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FOREWORD

8/31/99

To the reader of this draft: this is a preliminary version of the book, which needs to

undergo a good amount of revision. Comments such as this one appear at the top of each
chapter to warn my early reader, and remind myself, of some of the work needed. My home-
spun reference system is not completed yet. Chapters come with names as this point (because
the numbers were variable). As an example, Proposition TOPOpropcz belongs to the appendix
named TOPO and the number it corresponds to is at the end of that appendix. I have marked
points that need my attention in the future by: ???7. Where concepts are defined for the first
time, I use the definition style. T will build an index listing all terms that appear in that font.
This is not the format required by my publisher World Scientific. In the interest of saving
paper, I kept the magnification low (the book would have 250 pages in the final format). As a
result, some page transition could have been smoother. Finally, this version does not contains
all the pictures.
Area preserving maps of the annulus first appeared in the work of Henri Poincaré (ref 7??) on the three-body
problem. As two dimensional discrete dynamical models, they offered a handle for the study of a complicated
Hamiltonian system. Since then, these maps and their more specialized offspring called twist maps, have
offered many opportunities for rigorous analysis of aspects of Hamiltonian systems, as well as an ideal test
ground for important theories in that field (eg. Moser (1962) proved the first differentiable version of the KAM
theorem in the context of twist maps).

This book is intended for graduate students and researchers in mathematics and mathematical physics
interested in the interplay between the theories of twist maps and Hamiltonian dynamical systems. The original
mandate of this book was to be an edited version of the author’s thesis on periodic orbits of symplectic twist
maps of T" x IR"™ . While it now comprises substantially more than that, the results presented, especially in
the higher dimensional case, are still very much centered around the author’s work.

At the turn of the 1980’s, the theory of twist maps received a tremendous boost from the work of Aubry
and Mather. Aubry, a solid-state physicist, had been led to twist maps in his work on ground states for
the Frenkel-Kontorova model. This system, which models deposition on periodic 1—dimensional crystals,
while not dynamical, provides a variational approach which is surprisingly relevant to twist maps. Mather,
a mathematician who had worked on dynamical systems and singularity theory, gave a proof of existence
of orbits of all rotation numbers in twist maps, what is now known as the Aubry-Mather theorem, using
a different variational approach proposed by Percival. Aubry, who had conjectured the result, gave a proof
using his approach. Both researchers then developed a sophisticated theory using an interplay of their two

approaches. This lead to a flurry of work in mathematics and physics.
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At about the same time, Conley & Zehnder (1983) gave a proof of the Arnold conjecture on the the torus,
which heralded the birth of symplectic topology. This conjecture (now a theorem) states that the number of
fixed point for a Hamiltonian map on a closed manifold is regimented in the same way as the number of critical
points of real valued functions on that manifold. The proof involved Conley’s generalized Morse theory for
the study of the gradient flow of the Hamiltonian action functional in loop space. Later, with the influx of
Gromov’s holomorphic curve theory, this gave rise to Floer cohomology (Floer (???) ). Interestingly, Arnold
(1978) introduced his conjecture as a generalization of the famous fixed point theorem for annulus maps of

Poincaré and Birkhoff, by gluing two annuli into a torus.

This book, while establishing a firm ground in the classical theory of twist maps, reaches out, via gener-
alized symplectic twist maps, to Hamiltonian systems and symplectic topology. One of the approaches used
throughout is that of the gradient flow of the action functional stemming from the twist maps’ generating
functions. We hope to convey that symplectic twist maps offers a relatively simple, often finite dimensional,

interface to the variational and dynamical study of Hamiltonian systems on cotangent bundles.

Results for the two dimensional theory presented here include the classical theorems by Poincaré, Birkhoff
(Chapter 7 and INVchapter), Aubry and Mather (Chapter AM). A joint work of the author with Sigurd Angenent
on the vertical ordering of Aubry-Mather sets appears for the first time here (GCchapter). The approach of this
book to the two dimensional theory is deliberately variational (except for Katznelson and Ornstein recent proof
of Birkhoff’s Graph Theorem in INVchapter) as I sought continuity between the low and high dimensions.
Unfortunately, this choice leaves out the rich topological theory of twist maps and, more generally two
dimensional topological dynamics. I refer the reader interested in the topological approach to Hall & Meyer
(7?77), LeCalvez (1990) and the bibliography therein.

