CHAPTER 1 or TWIST

TWIST MAPS OF THE ANNULUS

1/25,/2000

Action to be taken: Make and add figures. Correct typos. Revise after writing the intro
(some of its material might be used in the intro: standard map, billiard, some definition of
symplectic...) The section on elliptic fp may be spread over to Chapter SG. I just moved
the section on Poincaré-Birkhofffrom the now defunct Chapter PB. Make sure the transition
is smooth. Check out the background, and give reference about Poincaré sections and twist
maps.

4. Monotone Twist Maps of the Annulus
A. Definitions

In the first part of this book, we consider diffeomorphisms of the annulus, or of the cylinder. The annulus can
be defined as
A =8 % [a.b].

[More generally, we could define A := {(z,y) € $' x R | u_(z) < y < u, ()}, where both u_ and u
smooth functions on $']. We define the cylinder by:

C=9%"xTR.
As with maps of the circle, it is often less ambiguous to work with lifts of diffeomorphisms of A. These are
maps of the strip:
A:={(z,y) e R? [a <y < b}

where z, thought of as the angular variable, ranges over IR. The covering map proj : A — A takes (x,y) to

(z mod 1 ,y) and a /ift of a map f of the annulus is a map F of the strip which satisfies:
proj o F' = f o proj.

This implies in particular that F'(z + 1,y) = F(z,y) + (n,0), for some integer n. By continuity, n does not
depend on the point (z, y), nor on the lift F" of f, it is called the degree of f. In this book, we assume that f

is an orientation preserving diffeomorphism of the annulus. In this case, the degree of f is 1 and
(4.1) F(z+1,y) = F(z,y) + (1,0)

for any lift /" of f. Denoting by T the translation T'(z,y) = (z + 1, y), equality (4.1) reads:
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(4.2) Fol'=ToF

Clearly, any map F' of A that satisfies (4.2) is the lift of a map f of A which has degree 1. We say that f is
induced by F.

Definition 4.1 Let F' be a diffeomorphism of .4 = IR X [a, b] and write (X (x,y),Y (z,y)) = F(z,y).Let F’
satisfy:
(1) F preserves the boundaries of A: Y (z,a) = a,Y (z,b) = b.
(2) Twist Condition: the function y — X (zo, y) is strictly monotone for each given z.
(3) Area and Orientation Preserving: det DF = 1 or, equivalently, dY A dX = dy A dzx.
@D FoT=ToF
Then F' induces a map f on the annulus A which is called a (area preserving, monotone) twist map of

the annulus.

Exercise 4.1 Prove the above statements about the degree of a map and its lifts.

B. Comments on the Definition

Twist Condition. Condition (2) implies that the map y — X (xq,y) is a diffecomorphism between the
vertical fiber {x = x(} and its image on the z-axis (also called the base). In other words, the image of the

fiber zo by F' forms a graph over the z-axis, as is shown in Figure 4. 1.
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Fig. 4. 1. The positive twist condition: as one moves up along a vertical fiber, the image point moves right.
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Often, the monotonicity of the map y — X (zq, y) is expressed by the equivalent derivative condition:

0X
(4.3) —_— .
dy
Since A is connected, this derivative is either always strictly positive, or always strictly negative. We say that
F is a positive twist map (resp. negative twist map) if y — X (xq, y) is strictly increasing (resp. decreasing).
Note that the lift of a positive twist map “moves” points on the upper boundary of A “faster” than on the

lower boundary. If F' satisfies the latter, we say that it has the boundary twist condition. This condition, much
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Fig. 4. 2. The flux of a cylinder map as the net area between an enclosing circle C' and its image f(C)

If F preserves the boundary of a bounded strip .4, then f preserves the boundary circles and the flux is by force
zero. When no such curve is preserved, the flux can take any value in IR as the example V,(z,y) = (z,y+a)
with Flux(F') = a shows. Since examples of this type show no recurrent dynamics, we exclude them from
our study by always imposing, directly or indirectly, the zero flux condition on our maps. If F' has zero flux,
then S o 7" = S and thus S induces a function s on A such that

(4.4) ffydr — yd = ds.
taking the exterior derivative on both sides of this equation, one gets d(f*ydx — ydx) = d*s = 0, and thus
F(dy A dx) = dy A dzx.

