CHAPTER 10 or CZ

GENERATING PHASES AND SYMPLECTIC
TOPOLOGY

July 15 1999

Look up Siburg’s work on capacity vs symplectic twist map . What about the title of this
Chapter? What about the manifold of points that only move radially? Otherwise, declare this
Chapter done, after a last reading.

In Appendix 1 or SG, Section 46, we remark that the differential of a function W : M — T*M gives
rise to the Lagrangian submanifold dW (M) of T*M. As a generalization of this fact, one can construct
Lagrangian submanifolds of 7% M as symplectic reductions of graphs of differentials of generating phases,
which are functions on vector bundles over M .

Generating phases are the common geometric framework to the different discrete variational methods
in Hamiltonian systems, including the method developped in this book. Applications of generating phases
range from the search for periodic orbits to the Maslov index, symplectic capacities and singularities theory.
Generating phases are a viable alternative to the use of heavy functional analytic variational methods in
symplectic topology.

This chapter intends to be a basic introduction to generating phases. We first present Chaperon’s method,
which he used to give an alternate proof of the theorem of Conley & Zehnder (1983) . This theorem, which
solved a conjecture by Arnold on the minimum number of periodic points of Hamiltonian maps of T*", is
considered by many as the starting point of symplectic topology('®). We then survey the abstract structure of
generating phase, highlighting the common geometric frame for the symplectic twist maps method and that

of Chaperon (as well as many others).
53. Chaperon’s Method and the Theorem of Conley-Zehnder

Chaperon (1984) introduced a method “du type géodesiques brisées” for finding periodic orbits of Hamiltonians
which did not make use of a decomposition by symplectic twist maps. This method has been the basis of later
work by Laudenbach, Sikorav and Viterbo.

Until now, we have studied exact symplectic maps that come equipped with a generating function due to
the twist condition. The concept of generating function is more general than this, however: we now show how
an exact symplectic map of IR2n  which is uniformly C' close to Id may have another kind of generating

131n the sense that it implies that the C° closure of the set of symplectic diffeomorphisms is strictly included
in the set of volume preserving diffeomorphisms.
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function. The small time ¢ map of a large class of Hamiltonians satisfy this condition. Hence, the time one
map of these Hamiltonians can be decomposed into maps that posess this kind of generating function, leading

to a new variational setting for periodic orbits. Let

F :1R2n — IR2n
(g,p) — (Q, P)

be an exact symplectic diffeomorphism:
(53.1) PdQ — pdq = F*pdq — pdq = dS,

for some S : R2n — IR (remember that all symplectic diffeomorphism of IR2n are in fact exact symplectic.
We stress exzact symplectic here in view of our later generalization to 7 M .) The following simple lemma is

crucial here.

Lemma 53.1 Let F': IR2n — IR2n be an exact symplectic diffeomorphism. Then, if |[F — Id||o. is

small enough, the map
¢:(¢,p) = (Q,p)

is a diffeomorphism of IR2n .

Proof. Q(q,p)is C* close to q and thus ¢ is (uniformly) C* close to Id, hence a diffeomorphism. ad
We now show how, a way that is slightly different from the twist map case, F' can be recovered from S.
We define

S(Q.p) =pa+S(Q,p), where q=q(Q,p);

then
(53.2) dS = PdQ + qdp

and thus S generates [, in the sense that:

S
(53.3) g?

Remark 53.2 Note that Id is not a symplectic twist map and thus it cannot be given a generating function in
the twist map sense. One of the advantages of the present approach is that Id does have a generating function,

which is

5(Q.p) =pQ

As an illustration, fixed points of F" are given by the equations:
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a8
= =P
oQ ’

S
Q*%*%

which are equivalent to the following equation:

d(S —pQ) = (P —p)dQ + (¢ — Q)dp = 0.