In higher dimensions, results by the author form the main focus of attention. These results are about
existence of periodic orbits and their multiplicity for both symplectic twist maps and Hamiltonian systems on
cotangent bundles (Chapter 4 and Chapter 7). The results on Hamiltonian systems use techniques of decom-
positions of these systems into symplectic twist maps . In Chapter 6, we provide the necessary connections
between these maps and Hamiltonian and Lagrangian systems, some for the first time in the literature. In
particular, M. Bialy and L. Polterovitch were kind (and patient!) enough to allow me to include their proof
of suspension of a symplectic twist map by an optical Hamiltonian flow. Appendix 2 or TOPO establishes
the parts of Conley’s theory needed in the book, including some refinements that, to my knowledge, never
appeared before. For readers uncomfortable with these topics, I try to motivate this appendix (chapter ???)
by a hands—on introduction to homology and Morse theory. Chapter 9 presents Chaperon’s proof of Arnold’s
conjecture on the torus, and the commonality between our methods and those of generating phases used in
symplectic topology. Appendix 1 or SG , a self contained introduction of symplectic geometry, gathers (and

proves most of) the results of symplectic geometry needed in the book.

The results in this book do not make minimizing orbits their central item. In fact, they often deliberately
concern systems that cannot have minimizers (non positive definite twist). However, Chapter AMG is devoted
to surveying the state of affairs in the generalizations of the Aubry-Mather theory to higher dimensions,
where minimizers play a fundamental role. INVchapter, a poor substitute to a treatment that should occupy a
volume on its own, surveys the theories of invariant tori (KAM theory and generalizations of Birkhoff’s Graph

Theorem by Bialy, Polterovitch and Herman), as well as that of splitting of separatrices.
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The different topics in this book require different background from the reader. I have striven to make it
possible for readers only interested in twist maps of the annulus or of T x IR" to read the sections pertaining
to these topics with a minimum of reference to symplectic or Riemannian geometry, or to Conley’s theory.
On the other hand the appendices on symplectic geometry and topology are written, at least in part, with the

novice in mind.
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INTRODUCTION

8/27/99

In this introduction, we tell three mathematical stories which introduce themes that are interwoven throughout
the book. The first one is the evolution of the dynamics of conservative systems (the standard map here) as one
pertubs them away from completely integrable. The second story is about the relationship between Lagrangian
or Hamiltonian systems and symplectic twist maps, illustrated here by the connection between the billiard
map and the geodesic flow on a sphere. The third story relates Poincaré’s last geometric theorem to symplectic

topology.
1. Fall From Paradise

Consider the map Fy : IR? — IR? given by:
FO(‘Tay) = (T + y7y)

Fj shears any vertical line {z = z(} into the line {y — (z0+y,y)},of slope 1: as y increases, the image point
moves to the right. We say that F{ satisfies the twist condition. Fy is linear with determinant 1 and hence is
area preserving. Since Fy(z+1,y) = Fo(x,y)+(1,0), this map descends to amap f; of the cylinder $* x IR..
There, the x variable is seen as an angle. fj is called an area preserving twist map of the cylinder, or twist map
in short. See Chapter 1 for a more detailed definition of twist maps. The map f; has an additional property that
makes it special among twist maps: it preserves each circle {y = .}, on which it induces a rotation of angle
1y (measured in fraction of circumference). We say that f; is completely integrable. Completely integrable
maps are the paradise lost of mathematicians, physicists and astronomers. Not only are the dynamics of such
maps entirely understood, but the invariance of each circle {y = y.} assures that no point drifts in the vertical
direction. In their original celestial mechanics settings, twist maps appeared as local models of sections of
the Hamiltonian flow around an elliptic periodic orbit. In this setting, this lack of drift means stability of the
orbit ( and by extension, one hoped to establish the stability of the solar system...). Nearby points stay nearby
under iteration of the map. Of course “real” systems are rarely completely integrable. But one of the driving
paradigms in the theory of Hamiltonian dynamics is the study of how one falls from this completely integrable
paradise, and how many of its idyllic features survive the fall.