A map that satisfies this last equality is called symplectic, because it preserves the symplectic form is called
exact symplectic. Hence (4.4) shows that exact symplectic implies symplectic. Hence if ' has zero flux, the
map f it induces is exact symplectic. Conversely, by Stokes’ theorem, if f is exact symplectic, any of its lifts
has zero flux (Exercise 4.2). Hence the map V,, of the cylinder defined above is not exact symplectic, even
though it is symplectic. Note that, in contrast, a symplectic map F’ of the plane is always exact symplectic: as

any closed form on the plane, F™*(y A dx) — ydz is exact (Poincaré’s Lemma).

Exercise 4.2 a) Using Stokes Theorem, show that if A is a closed 1 form on a simply connected domain of
IR2, then the function S = f A is well defined (i.e. does not depend on the path of integration between z

and zp) and that dS = . Apply this to A = YdX — ydzx.
b) What should a definition of S be if F preserves a smooth area form a(z,y)dy A dx?

Exercise 4.3 a) Let F be an arca preserving map of IR? with F o' = 1" o F. Show that for the function S
defined above, SoT — S is constant, and hence Fluxz(F') is well defined. (Hint. Given two points 21, 22 in A,
take any two curves 71,72, with «; joining 2; and 1'z;,¢ = 1,2. Take a curve (3 joining z; and 22 and apply
Stokes Theorem to the closed curve 3 -1 - (1'8)"! -5 ")

b) Show that any lift of an exact symplectic map of the cylinder has zero flux.

¢) (For those who know about DeRham cohomology) Prove that Fluz(F') is the result of the pairing of the
class [f*ydx —ydx] in H}z(C) with the first homology class represented by a circle going around the cylinder
once in the positive direction (as usual, f is the map induced by F).

C. Twist Maps of the Cylinder

The comments of the previous subsection motivate the following:

Definition 4.4 (Twist Maps of the Cylinder) Let I be a diffeomorphism of IR? and write (X (z,), Y (z, 7)) =
F(z,y).Let F satisfy:

(1) F is isotopic to the Identity

(2) Twist Condition: the map ¢ := (z,%) — (x, X (z, %)) is a diffeomorphism of IR?

(3) Area Preserving & Zero Flux (Exact Symplectic): YdX — ydx = dS with some real valued function
S on IR? satisfying:
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Sz +1,y) = S(z,y).

Then F is the lift of a map f on the cylinder C which is called a monotone twist map of the cylinder.

Condition (1) means that F' can be deformed continuously into the identity through a path of homeomor-
phisms of the cylinder. For maps of the closed strip IR X [a, b], this condition clearly implies that the boundaries
have to be preserved, and hence Condition (1) here is the analog to Condition (19) in Definition 4.1. It will
appear clearly in next section that the periodicity of the function S implies the periodicity F' o T = T o F,
i.e. Condition (4) of Definition 4.1, which is necessary for /' to induce a map of the cylinder. Finally, the
condition that v be a diffeomorphism here can be relaxed: one can require that ¢’ only be an embedding, i.e.

a diffeomorphism of IR? into a proper subset of IR?, to the cost of some (manageable) complications.

