.6 Let S: H" x H" — IR be given by:

S(q.Q) = %Dis2(q, Q)+ V(g),



80 CHAPTER 4 or STM: SYMPLECTIC TWIST MAPS

where V : H" — R is some C? function, and Dis is the distance given by the hyperbolic metric.
Then S is the generating function for a symplectic twist map that we called the generalized standard
map on IH™. Furthermore, if V is equivariant under a group of isometries X of H" representing the
fundamental group of the hyperbolic manifold M = " /X, then S is the generating function for a
lift of a symplectic twist map on T*M .

Proof. We show that S complies with the hypothesis of Proposition 27.4. We take M = IH", U = T*H" =
H" x IR". We now prove that g — 9>.5(q, Q) (resp. Q — 91.5(q,, Q)) is a diffeomorphism IH" — IR".In
Section 26we remind the reader how the geodesic flow and the exponential map of a Riemmannian manifold
can be seen both on the tangent bundle and the cotangent bundle (via the duality given by the Legendre
transform). In the cotangent bundle the geodesic flow G¢ is the hamiltonian flow with Hamiltonian the dual
metric g(q)(p, p) and the exponential map is exp, (p) = oG (q,p) = Q(q, p), where G*(q,p) = (Q, P).
We also prove that, if (g, Q) is in the range where (g, p) — g x exp(q, p) has an inverse (the case for all
(g, Q) € H" x H" here), then:

' __P___P
1 Dis(q, Q) = Ipll ~ Dis(q, Q)

(27.3) i s -
9,Dis(q, Q) = P - Dis(q, Q)

and hence 9, Dis?(q, p) = —p, d,Dis?*(q, p) = P. The assumption that the exponential is a diffeomorphism
means, in this notation, that p — Q(q,, p) is a diffeomorphism for each fixed g, and G* is a symplectic
twist map . Likewise P — q(Q,, P) is a diffeomorphism because G, the inverse of asymplectic twist
map must be a symplectic twist map itself. Thus we have established that the maps g — 0- %DisQ(q, Qo)
and Q — 0, %Disz(qo, Q) are both diffeomorphisms for each fized q,, Q,. Coming back to our generating

function, we have proven that:
1.
g — 025(a, Q) = 925, Dis*(a, Qo)
is a diffeomorphism, and

Q — (a0, Q) = 1 3Dis* (a0, @) + dV (o)

must also be a diffeomorphism TH" — T, TH" since we added a constant translation by dV'(q,) to a diffeo-
morphism. Proposition 27.4concludes the proof that S is the generating function for a twist map of T*IH"™.

The last statement of the proposition is an easy consequence of Exercise 27.4. O
28. Elliptic Fixed Points

As we will see in Appendix 1 or SG, the study of Hamiltonian dynamics around a periodic orbit of a time

independent Hamiltonian reduces to that of a symplectic map:
R :IR2n — IR2n, such that R(0) =0,

called the Poincaré return map.
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We now follow Moser (1977). If 0 is an elliptic fixed point, that is DR(0) has all its eigenvalues on the

unit circle, a normal form theorem ??7(find ref.) says that (generically?) the map R is, around O given by:
Qr = qrcosPy(q. p) — pisin®y(q,p) + fr(q.p)

Py = qrsin®@i(q, p) + prcosPr(q. p) + gr(q.p)

Dr(q,p) = ok + > Brla? +p})-
=1

where the error term f};, gy, are C°.(%)

We now show how this map is, in “polar coordinates”, a symplectic twist map of T*T", whenever the
matriz { Bk } is non singular.

Let V be a punctured neighborhood of 0 such that: 0 < Y, (¢} + p}) < e.

We introduce on V' new coordinates (7, 6 ) by:

qx = V2rgecos2mly, pr = /2riesin2mly

where 0, is determined modulo 1. One can check that V' is transformed into the “annular” set:
N 1
U—{(Ok,rk)eTanR re >0 and Zk:rk<§}

Since the symplectic form dg A dp is transformed into 2wedr A d@, R remains symplectic in these new

coordinates, with the symplectic form dr A df. In fact, R is exact symplectic in U. To check this, it is enough

/ rd@z/rd@.
JRy vy

(see Exercise 46.7). It is easy to see that 4wer,dfy, = prdqr — qrdpx, so by Stokes’ theorem:

47re/rd€:/ pdqfqdp:fZ/ w
y oD D

where D is a 2 manifold in V' with boundary 0D = . Since R preserves w in V/, it must preserve the last

to show that, for any closed curve v:

integral, and hence the first.
To see that R satisfies the two other conditions for being a symplectic twist map, we just write R(6,r) =

(@, R) in the new coordinates then:

@k :Ok =+ 'L/)Fk (’l“) =+ 01(6)
Ry, =7k, + 01(€)

n
with ¥p, = ap + € Z 285171
=1

where €101 (¢, 0, 7) and its first derivatives in , @ tend to 0 uniformally as ¢ — 0. We can rewrite this as:

R(O,7) = (0 +eBr+a+o1(e),r + 01(e)) .

5 actually, one only need them to have vanishing derivatives up to order 3 at the origin and be C'! otherwise.
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So for small ¢, the condition det 9@ /dr # 0 is given by the nondegeneracy of B = {3}, one uses the fact
that R is C'! close to a completely integrable symplectic twist map to show that R is twist in U (the twist
condition is open.) The fact that it is homotopic to /d derives from Exercise 23.2.

Note that the set V' and therefore U are not invariant under R. Howeyver, it is still possible to show the
existence of infinitely many periodic points for R: this is the content of the Birkhoff— Lewis theorem (???:

state it precisely somewhere) (see Moser (1977)) .

Lemma STMdiffeo is 26.3, Exercise STMstmopen is 27.5, example STMstandardexample is 25.1,
Proposition STMsuffstm is 26.2, formerly a Corollary (Coro), Proposition STMlocglobal is 26.4, Section
STMsecelliptic is 28.0, Proposition STMpropdiff is 26.5, STMpropactionpr is Proposition 24.1, Exercise
STMexohomt is 23.2.