Falling is easy. Perturb Fj, ever so slightly into an F:

F(x,y) = (x +y— isin(%mc), y— ism(%m:)) )
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called the standard map. As the reader may check, the vertical lines are still twisted to the right, and the area
is still preserved under F.. Looking at the computer pictures of orbits of F{y and F, in Figure 1. 1, we see what
appear as invariant circles. We also see new features in the orbits of F.: some structures resembling collars
of pearls (elliptic periodic orbits and their “islands”), interspersed with regions filled with clouds of points
(chaos and diffusion due to intersecting stable and unstable manifolds of hyperbolic periodic orbits). We also
see some “broken” circles made of dashed lines (Cantori or Aubry-Mather sets). These new features become
more and more predominant as the value of e increases: the elliptic islands bulge, the chaotic regions spread,
and less and less circles appear unbroken. In fact, if ¢ > 4/3, a theorem of Mather (1986) says that no invariant
circle survives. However, the deep theory of Kolmogorov-Arnold-Moser (KAM, see INVchapter) implies that
uncountably many invariant circles remain for small €, those that have a very irrational rotation angle. In fact
these circles occupy a set of large relative measure in the cylinder. A natural question arises: what happens
to invariant circles once they break? The answer to this question, given by the Aubry-Mather theorem (see
Chapter AM), is that invariant circles are replaced by invariant sets called Aubry-Mather sets whose orbits
retain most of the features of those of invariant circles (cyclic order, Lipschitz graph regularity, rotation number
and minimization of action). The Aubry-Mather sets with orbits of irrational rotation numbers form Cantor
sets, sometimes called Cantori; those with rational rotation numbers usually contain hyperbolic periodic orbits
and, depending on the authors’ conventions, associated elliptic orbits. Of course the Aubry-Mather sets with
their gaps form no topological obstruction to the vertical drift of orbits. In fact Mather (1991a) and Hall
(1989) prove that, in a region with no invariant circle, one can find orbits visiting any prescribed sequence of
Aubry-Mather sets. Hence these vestiges of stability have now become a stairway to drift and instability! The
theory of transport (see Meiss (1992) ) points at the regulatory role Aubry-Mather sets have on the rate of

vertical diffusion of points.

Elliptic island within an elliptic island

Aubry Mather set ?

Hyperbolic period 2 orbit O
(surrounded by chaos)

Elliptic island for a period 2 orbit

Invariant circle

Chaos near a homoclinic orbit

Fig. 1. 1. The different dynamics in the standard map: the left hand side shows a selection of orbits for the
completely integrable Fp, whereas the right hand side displays orbits for F. with e = .817. Of course, one has
to take computer generated figures with a grain of salt: computers cannot deal with irrational numbers...
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Higher Dimensions

Make Fy : (z,y) — (x + y,y) defined above into a map of IR™ x IR" by having x, y be vector variables. In
analogy to the former situation, Fy descends to amap f from T x IR" to itself (x is now a vector of n angles).
This space can be interpreted as the cotangent bundle of the torus, an important space in classical mechanics.
Not only has the differential DF;, determinant 1, but it also preserves the symplectic 2-form ), dzy A dy
(the two notions were indistinguishable in dimension 2). The vertical fibers {x = z.} are still sheared, in a
way made precise in Chapter STM. The map fj is called a symplectic twist map in this book. Our new f; is
again called completely integrable as it preserves the tori {y = y.}, and induces a translation by the vector y,.
on each one. One can perturb f; (in the realm of symplectic twist maps ) and ask the same kind of questions
as in the 2—dimensional case: what of the well understood, stable dynamics of f; survives a perturbation of
the map, small or large?