Remark 4.5 There exist several other definitions of monotone twist maps in the literature. Most noteworthy
are the topological definitions, where the map is only required to be a homeomorphism (and not necessarily a
diffeomorphism). The twist condition takes different forms with different authors. One commonly used is that
the map y — X (z,y) be monotonic (Boyland (1988), Hall (1984), Katok (1982), LeCalvez (astérisque) ).
A much milder condition is considered in Frank (1988), where certain neighborhoods must move in opposite
directions around the annulus. The preservation of area is sometimes discarded by these authors, replaced by a
condition that the map contracts the area, or that it is topologically recurrent. The topological theory for twist
maps is extremely rich and would be the subject of an entire book. Our choice of working in the differentiable

category stems from the possibilities of generalization to higher dimensions that it offers.

Exercise 4.3 Show that a map of the bounded annulus which is homotopic to Id preserves each boundary
component (Note: the converse is also true, but much harder to prove).

5. Generating Functions and the Variational Setting

A. Generating Functions

In the previous section, we have seen that the lift ' of a twist map of either the cylinder or the annulus comes
with a function S such that F*ydx — ydz = YdX —ydx = dS and S(x +1,y) = S(z,y). The first equation
expresses the fact that /' preserves the area, whereas the periodicity of S, expresses the zero flux condition.
On the other hand, the twist condition on F' gives us a function ¢ which we view as a change of coordinates
¢ (x,y) — (2, X).Inthe (z, X) coordinates(®) the equation Y'dX — ydx = dS(z, X) implies immediately
that the functions —y(z, X') and Y (z, X) are the partial derivatives of .S:
- 05(z, X)
or

(5.1) y= Y = 785((;;’()()

These simple equations are the cornerstone of this book. The function S(z, X) is called the generating
function of I in that from S we can retrieve I, at least implicitly: ¢~ is given by (z, X) — (z, —22) hence
1) is implicitly given by S. Thus F' is defined by:

2 Remember that under the change of coordinates 1, a function S changes according to S — S o). Likewise,
yr—yoyand Y — Y o
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(5.2) F:(z,y) = (X o¢(z,y), g—f(wwy)))

and the two coordinates of F' are given implicitly by the function S and its partial derivatives. In Proposition
PROPgfstm of Chapter STM, we give conditions under which a function on IR? is a generating function of the
lift I of some twist map. We also show that the correspondence between maps and their generating functions

(mod constant) is one to one and continuous. The following exercise gives two necessary conditions for a

function to generate a twist map:

Exercise 5.1 Show that if S(x, X) is the generating function of a positive twist map, then:
a) (9125(.”1},)() <0
b) S(z+1,X +1) = S(z, X)

Exercise 5.2 Show that if F the lift of a twist map of the annulus $' x [0, 1] then S(x, X) can be interpreted
as the area of the triangular shaped area with vertices (z,0), (X,0) and (X, Y’) shown in Figure 5. 1. (Hint.
Show geometrically on this picture that ¥ = g—f(. For y = —35>, consider the preimage of this triangular

region by F'). Solve question b) of the previous exercise using this geometric construction.

(xy) 7
(X.Y)

S(x,X) S(x,X)

Fig. 5. 1. The generating function as an area

Exercise 5.3 Show that the inverse of a positive twist map with generating function S(z, X) is a negative
twist map with generating function —S(X, z).

B. Variational Principle

The lift F' of a twist map gives rise to a dynamical system whose orbits are given by the images of points of

IR? under the successive iterates of F. The orbit of the point (z¢, %) is the biinfinite sequence:

{. .. ($,1,y71), (1'071/0)7 (xlayl)v | (xk,yk) . }

where (2, yk) = f(Tr—1,Yk—1).

Lemma 5.1 Let F be a monotone twist map of A or R? and let S(xz, X) be its generating function.

There is a one to one correspondence between orbits {(zr, yx) = f¥(x0,90)}rez of F and sequences

{z}rez satisfying:

(5.3) NS (zp, xpy1) + 025 (xp—1,28) =0 Vk € Z.
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The correspondence is given by: yr, = —S(Tk, Ty1)-
Proof. Let{(zk,yr)}rcz beanorbitof F'. Since (xy, yi) = f(zr_1,yr—1) for all integer k, Equation (5.1)
implies:
Yr = —01S(xk, Thy1) = 02S(Tp—1, 7).