Hence have reduced the problem of finding fixed point of an exact symplectic diffeomorphism C* close to
Id on IR?" to the one of finding critical points for a real valued function. We now apply this method to give
Hamiltonian maps of T?" a finite dimensional variational context. It can also be used for time one maps
of Hamiltonians with compact support in IR2n, or Hamiltonian maps that are C° close to Id in a compact
symplectic manifold.

Let H : IR2n x IR be a C? function with variables (g, p,t). Assume H is Z*" periodic in the variables
(q,p) (i.e., H is a function on T?" x IR). As in Appendix 1 or SG, we denote by hi (a,p) = (q(t),p(t)) the
solution of Hamilton’s equations with initial conditions q(t0) = q. p(to) = p. By assumption, h}  can be
seen as a Hamiltonian map on T*". We know that hio is exact symplectic (see Theorem 47.7). Furthermore,
by compactness of T*", when |t — to| is small, hf is C1 close to Id (the Hamiltonian vector field of a C?
function is C, hence so is its flow). For |t — to| small enough, we can apply Lemma 53.2 to get a generating

function for hio. To make this argument global, we decompose 1! in smaller time maps (see Exercise 47.4):

N—1 1 1
(53.4) R*=hi i oh¥,0...0h% ohl
N N N

and thus, for a large enough N, h! can be decomposed into N maps that satisfy Lemma 53.2. [The farther
h! is from Id, the bigger N must be.] We can then apply the following proposition to h!:

Proposition 53.3 Let F = Fy o...0 F| where each F}, is exact symplectic in T*IR™, C* close to Id,
and has generating function Sy, (Q,p). The fized points of F are in one to one correspondence with

the critical points of :

N
W (Qy, Py, QN Py) = ng(lepk) —PQr

k=1

where we set Qy = Q -

Proof. We will use the notation
(Pr, Q1) = Fr(ay, pr)

where we know from (53.3) that P}, and g,, are functions of Q,,, p;.. Then, using Equation (53.2) ,

N
dW(Q,p) =) PrdQy + a,dp), — pdQ;_; — Q;_,dp,
k=1
(53.5) N-1 N
= Z (Pr — Ppy1)dQy + Z(Qk — Qi_1)dpy,
k=1 k=2

+(Py —p1)dQy + (g1 — Qn)dp;.
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This formula proves that (Q, ) is critical exactly when:

Fk(qk,,pk) = (qk+1apk+1)’Vk € {1,...,N - 1}7
Fx(qy,py) = (@1,P1);

that is, exactly when (q,, p; ) is a fixed point for F'. O
As with the function W in Chapter 6, 1V has the interpretation of the action of a “broken” solution of the

Hamiltonian equation. This time, the jumps are both vertical and horizontal:

p
P1yq1/'~\\ Py 4, DP;s4q;
LN Y
\\ k PN;ql
t \ P> Qi 1, Ry tn t
\\
Yk ~— 1Py, Oy

Pi1> Qs N-1

Fig. 53. 1. Interpretation of W as the action of a “broken” solution I, concatenation of the solution segments
v, and “corners” in the t = ¢ planes.

Each curve 7 in Figure 53. 1 is the unique solution of Hamilton’s equations starting at (g, py,, tx)
where t;, = £ and flowing for time 1/N. Since Sk(Qy,p,) = Sk(qy,Py) + Pray and Si(q,. pp) =
ka pdq — Hdt (see Theorem 47.7), W measures the action of the broken solution I

N N
W(QlaplaQNapN):Zpk(q;Lkafl)“‘Z/ pdqudf
(53.6) k=1 k=1"Y "7k

= /pdq—Hdt.
Jr

This is the definition given by Chaperon (1984) and (1989).

The following theorem, solved a famous conjecture by Arnold in the case of the Torus. It was hailed as the
start of symplectic topology, as it shows that symplectic diffeomorphisms have dynamics necessarily different
from that of general diffoemorphisms, or even volume preserving diffeomorphisms. The original proof of
Conley and Zehnder also reduces the analysis to finite dimensions, but by truncating Fourier series of periodic

orbits. Chaperon’s proof avoids the functional analysis altogether.