It turns out that KAM theory still holds in this case, and guarantees the existence of many invariant tori
whose dynamics is conjugated to the translation by (very) irrational vectors. One of the results central to this
book is that for arbitrary perturbations, periodic orbits of any rational rotation vector exist for all symplectic
twist maps of a large class, and a lower bound on their number is related to the topology of T" (see Chapter 4).
What about orbits of irrational rotation vector? Strictly speaking, there cannot be a full analog of the Aubry-
Mather theorem in higher dimensions. Mather (1991b) developed a powerful theory of minimal invariant
measures and their rotation vectors on cotangent bundles of arbitrary compact manifolds. This theory proves
the existence and regularity of many minimizing orbits. But in the case where the manifold is T" with n > 3,
the theory cannot guarantee that more than n directions be represented in the set of all rotation vectors of
minimizing orbits. And indeed, some examples exist of maps (or Lagrangian systems) of T* x IR all of whose
recurrent minimizing orbits have rotation vector restricted to exactly 3 axes. If one lets go of the requirement
that the orbits be action minimizers, then in certain examples, orbits of all rotation vectors can be found.
The work of MacKay & Meiss (1992) points to a general theory for maps very far from integrable, but the
case of maps moderately close to integrable, where less help from chaos can be expected, is not understood.
Interestingly, if one trades the cotangent of a torus for that of a hyperbolic manifold, a large amount of the
Aubry-Mather theory can be recovered: minimizing orbits of all rotation “direction”, and of at least countably
many possible speed in each direction exist (see Boyland & Golé (1996b)). Also, full fledge generalizations of
the Aubry-Mather theorem exist in higher dimensional, but non dynamical settings generalizing the Frenkel-
Kontorova model, as well as for some PDE’s (de la Llave (1999)). We survey all these questions in greater
detail in Chapter AMG.

2. Billiards and Broken Geodesics

Symplectic twist maps have rich ties with Hamiltonian and Lagrangian systems. They often appear as cross
sections or discrete time snapshots of these systems. In Lagrangian systems, a trajectory -y is an extremal of
an action functional fv Ldt.In twist maps, this relates to an action function which is a discrete sum of the
form Y Sk (xg, xk+1) Where xy is a sequences of points of the configuration manifold and \Sj, are generating
functions of twist maps. We explore this relationship in Chapter 6. A beautiful illustration of this occurs in

the billiard map. The billiard we consider is planar, convex, and trajectories of a ball inside it are subject to
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the law of equality between angle of reflection and angle of incidence. Since we know that it is a straight line
between rebounds, a trajectory is prescribed by one of its points of rebound and the angle of incidence at this
rebound. In this way, we obtain a map f : (x,y) — (X,Y), where z is the coordinate of the point of rebound
and y = —cos(6), where 6 is the angle of incidence (see Figure 2. 1). Since z is the point of a (topological)
circle, and y is in the interval (—1, 1), the map f acts on the annulus $* x (—1,1). The choice of y instead
of 0 insures that f preserves the usual area in these coordinates (see Section TWISTsecexamples). The twist
condition for f is a consequence of the convexity of the billiard: if one increases y (i.e. increases ) leaving

z fixed, X increases.

Fig. 2. 1. In a convex billiard, the point z and angle 6 at a rebound uniquely and continuously determines
the next point X and incidence angle 6.

The map f can be seen as a limit of section maps for the geodesic flows of a sphere that is being flattened
until front and back are indistinguishable. The boundary of the billiard is the (not so round in our illustration)
fold of the flattened sphere. [To define the geodesic flow on the unit tangent bundle of the sphere, take a point
on the sphere and a unit tangent vector (parameterized by its angle with respect to some tangent frame). Now
travel at constant speed along the unique geodesic passing through this point and in the direction prescribed
by the vector]. Draw on the sphere the closed curve C' which eventually becomes the fold as one flattens the
sphere. For a sufficiently flat sphere, all the geodesics on the sphere (except for maybe C, if it is a geodesic)
eventually cross C transversally, and one can construct a section map which to one crossing at a certain point
and angle makes correspond the next crossing point and angle. Seen in the three dimensional unit tangent
bundle, the curve C lifts to a surface parameterized by points in C and all possible crossing angles in (0, 7),
i.e. an annulus, which all trajectories (except maybe for C) of the geodesic flow eventually cross transversally.
[Poincaré initiated a similar section map construction in a 3—dimensional energy manifold for the restricted
3—body problem]. The annulus maps that one obtains in this fashion limit, as one flattens the sphere, to the
billiard map. To see this, note that the geometry of the flat sphere near a point not on the fold is that of the
Euclidean plane, where geodesics are straight lines. At a fold point, the law of reflexion is a simple consequence

of what happens to a straight line segment as it is folded along a line transverse to it (see Figure 2. 2).
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fold