Conversely, let {x } ez satisfy Equation (5.3) and set y, = —015(zk, xk+1), for all integer k. Then,
applying Equations (5.2) and (5.3) :

f@r-1,yk-1) = fov™ (w1, 7k) = (k, O2S(Tk—1, 7k))
= (g, =018 (Tk, Tht1)) = (Th, Yk)-

O
Equations (5.3) can be interpreted as “discrete Euler-Lagrange” equations for some action function on

the space of sequences. Indeed, let F' be the lift of a twist map of the cylinder, and S(z, X) its generating

function. Given a sequence of points {zy, ...,z }, We can associate its action defined by:

M—1

W@M---JM) = Z S(fﬂk,if/kﬂ)

k=N
Corollary 5.2 (Critical Action Principle) A sequence {x ..., 25} is the projection of an orbit segment
of F on the x-azis if and only if it is a critical point of W restricted to the subspace of sequences
{wy,...,wy} with fivred endpoints: wy = Ty, wpr = Tpy-
Proof. Given a sequence {zy, ...,z },introduce the sequences

Y = —01S(xp, xpy1) and Yy = 02S(ap, 2p—1).

In particular, F'(zy, yr) = (g1, Yi). If W is the restriction of W to the set of sequences with fixed endpoints

zn and 7, a direct calculation yields:

M-1
AW (an, o) = Y (Vo1 — yi)dag.
k=N+1
Hence {zx,..., 2} is a critical point for W if and only if Y;,_; = y;, which is a rephrasing of Equation
(5.3) , i.e. the sequence {(zn,YN),-- ., (Zrr, yar)} is an orbit segment. O

Exercise 5.4 Adapt Lemma 5.1 to a situation where the map F' is a composition of different twist maps
F = Fy o...0 Fy with generating functions Si,..., Skx. Note that you do not need to assume that all the F;
are either positive twist (or all negative twist). If they are, one calls F' a positive (resp. negative) tilt map.
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C. Periodic Orbits

Let F be the lift of a twist map f of the annulus A, or cylinder C. Suppose that some orbit {z, yi } xcz of F

satisfies:
(5.4) Than = Tk + M

that is, F"(x, yi) = T™(2k, yx ). Then f™(proj(zk,yr)) = proj(zk, yx), and thus the orbit of (xq, yo) is
the lift of a periodic orbit of f. We say that a sequence {x} satisfying (5.4) is a (m,n) sequence. An orbit
whose x projection is an (m, n) sequence is called a (m, n) orbit, or an orbit of type (m,n). Hence, under n
iterates of F', points in a (m, n) orbit get translated by the integer m in the = direction. Down in the annulus,
this can be interpreted as the orbit wrapping m times around the annulus in n iterates. Conversely, it is not
hard to see that any periodic orbit of f of period n lifts to an (m,n) orbit of a lift F', for some integer m which

does depend on the choice of F'. The proof of the following is identical to that of Corollary 5.2:

Proposition 5.3 A (m,n) periodic sequence is the x- projection of a m,n periodic orbit if and only if

its is a critical point of W (zg, ..., Tktq) = Z?ig_l S(xj,xjq1) for one (and hence for all) k € Z.

Exercise 5.5 Show by an example that the number m for a periodic orbit of a twist map depends on the
lift.

D. Rotation Numbers

Another interpretation of the numbers 12, n in a periodic orbit is that the average displacement in the « direction
of the points in a (m,n) orbit is m/n. In general, if {xy, yi }rez is any orbit, one can try to compute the
limits:

Ty

. . x
lim —, lim —
k—+4oo k k——c k

If these limits exist, they are called respectively the forward and backward rotation numbers. If they are

equal, they are called the rotation number. Since limy_.o 5 = limg .o *237%, the rotation number is

an asymptotic measure of the average displacement in the « direction along an orbit. Obviously, an (m,n)
periodic orbit has rotation number m/n. We also call rotation number of the point z = (z,y) the rotation

number of its orbit under F'; we denote this number by ps(2).