Theorem 53.4 (Conley-Zehnder) Let h' be a Hamiltonian map of T?". Then h' has at least 2n + 1

distinct fized points and at least 2™ of them if they all are nondegenerate.

Proof. Let W be defined as in Proposition 53.3 for the decomposition of /! into symplectic maps close to

Id given by (53.5) . We will show that W is equivalent to a g.p.q.i. on T2", and hence it has the prescribed
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number of critical points, corresponding to fixed points of h'. We refer the reader to Section TOPOsecgpgi
for the definition and properties of generating phases that are relevant here. We first note that 17 induces a
function on (IR2n)N /Z*" where Z*" acts on (IR2n)" by:

(mQ7mP)‘(Q17p17'-'7QN7pN) = (Ql +mg,p+my,...,Qn+my, Py +mp)

The fact that W is invariant under this action is most easily seen from (53.6) . Indeed, since the Hamiltonian
flow is a lift from one on T>", the curve fyk + (mgy, m,, 0) is the solution between (g, + mg, p;, +m,;) and
(Q), + m,, Pj, + m,) starting at time L of that flow. But

/ pdq+Hdt:/ (p+mp)dqudt:mp(Qk—qk)+/ pdq — Hdt
7k+(mq7mp70) Tk Yk

Hence the action of 7, changes by m,(Q,, — g;,) under this transformation. On the otherhand, under the
same transformation, the sum Zﬁ;l P (g, — Qp_,) of Formula (53.6) changes by ij,vzl mp(q, — Qr_1)-
Summing up the actions of the 7, these changes cancel out, from which we deduce that W is invariant under
the Z>" action.

We now show that TV is equivalent to a g.p.q.i. over T>". Let E = (IR2n)N — IR2n be the bundle given
by the projection map onto (Q , p) and let x : E — F be the bundle diffeomorphism given by:

X(Qlapla"'aQNapN) = (alablv'":aNflabelaQNapN)

where
ap = Qk - Qk—l (Qo = QN)
b =P, — Pn-
I induces a function W

on (IR2n)V~1 x T?". We now need to show that W is in fact a g.p.q.i. Define W, (resp. Wp) to be the

In these new coordinates, the Z>" action only affects (Q , Py ), S0 that W o y~

functions W (resp. W) obtained when setting the Hamiltonian to zero. Since gk(Qk, p;) = P, Q) in this
case, Wo(Q, D) = Zﬁf:l P, (Q — Q,_1) and hence a simple computation yields

WO(E', 57 QNapN) = Z ak-bk

which, as easily checked, is quadratic nondegenerate in the fiber.
Finally, we need to check that -2 (W, — W) is bounded, where v = (a, b). It is sufficient for this to check
that d(W — W) is bounded. Us1ng (53.5) , we obtain:

N
Zpk_karl ko+Z —Qy_1)dp;,
k=1 -

N

=D Q= Q_1)dp;, — Z(pk_pk+1)ko

=

B
Il
—
-~
—

p"qz

(a1 — Qr)dpy + Z Py —p;,)dQ,
k=1 k=1

where we have set throughout Q, = Qn, Py, = P;. Since by definition (Q, Px) = Fi(qy,p;) where
F, = h . lifts a diffeomorphism of T>", the coefficients of the above differential must be bounded. We can

conclude by applying Proposition 52.8. In fact, Proposition TOPOproptrivialgpqi is enough here. a
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Remark 53.5 Since the lift of the orbits we find are closed, the orbits in T2" are contractible. In general, one
cannot hope to find periodic orbits of different homotopy classes, as the example Hy = 0 shows. It would
be interesting, however, to study the special properties of the set of rotation vectors that orbits of h' may
have, i.e., to find out if being Hamiltonian implies more properties on this set than those known for general

diffeomorphisms of T2".