Fig. 2. 2. The law of reflexion as a consequence of folding.

Geodesics are length extremals among all (absolutely continuous) curves on the sphere. It therefore comes
as no surprise that orbits of the billiard map are extremals of the length on the space of polygonal lines with
vertices on the boundary (see Section TWISTsecexamples). If we inflate our billiard back a little, polygonal
lines become broken geodesics. Indeed, the straight line segments can be replaced by segments of geodesic
which, since the law of reflexion is not observed at a rebound for a general polygonal line, meet at an angle.
In this space of broken geodesics, parameterized by the break points, geodesics are critical for the length
function. To see why this is not only a beautiful, but also useful idea, consider the special case of periodic
orbits of a certain period for the billiard map and geodesic flow. In the billiard, these correspond to closed
polygons (see Figure 2. 3), parameterized by their vertices which form a finite dimensional space, whose
topology clearly has to do with that of the circle. The same holds for geodesics of our almost flat sphere.
In fact, when studying closed geodesics (or geodesic between two given points) on any compact manifold
one can restrict the analysis from the infinite dimensional loop space to a finite subspace of broken
geodesics. This was a key idea in Morse’s analysis of the path space of a manifold (see Milnor (1969) ). And,
more generally applied to Hamiltonian systems, it is one of the important themes of this book: symplectic
twist maps can be used to break down the infinite dimensional variational analysis of Hamiltonian systems to

a finite dimensional one. This is discussed in detail in Chapter 6, and again in Chapter 9.

(a) (b) (c)

Fig. 2. 3. Different polygonal configurations in billiards: (a) is of period 5, rotation number 3/5 and is
cyclically ordered. (b) is also of period 5, but of rotation 1/5 and is not cyclically ordered. Note that neither
(a) nor (b) represent orbits since the law of reflexion is not satisfied. (c) is a configuration corresponding
to an orbit on an invariant circle for the completely integrable elliptic billiard map. Its rotation number is
presumably irrational.
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Rotation Number and Ordered Configurations

The billiard map also provides a nice illustration of the notion of rotation number of periodic orbits (see Figure
2.3 (a) and (b)). A consequence of the Aubry-Mather theorem is that any convex billiard has orbits of all
rotation number in (—1, 1). Polygonal curves corresponding to orbits on an invariant circle with irrational
rotation numbers are all tangent to a circle or caustic inside the billiard (see Figure 2. 3 (c)). Polygonal curves
corresponding to Aubry-Mather sets are “tangent” to a Cantor set. Finally, the billiard gives us an illustration
of the notion of order for configurations of points. In Example (a) of Figure 2. 3, the configuration is cyclically
ordered, in that the cyclic order of rebound points is conserved on the boundary after following them to their
next rebound. Example (b) is, on the other hand not cyclically ordered. This notion of order is crucial to
the Aubry-Mather theory. In Chapter AM, we present a proof of the Aubry-Mather theorem similar to that
of Aubry’s, in which one finds (cyclically ordered) orbits of irrational rotation numbers by taking limits of
cyclically ordered periodic orbits. In GCchapter, we make use of the fact that the gradient flow for the action
function (the length in the billiard map) of a twist map preserves the set of cyclically ordered configurations
to give another proof of the Aubry-Mather theorem. We use a stronger order property of the flow as well in
our proof that Aubry-Mather sets are vertically ordered. Unfortunately, there is no natural order for orbits of
higher dimension twist maps. But the same kind of ordering exists in higher dimensional Frenkel-Kontorova
models, for which the Aubry-Mather holds, as well as for certain PDEs (see de 1a Llave (1999)). The gradient
flow in the PDE setting corresponds to generalized heat flows. The analogy to the preservation of order is
given by theorems of comparison. This analogy, which was already noticed by Angenent (1988) , inspired

him to introduce the gradient flow of the action in twist maps.
3. An Ancestor of Symplectic Topology