Exercise 5.6 For those who know Birkhoff’s ergodic theorem, show that, if f is an area preserving map of the
annulus, py(z) exists for a set of points z of full Lebesgue measure in A (Hint. lim 220 = lim ¢ E’f(xj —
x;j—1) is the time average of some function).
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6. Examples
A. The Standard Map

As noted in the introduction, one of the most widely studied family of monotone twist maps is the so called
standard family, or standard map. We show how to retrieve explicitly the standard map from its generating
function. Let
1
Sz, X) = E(X —2)? +V(2),

where V' is 1-periodic in x. Define

y=—-0Sx,X)=X —z+V'(x)

Y = (925([L‘,X) =X —ux.

then it is easily seen that
X=z+4+Y
Y =y+ V'(2),

That is, S generates the lift of a twist map:
Fz,y) = (X,Y) = (z+y+V'(2),y + V'(z)).

Taking as “potential” V' the 1-parameter family #cos(%mc), we do indeed get the standard family:

k k
Filz,y) = (z+y— %sin(%m‘), y— %sm(%rx))

When V = 0 (or k is equal to 0 in the standard family), the generating function is (X — z)? = %Dis2 (z,X)

and the map it generates is the shear map:

FO(‘Tay) = (I+yay)

which is completely integrable, in the sense that each horizontal line {y = yo} (covering a circle in C) is
invariant under Fp, and that the restriction of Fj to {y = yo} is a translation: = — = + yq (lift of a rotation
of angle 27yg). We will see in Chapter HAM that Fj, is the time 1 map of the geodesic flow for the Euclidean
metric on the circle.

As noted in the introduction, an important question about the standard family (or any set of maps containing

a completely integrable one) is: which features of Fj survive as one perturbs the parameter k away from 0?
Exercise 6.1 Check all the axioms of twist maps of the cylinder on the standard map.

B. Elliptic Fixed Points of Area Preserving Maps

The study of the dynamics around conservative elliptic fixed points was the motivation behind the birth of
twist maps. It started when Poincaré studied the dynamics around an elliptic periodic orbit in the restricted
3-body problem. This is a Hamiltonian system (see Chapter SG) with 2 degrees of freedom, whose energy
surface is 3—dimensional. Poincaré considered the return map on a 2—dimensional transverse section to the
periodic orbit. Since the system is Hamiltonian, the return map is symplectic (see Theorem THMhamsym of

Chapter SG). Generically, it is also shown to satisfy a twist condition. To formalize this a little, we present
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here the Birkhoff Normal Form Theorem. Poincaré was interested in proving that an elliptic periodic orbit is
stable (leading to the more difficult question of the stability of the solar system), and in finding many periodic
orbits close by. Both these problems were solved affirmatively for generic maps, the first by the KAM theory
(see INVchapter) and the second by the theorem of Poincaré-Birkhoff (see TWISTsecpb).

Fig. 6. 2. A Poincaré section around the periodic orbit of the point z*, with the return map R.

Let F' be a symplectic C*° diffeomorphism in a neighborhood of 0 in IR?, which has 0 as a fixed point.
Since det D f(0) = 1, the two eigenvalues are either real A, 1/\ or complex \, X and conjugated on the unit
circle. In the first case, we say that 0 is a hyperbolic fixed point, in the second case that it is an elliptic fixed
point (see also Appendix 1 or SG). If F' is the return map of a periodic orbit based at z* as above, the periodic
orbit is called elliptic or (resp. hyperbolic) when z* is an elliptic (resp. hyperbolic) fixed point for R.