54. Generating Phases and Symplectic Geometry

In Section TOPOsecgpqi, we define generating phases as functions W : ¥ — IR, where E is a vector bundle
over the manifold M. We then give conditions under which lower estimates on the number of critical points
of W can be obtained from the topology of M. In this section, we show how such functions give rise to
Lagrangian submanifolds of 7 M, hence the adjective “generating”. In particular, we show that the action
function obtained either in the symplectic twist map setting or in the Chaperon approach generate a Lagrangian
manifold canonically symplectomorphic to the graph of of the map F' under consideration. More generally,

this construction unifies the different finite, and even infinite, variational approaches in Hamiltonian dynamics.

B. Generating Phases and Lagrangian Manifolds

Let W be a differentiable function M/ — IR. We have seen in Section 46.C that:

dW (M) = {(q,dW(q)) | g € M}

is a Lagrangian submanifold of 7™ M . Note that this manifold is a graph over the zero section 03, of T M.
Heuristicly, we would like to make it possible to similarly “generate” Lagrangian submanifolds that are not
graphs. One way to do this is to add auxilliary variables and see our Lagrangian manifold as an appropriate
projection in 7* M of a manifold in some bundle over M. This is what is behind the following construction.

Letw : E — M beafiber bundle over the manifold M .Let W (g, v) be areal valued function on an open set
U C E.The derivative %—VX : E — E* of W along the fiber of E is well defined, in the sense that if U is a chart
on M and 11,15 : U x V — 71 (M) are two local trivializations of E/,and W; = W o b1, Wy = W o)y,

then

LOW, _OW,
(g av (q,’u)dv - av (Q(q)v))dv

where & = 1py01); ! is the change of trivialization. We assume that the map: (q, v) — %—VX (g, v) is transverse

to 0. This means that the second derivative (in any coordinates) (%, B;T‘QV) is of maximum rank at points

(g,v) where %—‘;}V (g,v) = 0. With this assumption, the following set of fiber critical points is a manifold of

same dimension as M
ow
(541) s ={(@v) e pl G @v -0},

[For a proof of this general fact about transversality, see eg. the theorem p.28 in Guillemin & Pollack (1974) ]
Define the map:
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iW : EW —T*M
ow
(qa ’U) - <q7 8_q<q7 U))

Exercise CZexoimmersion shows that this is an immersion. We now show directly that this immersion is
Lagrangian:
iwpdq = oW dq =dW
P q*aiq(qav) q= |2W(q7v)
and hence:
iw (dg A dp) = W], = 0.

We will say that W is a generating phase for a Lagrangian immersion j : L — T*M if j(L) = iw (Xw).

Exercise 54.1 Show that iw : Yw — T"M is an immersion, i.e. that Diw 5 has full rank (Hint. Use
w
the transversality condition to show that KerDiw N1 Xw = {0}.)

B. Symplectic Properties of Generating Phases

We start with the trivial, but important:

Proposition 54.2 Suppose the Lagrangian submanifold L C T*M is generated by a function W :
E — IR. The points in the intersection of L with the zero section 0}, of T*M are in a one to one

correspondance with the critical points of W.

Proof . iw (g, v) is in L if and only if 4% (g, v) = 0.1tis in 03, if and only if %7 (g, v) = 0. a
In TOPOsecgpqi, we find that critical points persist under elementary operations on generating phases: if

Wi : E1 — IR,and W5 : E — IR are two generating phases such that
W20¢:W1+Ct, or
Wa(q,v1,v2) = Wi(g,v1) + f(q,v2)

where @ is a fiber preserving diffeomorphism and f is nondegenerate quadratic in v2, then W; and W5 had
the same number of critical points. The first operation is called equivalence, the second stabilization. This

persistence is now geometrically explained by Proposition 54.2 and the following:

Lemma 54.3 Two equivalent generating phases generate the same Lagrangian immersion. This is

also true under stabilization.