At the end of his life, Poincaré (1912) published a theorem, sometimes called his last geometric theorem, that
can be simply stated as: Let f be an area preserving map of a compact annulus, which moves points in
opposite directions on the two boundary circles. Then f must have at least two fixed points.

Poincaré gave an incomplete proof of this theorem, writing a moving letter of apology to the editor which
mentions his bad health and expresses his desire that his work on this problem not be lost for posterity. Birkhoff
gave a substantially different proof, which was also somewhat incomplete as to the existence of at least two
fixed points (it did prove the existence of at least one). Since then, a number of proofs have appeared (Brown
(?7??pb), Fathi (1983), Franks (1988), as well as Golé & Hall (1992), where the original proof of Poincaré is
completed). We now sketch a proof of the theorem, in the very simple case where the map f also satisfies the
twist condition. The ideas involved connect the original proof of Poincaré, the proof of LeCalvez (astérisque)
we present in Section PBsecpb and the modern theory of symplectic topology.

Let F be the lift of f to the strip A = {(x,y) | z € IR, y € [0, 1]}, which moves boundary points in
opposite directions. Such a lift always exists. Denote by (X, Y") the image of a point (z,y) by F'. Consider

I'={(z,y) € A| X(z,y) =},
which is the set of points that only move up or down under the map!). The twist condition means that the
image of each vertical segment {x = x} by F intersects that segment exactly at one point. This implies that

! Poincaré considered the similar set of points that only moved left or right, see Golé & Hall (1992)



3. Ancestor to Symplectic Topology 13

I is a graph over the x—axis, and, by periodicity, the lift of a circle y enclosing the annulus. Clearly, f(v)
must also be a circle, graph over the z—circle. Any point in the intersection v N f(~y) is necessarily fixed by f:
such points move neither left, right, nor up, nor down. This intersection is not empty, by area conservation. If
v = f(7) (as is the case if f is a completely integrable map), f has infinitely many fixed points. If not, area
preservation dictates that there must be points of f(~y) strictly above ~ and others strictly below. Since both
these sets are circles, this implies the existence of at least two points in the intersection, ¢.e. two fixed points
for f. O

‘We now show the connection between fixed points of f and critical points of a real valued function on the
circle. As we will see in Chapter 1, the map F' comes equipped with a generating function S(z, X) which
satisfies S(z + 1, X + 1) = S(z,X) and YdX — ydr = dS. This derives directly from area preservation
and conservation of boundaries. Consider the restriction w of S to I', i.e. w(z) = S(x,x). Write [’ =
{(z,y(z))} and F(I') = {(z,Y(x))}. By definition of I', F(z,y(x)) = (z,Y (z)). With this notation
dw = (Y(z) — y(z))dz, which is zero exactly when Y (z) = y(z):the critical points of w correspond
to intersections of I' and its image by F, i.e. to fized points of F'. By periodicity, w can be seen as a
function of the circle, which must have a maximum and a minimum: two distinct critical points, unless w is
constant, in which case all points of I" must be fixed. This simple idea is key in Moser (1977), where it is
shown that a generic symplectic maps has infinitely many periodic orbits around an elliptic fixed point. Arnold
(1978) also motivates his famous conjecture on fixed points on symplectic manifolds by an argument similar

to this one.