Suppose now that 0 is an elliptic fixed point and that D f(0) has eigenvalues A = €27 and \ (i.e. Df(0)
is a rotation of angle o). Suppose moreover that A" # 1 for nin {1,..., ¢} for some integer q. We can make
a change of variable z = x 4 iy,Z = x — iy and write the Taylor expansion of order n of F(z) in these

coordinates: "

f(2) =) Ri(2,2) +oll2")

k=1

Theorem 6.1 (Birkhoff Normal Form) There exists a symplectic ( for the form dz A dy), C* diffeo-

morphism h, defined near 0 and having 0 as a fixed point such that:

hofoh™t(z) = Aze?™P () 4 o(|z|17Y)

or, in polar coordinates (z = re'?™?):

f=Tofol \(n6) = (6+a+ P4 +ofr™), r+ofr™)

where P(z) = a1z +. ..+ amx™ with 2m+1 < q. Each of the “Birkhoff invariants” ay, is generically

non zero.

For a proof of this, we refer to LeCalvez (1990) . There are also versions that require less differentiability

(see Moser (1973) ). The point of this theorem is that, if we make the generic assumption that some ay, is
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non zero, the map F’ satisfies a twist condition in a neighborhood of » = 0 (for » > 0). Note that, in polar
coordinates, the map f preserves the form rdf A dr, (which is only non—degenerate for » > 0 . By making
a further change of variables that preserves the vertical foliation {# = ct}, one can get a map that preserves
df A dr (see Chenciner (1985) ). This last map preserves no boundaries. However, one can extend it to a
boundary preserving map of a compact annulus. The main results in the theory can often be made precise
enough to tell apart the dynamics of the original map from that of the extension. Hence the dynamical study

around conservative fixed points reduces to the study of twist maps.

C. The Frenkel-Kontorova Model

The variational approach in Section 5 was encountered by Aubry (see Aubry & Le Daeron (1983)) while
studying a model in condensed matter physics. In this model, one considers a chain of particles whose nearest
neighbor interaction is represented by springs. The chain of particles lies on the surface of a linear crystal

represented by a periodic potential V (z) = k/4n%cos(2mx).

(.
X, x, X

Fig. 6. 4. The Frenkel-Kontorova Model.

If zj, represents the location of the kth particle of the chain, this particle is in equilibrium whenever the

sum of the forces applied to it is null:
k.
(6.1) (1 — k) — (Tk — Tp—1) — %sm@ﬂxk) =0
This equation can be rewritten dI¥ = 0 where W, the energy of the configuration of particles is given by :

1 k
W = ZS(xk,ka) = Z §(a:k — 2p1)? + mcos(%’wk).
k k

We recognize S as the generating function of the Standard map. Hence equilibrium states of the Frenkel-

Kontorova model are in 1-1 correspondence with orbits of the Standard map.

D. Billiard Maps

We revisit here the example of the billiard map presented in the introduction. Consider the dynamics of a ball
in a convex, planar billiard. This ball is subject to simple laws : it goes in straight lines between two rebounds

and the incidence and reflexion angles are equal at a rebound. We reproduce here a figure of the introduction:
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Fig. 6. 5. In a convex billiard, the point z and angle ¢ at a rebound uniquely and continuously determines
the next point X and incidence angle ©.

Let x be the arc length coordinate with respect to a given point on the boundary C' of the billiard, which
we orient counterclockwise. Let y = —cos(6) where € is the reflexion angle of a point of rebound. Because
of the convexity of the billiard and the law of reflexion, a pair (x, y) at a rebound determines its successor
(X,Y), and vice versa. Hence we have constructed a homeomorphism f : (z,y) — (X,Y) of the (open)
annulus $' x (-1, 1) which is actually a C*~? diffeomorphism if the boundary is C* (LeCalvez (1990) ). We
call f the billiard map. If we increase y while keeping x fixed, the convexity of C' implies that C'(X') moves
in the positive direction along C'. Thus:

X
dy

and the billiard map satisfies the positive twist condition.