Proof. Let Wy 0 ¢ = W; + cst where @ is a fiber preserving diffeomorphism between F; — M and
Ey — M. Writing
®(q,v) = (q,9(q,v)) = (q,v"),

where v — ¢(q, v) is a diffeomorphism for each fixed g. we have:

Wa(q,¢(q,v)) = Wi(q,v) +C

and thus
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oW, oWy’ 09

o[22 ) 22
ov ov ov

This implies that Xy, = @(Xw, ), and we conclude the proof of the first assertion by noticing that:

(@0 = 2 @(q.0),

Now let
WZ(qa V1, v2) = Wl(qa vl) + f(qan)

where f is quadratic and nondegenerate. we have:

W /0v =0 vy=0 and OW;/0v1 =0

so that Xy, = Xy, x Og,, where O, is the zero section of Ey. Moreover 0f/ 8q| (02=0} = 0 so that, at
points (g, v1,0) of X5,
GWQ ow 1
— 0)) = — .
<qa aq (qvvla )) (q7 aq (qvvl))
O

C. The Action Function Generates the Graph of I’

We examine here the twist map case, and let the reader perform the analysis for the Chaperon case in Exercise
54.4.Let M be an n—dimensional manifold and F' be a symplectic twist map on U C T*M , where U is of
the form {(g,p) € T*M | ||p|| < K}.Let S(q, Q) be a generating function for a lift F' of F. S can be seen
as a function on some open set V' of M x M, diffeomorphic to U. % Since PdQ — pdq = dS (g,Q),we
can describe the graph of F as:

%j(q,Q),Q, gg(q,Q)) | (¢.Q) € V} C (T*M)?,

Graph(F) = { <q, —

which is canonically symplectomorphic to:
08
) aQ

One can easily check that this manifold has S as a generating phase. In other words the generating function

{(¢@50a55@) [@Qev|crurm,

of a symplectic twist map F is a generating phase for the graph of F.
We expand in more details for the more general case where F' = Fy o ... o F} is a product of symplectic

twist maps of U C 1™ M . This time, the candidate for a generating phase is:

N

W(q) = Z Si(rs Tiey1)
k=1

where we do not identify qn 1 and q; in any way. Then, writing
v=(qs---,qy), q= (qlan—&-l)’
we will show that 1 (q, v) is a generating phase for Graph(F) C (T*M)?. Let

in the case where M = T™, and the map is defined on all of T*T™, we have V = U = R2n.
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U= {(‘hv---:%) | (@r:Qri1) € 1/)k(U)}

where 1), is the “Legendre transformation” attached to the twist map F},. Let 3 : M+ — M x M be the
map defined by: (q;,...,qx,1) — (g1, qx. 1) The bundle that we will consider here is:

U— BU)C M x M.

Proposition 24.1 states that %(q7 v) = 0 exactly when § = (g, v) is the ¢ component of the orbit of
(q1,P1(q;,9>)) under the successive F},’s. This means that the set of orbits under the successive Fj,’s is
in bijection with the set Xy = {9¥(q,v) = 0} as defined in (54.1) . Since this set is parametrized by
the starting point of an orbit, it is diffeomorphic to U, hence a manifold.

For g € X3, we have:

F(qlvpl(qlvq2)) = (qN+1aPN+1<qN7qN+1))

but: ~
oW
P1(q1,92) = —0151(q1,q2) = *8—(‘11;‘1N+1a'v)
q,
oW
PN+1(qN7qN+1) = a25‘N(‘11\f7‘11\r+1) = 8—(‘11an+1»”)
dN+1

In other words, the graph of FinT*M x T*M can be expressed as:

a(1N+1

" oW oW
GT(]ph(F): {(qlsw(qav)squLla (qav)> ' (qav)ezﬁ/}
1
To finish our construction, we define the following symplectic map:
j+ (TN TN =@y & 2 ) = (T(V x ND), 241, )
(qapa Qa P) - (q7 Qa -D; P)

where (2x denotes the canonical symplectic structure on 7 X . Clearly:

J(Graph(F)) = iy (),

that is, W generates the Lagrangian manifold Gmph(ﬁ). Note that the fixed points of F' correspond to
Graph(FYNA(T*M xT*M),ie.toq € XYy suchthatq, = gy ;and —0:51(q, q2) = 2SN (AN AN 1)

which are critical points of W = W’ (qi=qy. .} 3S WE well know.
1—4IN41

Exercise 54.4 Show that the generating function W of Chaperon (see Proposition 53.3) generates the
graph of the Hamiltonian map F : T?" — T?". (Hint. If you are stuck, consult Laudenbach & Sikorav (1985)

D. Symplectic Reduction

We introduce yet another geometric point of view for the generating phase construction. We will see that if
a Lagrangian manifold L C 7™M is generated by the phase W : E — IR, than in fact L is the symplectic
reduction of the Lagrangian manifold dW (E) C T* E. We introduce symplectic reduction in the linear case,

and only sketch briefly the manifold case, refering the reader to Weinstein (1979) for more detail.
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Consider V, 2y, be a symplectic vector space of dimension 2n. Let C' a coisotropic subspace of V. Let
A(V) be the set of Lagrangian subspaces of V' (a Grassmanian manifold). The process of symplectic reduction
gives a natural map A(V) — A (C/C™") that we now describe. By Theorem 43.1, we know that we can find

coordinates for V' in which:

C= {(qla"'aqnapla"'apk)}
and we have C = {(qx+1,---,¢,)} C C.Then

C/CJ_ = {(Qb <o qEkyP1y - apk)}

which is obviously symplectic. It is called the reduced symplectic space along C'. We denote by Red the
quotient map C' — C/C~ . The symplectic form 2c of C//C is natural in the sense that it makes Red into

a symplectic map:

(54.2) Qc(Red(v), Red(v')) = 2(v,v").

Proposition 54.5 Let L C V be a Lagrangian subspace and C C 'V a coisotropic subspace. Then
Le =Red(LNC)=LNC/LNCH

is Lagrangian in C/C*.
We say that L¢ is the symplectic reduction of L along the coisotropic space C'.

Proof. Formula (54.2) tells us that L is isotropic. We need to show that dim Lo = %dz’mC /C+. Linear

algebra tells us that:
dimLc = dim(LNC) — dim(L N C™).

As would be the case for any nondegenerate bilinear form, the dimensions of a subspace and that of its
orthogonal add up to the dimension of the ambient space. Also, the orthogonal of an intersection is the sum
of the orthogonal. Hence:

dimV = dim(L N C™*) + dim(L N CH)* = dim(L N C*) + dimL + dimC,
since L+ = L. Thus

dimL¢c = dim(L N C) — dimV + dim(L + C) = dimL + dimC — dimV

= dimC — %dimV (54.3)
But
dim(C/C*) = dimC — dimC* = dimC — (dimV — dimC')
= 2dimC — dimV (54.4)
We conclude that dim Lo = %dim(C’ /C1) by putting (54.3) and (54.4) together. O

We now sketch the reduction construction in the manifold case. Let C' be a coisotropic submanifold of a
symplectic manifold (M, (2). Then TC* is a subbundle of 7'C (that is, the fibers are of same dimension and
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vary smoothly) so we can form the quotient bundle 7'C'/T'C'*, with base C' and fiber the quotient 7,C'/7,C*
at each point g of C'. It turns out that this quotient bundle can actually be seen as the tangent bundle of a
certain manifold C'/C~, whose points are leaves of the integrable foliation 7C'. Moreover one can show
that the naturally induced form {2 is indeed symplectic on C//C~. Finally, we define red : C — C/C*
as the propjection. Its derivative is basically the map Red defined above. One can show that, if C' intersect a
Lagrangian submanifold L transversally, then Lo = red(L) is an immersed symplectic manifold of C'/C+,
which is the reduction of L along C.