In the coordinates (x,y’) = (r,y — y(x)), I" becomes the O—section {(x,0)},and F(I") = {(z, Y (z) —
y(z)) is the graph of the differential of w. The function w is called a generating (phase) function for the manifold
F(I').This is a simple instance of a more general situation: I” and its image are Lagrangian manifolds, as
is any 1-dimensional manifold in a 2-dimensional symplectic manifold (see Appendix 1 or SG). Important
theorems in symplectic topology can be expressed, as this one, in terms of intersections of a Lagrangian
manifold with the O—section in some cotangent bundle. To find such intersections, one looks for critical points
of generating phase functions for this manifold. As we have seen in the above example, it is easy to do so
when the manifold is a graph over the O—section. The first challenge is to deal with cases where a Lagrangian
manifold is not a graph [This will occur for our sets I" and F'(I") when the map f is not twist, for example].
One then seeks generating phase functions with extra variables [This is in effect what the proof of LeCalvez
does: one obtains a generating phase function for the set F'(I") by adding the generating functions of the twist
maps that decompose f]. The second challenge is to show that these general generating phase functions have
the requisite number of critical points. This is done in this book using Conley’s theory on the gradient flow
of the generating phase function. One difficulty arises from the non compactness of the space on which this
function is defined. One resolves that by seeking compact invariant set of a sufficiently complicated topology
for the gradient flow. We called some of these sets “ghost tori” in Golé (1989). These sets have their analogs
in the sets of connecting orbits between critical points of the action functional in loop space that Floer based
his cohomology on. Although implicit in several parts of the book, we will not use the language of Lagrangian

intersection and generating phase function before Chapter 9.
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Section INTROsecpb is 3.0



CHAPTER 1 or TWIST

TWIST MAPS OF THE ANNULUS

1/25,/2000

Action to be taken: Make and add figures. Correct typos. Revise after writing the intro
(some of its material might be used in the intro: standard map, billiard, some definition of
symplectic...) The section on elliptic fp may be spread over to Chapter SG. I just moved
the section on Poincaré-Birkhofffrom the now defunct Chapter PB. Make sure the transition
is smooth. Check out the background, and give reference about Poincaré sections and twist
maps.

4. Monotone Twist Maps of the Annulus
A. Definitions

In the first part of this book, we consider diffeomorphisms of the annulus, or of the cylinder. The annulus can
be defined as
A =8 % [a.b].

[More generally, we could define A := {(z,y) € $' x R | u_(z) < y < u, ()}, where both u_ and u
smooth functions on $']. We define the cylinder by:

C=9%'xIR.
As with maps of the circle, it is often less ambiguous to work with lifts of diffeomorphisms of A. These are
maps of the strip:

A:={(z,y) e R?* |a <y <b}

where z, thought of as the angular variable, ranges over IR. The covering map proj : A — A takes (x,y) to

(z mod 1 ,y) and a /ift of a map f of the annulus is a map F of the strip which satisfies:
proj o F' = f o proj.

This implies in particular that F'(z + 1,y) = F(z,y) + (n,0), for some integer n. By continuity, n does not
depend on the point (z, y), nor on the lift F' of f, it is called the degree of f. In this book, we assume that f

is an orientation preserving diffeomorphism of the annulus. In this case, the degree of f is 1 and
(4.1) F(z+1,y) = F(z,y) + (1,0)

for any lift /" of f. Denoting by T the translation T'(z,y) = (z + 1, y), equality (4.1) reads:
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(4.2) Fol'=ToF

Clearly, any map F' of A that satisfies (4.2) is the lift of a map f of A which has degree 1. We say that f is
induced by F.

Definition 4.1 Let F' be a diffeomorphism of .4 = IR X [a, b] and write (X (x,y),Y (z,y)) = F(z,y).Let F’
satisfy:
(1) F preserves the boundaries of A: Y (z,a) = a,Y (x,b) = .
(2) Twist Condition: the function y — X (zo, y) is strictly monotone for each given z.
(3) Area and Orientation Preserving: det DF = 1 or, equivalently, dY A dX = dy A dzx.
@D FoT=ToF
Then F' induces a map f on the annulus A which is called a (area preserving, monotone) twist map of

the annulus.

Exercise 4.1 Prove the above statements about the degree of a map and its lifts.

B. Comments on the Definition

Twist Condition. Condition (2) implies that the map y — X (xq,y) is a diffecomorphism between the
vertical fiber {x = x(} and its image on the z-axis (also called the base). In other words, the image of the

fiber zo by F' forms a graph over the z-axis, as is shown in Figure 4. 1.