(6.2) >0

We now show that f is exact symplectic by exhibiting a generating function for it. Let S(z, X) =

|C(X) — C()|| then, since C’ = 9< is a unit tangent vector:

a8 1 ’

%~ %) [C'(x).(C(x) — C(X))] =y
(6.3) 98 -1 ,

9% = 5o X [C'(X).(C(X) - C(x)] =Y
which is to say:
(64) YdX —ydx = 7dS(I, X)

Thus, for the billiard map, the action function W = " S(xy, xx1) is nothing more than the perimeter
of the trajectory segment considered. For instance, periodic trajectories correspond to polygons in a given
P, g-type who are critical points for the perimeter function. Figure 6. 6 shows that a period 5 orbit might come

in different orders.

Exercise 6.2 Show that the billiard map for the round billiard is given by:

f(:r.y) = (CL‘ + 260571(7y)7y)'

Exercise 6.3 Show that, for the billiard map, the equation dW = 0 expresses the equality between the angle
of incidence and the angle of reflexion at each rebound.

7. The Poincaré-Birkhoff Theorem

In this section, we give a complete proof of the Poincaré-Birkhoff theorem, also called Poincaré’s last theorem.
We refer to Section 3.0for some motivation for this theorem. We use here some elementary material about
circle diffeomorphisms, which the reader can get familiarized with in the appendix at the end of Chapter AM.
We also use techniques of Conley for the gradient flow of the action function that the reader can read about
in Appendix 2 or TOPO. We consider a map f of the compact annulus A = $' x [0,1] and its lift F' to
A =1R x [0,1] . We do not assume that f is a twist map, but rather that the restriction of F' to each boundary
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component u , which are lifts of circle diffeomorphisms, have rotation numbers p+ of F' |ui which satisfy

p— < p+ (See . We say that F' satisfies the boundary twist condition.

Theorem 7.1 (Poincaré-Birkhoff) The lift F' of an area preserving map of A which satisfies the
boundary twist condition with p— < 0 < p; has at least two fixed points. More generally, if m/n €

[p—, p+], and m,n are coprime then F has at least two m,n—orbits.
Proof. We follow the proof of LeCalvez (astérisque) , which is based on the following simple lemma:

Lemma (Decomposition) 7.2 Any area preserving map f of a bounded annulus A isotopic to the

Identity, can be written as a composition of twist maps:

f=foxko...0f1

Proof. Ttis a general fact (left as an exercise to the reader) about topological groups that the connected
component of the neutral element is generated by finite products of elements in any given neighborhood U
of the neutral element of the group. Let fj be the shear map f(z,y) = (x +y mod 1,y). Since the set
of maps satisfying the twist condition is open, there is a neighborhood U of Id in the set of area preserving
maps of A whichissuchthat f € U = f; Lo f is a negative twist map . Hence any f in U can be written as:
f=foolfy lof ), a composition of two twist maps (one positive, the other negative). The group of area and
orientation preserving maps of the annulus being connected, any map in that group can be written as a finite
combinations of f as above. a

Let f be area preserving and let F' be a lift of f to the covering space .A. Then F' = Fyk o... o F} where
Fy, lifts a twist map f,. Let Sy be the generating function for FJ,. If we let

2K
Wo(x) = Z Sk(Tk, Trt1) x € Xoorx = {rox+1 =21}
=1

then the Critical Action Lemma 5.3 shows that the critical points of 1, correspond to periodic orbits under
the successive f’s, and hence to fixed points of f. To find these critical points, we study the gradient flow (*
of —W), and exhibit a compact set P of X 2x which must contain critical points for the action. The set P is
an isolating block in the sense of Conley, i.e. a compact neighborhood whose boundary points immediately
exit P in (small) positive or negative time (see Appendix 2 or TOPO ). This condition on the boundary implies

that the maximum invariant set for ¢? is in the interior of P (hence the term “isolating”).