We now apply this new point of view to the generating function construction. Let &£ = M x RY. We
show that if L = iy (Xw) C T*M is generated by the generating phase W : E — IR, then L is in fact the
reduction of dW (F) C T*FE along the coisotropic manifold C' = {p, = 0}, where we have given 7*F the
coordinate (g, v, p,, P, ). This is just a matter of checking through the construction. We know that dW (E) is

Lagrangian in 7™ E. Its intersection with C' is the set:

dW(E)NC = {(q,v,pq,pv) ET'E| pg= %—Z/(q,v), Py = %—v:(q,v) = 0}
=dW (Xw).
where Yy is the set of fiber critical points. Since by the tranversality condition in our definition of generating
phase Xy is a manifold, so is dW (E) N C: for any W, the map dW : E — T*FE is an embedding. The
bundle 7'C'* is the one generated by the vector fields % and thus C//C can be identified with T*M =
{(g.p,)}. The image of dW(E) N C under the projection red : C — C/C* is exactly iw (Xw) =
{(q, %—V;(q, v)) | 2¥(q,v) = 0} = L. Note that because £ = M x IRY, the above argument is independent
of the coordinate chosen (e.g. C' is well defined.) With a little care, the argument extends to the case where F/

is a nontrivial bundle over M .

Exercise 54.6 Show that, in the Darboux coordinate used above, the ¢ plane and the p plane of V' both
reduce to the ¢ and p-plane (resp.) of C/C™.

E. Further Applications of Generating Phases

The symplectic theory of Generating Phases does not only provide a unifying packaging for the different
variational approaches to Hamiltonian systems. It can also serve as the basis of symplectic topology, where
invariants called capacities play a crucial role. Roughly speaking, capacities are to symplectic geometry what
volume is to Riemannian geometry: they provide obstruction for sets to be symplectomorphic, or for sets to
be squeezed inside other sets. Viterbo ( 1992) uses generating phases to define such capacities, in contrast
to prior approaches by Gromov (1985)who uses the theory of “pseudo—holomorphic curves”. The basis fo

Viterbo’s definition of capacity is a converse statement to Lemma 54.3:

Proposition 54.7 If W, and Wy both generate h'(0%,), where h' is a Hamiltonian isotopy, then after

stabilization W1 and W5 are equivalent.

In view of this, Viterbo is able to define a capacity for a Lagrangian manifold . Hamiltonian isotopic to

03, by choosing minimax values of a given (and hence any) generating phase for L.
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In another work, Viterbo (1987) shows that a certain integer function called Maslov Index on the set
of paths in the Lagrangian Grassmannian is invariant under symplectic reduction. It can be shown that the
Lagrangian Grassmanian A(V") has first fundamental group 71 (A(V)) = Z. Very roughly, we can interpret
this by saying that A(V") has a “hole” and the Maslov index measures the number of turns a curve makes around
that hole. Now let W, be generating phases for a Hamiltonian isotopy h¢. The set dWr(F) is Lagrangian
in 7*E and its reduction is graph of h’. The Maslov Index in A(T*E) detects the change in Morse Index
of the second derivative of W;, whereas on the graph of A!, it detects a non transverse intersection with the
plane {(g,p) = (Q, P)}. This can be used to give a neat generalization to Lemma 31.2and to explain the
classical relationship discovered by Morse between the index of the second variation of the action function
and the number of “conjugate points”(see Milnor (1969) for the classical, Riemannian geometry case, and
Duistermaat (1976) for the more general convex Lagrangian case.) Finally, we refer to Weinstein (1979) ,

Lecture 6, for further survey on generating phases (called Morse families there) .

Proposition CZproplagrim is 41.5, Exercise CZexoimmersion is CZexoimmersion