Lemma 7.3 Whenever p_ <0 < p4, the set
P={z € Xoox |0 < —01Sk(xy,2141) < 1}
is an isolating block for the gradient flow ¢t of —Wy. Moreover,
P~8!'x0,1]% x[0,1)%!

with exit set P~ = §' x [0,1]% x 9([0, 1]571)
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Proof. Setting y;, = —1Sk(2k, k1), the faces of the boundary OP of P can be written as {y, = 0}

or {yr = 1} for k € {1,...,2K}. The behavior of the flow at a face y;, = 1, say, is given by the sign of
dye —

dt Yk-
(7.1) Uk = (O1Sk(Tky Thy1)) = =011k (s Thg1 )k — O125k (Thy Thop1 ) Thg1
We let Yy, = 0ySk(zk, Tr11), i-e. Fi(wr,yr) = (wx11, Vi) With this notation —g2 = Y, 4 + yj, and
Equation (7.0) reads:
(7.2) Uk = 0118k (Try Trr1) (Y1 — Y&) + 0128k (@h, Tq 1) (Y — Yrr1)

and the invariance of the boundary component IR x {1} of IR x [0, 1] under Fj, tells us that, when y;, = 1
then Y, = 1 as well. Since y;+1 < landhence Y, | <1,

(7.3) Y1 -y <0, Yi—yry1 0.

Assume that k is even. Then fj, is a positive twist map and —012Sk (zk, zx11) > 0. We need to determine
the sign of 0115 (zk, zr11) on the subset {y;, = 1} of P. On this set, we have x;, = a(zy1) Where a is
the restriction of Fj~ ! to yy = 1, this latter set being parameterized by z. Since a is the lift of an orientation
preserving circle diffeomorphism, we have a’(x) > 0 for all z. We differentiate the equation 1 = 9S(a(z), x)
with respect to x :
0 =d(z)0h1S(a(x), z) + 012S(a(z), x)

from which we deduce that 9115 (z,a(z)) > 0. Going back to Equation (7.2) , we see that if we are away
from the boundary of the face y; = 1 (i.e., in particular, y; # 1, [ = k — 1, k + 1), then the inequalities in
(7.3) are strict, and we get 7, < 0: the flow is strictly entering P through this face, or exiting it in negative
time.

If we are on an edge of the face y,, = 1, the inequalities (7.3) may be equalities. But this cannot be the
case for all k: if it were, () ez Would be critical and (2, yi) would be a fixed point for f on the boundary,
which is impossible since then the rotation number p; = 0, a contradiction to p_ < 0 < p4.So we can
assume, say Y; 1 —y; < 0,y = 141 = ... = Yy, = 1, in which case (7.2) tells us that j; # 0 and the flow
exits P in either positive or negative time at this point of O P.

The proof of the case £ odd is exactly similar. We let the reader show in Exercise 7.4 that P and its exit
set P~ have the topology advertised. o

This Lemma puts us in a situation which, since the work of Conley & Zehnder (1983) is a classic one in

the field of symplectic topology. It can be schematized by the following diagram:

-

l {

st X [01F o [0Q1f1?
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Fig. 7. 2. The gradient flow at the boundary of the isolating block P

Given this topological data on its gradient flow, Proposition 50.3 tells us that W, must have at least
cl(8*) = 2 of critical points. This completes the proof of the Poincaré-Birkhoff Theorem. The more general
case of periodic orbits with rotation number m/n € (p_, p+) derives from the fixed point case by considering
the map £ (-) — (m, 0), which has new rotation numbers on the boundary n(p_ —m/n) < 0 < n(p; —m/n)

and whose fixed points correspond to m, n periodic orbits of F'. ad

Corollary CORvarprin or TWISTcorvarprin is 5.2, Proposition TWISTpropcritperiod is 5.3, Section
TWISTsectionvariation is 5, Section TWISTsecexamples is 23,Section TWISTsecpb is 26