(xo,)’) L

e

Fig. 4. 1. The positive twist condition: as one moves up along a vertical fiber, the image point moves right.

(X(xox }’), Y(Xo, )’))

1
|
1
\ 7 X

Often, the monotonicity of the map y — X (zq, y) is expressed by the equivalent derivative condition:

0X
(4.3) —_— .
dy
Since A is connected, this derivative is either always strictly positive, or always strictly negative. We say that
F is a positive twist map (resp. negative twist map) if y — X (xq, y) is strictly increasing (resp. decreasing).
Note that the lift of a positive twist map “moves” points on the upper boundary of A “faster” than on the

lower boundary. If F' satisfies the latter, we say that it has the boundary twist condition. This condition, much
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Fig. 4. 2. The flux of a cylinder map as the net area between an enclosing circle C' and its image f(C)

If F preserves the boundary of a bounded strip .4, then f preserves the boundary circles and the flux is by force
zero. When no such curve is preserved, the flux can take any value in IR as the example V,(z,y) = (z,y+a)
with Flux(F') = a shows. Since examples of this type show no recurrent dynamics, we exclude them from
our study by always imposing, directly or indirectly, the zero flux condition on our maps. If F' has zero flux,
then S o 7" = S and thus S induces a function s on A such that

(4.4) ffydx — yd = ds.
taking the exterior derivative on both sides of this equation, one gets d(f*ydx — ydx) = d*s = 0, and thus
f(dy A dx) = dy A dzx.

A map that satisfies this last equality is called symplectic, because it preserves the symplectic form is called
exact symplectic. Hence (4.4) shows that exact symplectic implies symplectic. Hence if ' has zero flux, the
map f it induces is exact symplectic. Conversely, by Stokes’ theorem, if f is exact symplectic, any of its lifts
has zero flux (Exercise 4.2). Hence the map V,, of the cylinder defined above is not exact symplectic, even
though it is symplectic. Note that, in contrast, a symplectic map F’ of the plane is always exact symplectic: as

any closed form on the plane, F™*(y A dx) — ydz is exact (Poincaré’s Lemma).

Exercise 4.2 a) Using Stokes Theorem, show that if A is a closed 1-form on a simply connected domain of
IR?, then the function S = f A is well defined (i.e. does not depend on the path of integration between z

and zp) and that dS = . Apply this to A = YdX — ydzx.
b) What should a definition of S be if F preserves a smooth area form a(z,y)dy A dz?

Exercise 4.3 a) Let F be an arca preserving map of IR? with F o' = 1" o F. Show that for the function S
defined above, SoT — S is constant, and hence Flux(F') is well defined. (Hint. Given two points z1, z2 in A,
take any two curves 71,72, with «; joining 2; and 1'z;,¢ = 1,2. Take a curve (3 joining z; and 22 and apply
Stokes Theorem to the closed curve 3 -1 - (1'8)"! -5 ")

b) Show that any lift of an exact symplectic map of the cylinder has zero flux.

¢) (For those who know about DeRham cohomology) Prove that Fluz(F') is the result of the pairing of the
class [f*ydx —ydx] in H}z(C) with the first homology class represented by a circle going around the cylinder
once in the positive direction (as usual, f is the map induced by F).

C. Twist Maps of the Cylinder

The comments of the previous subsection motivate the following:

Definition 4.4 (Twist Maps of the Cylinder) Let I be a diffeomorphism of IR? and write (X (z,), Y (z, 7)) =
F(z,y). Let F satisfy:

(1) F is isotopic to the Identity

(2) Twist Condition: the map ¢ := (z,%) — (x, X (z, %)) is a diffeomorphism of IR?

(3) Area Preserving & Zero Flux (Exact Symplectic): YdX — ydx = dS with some real valued function
S on IR? satisfying:
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S(z+1,y) = S(z,y).

Then F is the lift of a map f on the cylinder C which is called a monotone twist map of the cylinder.

Condition (1) means that F' can be deformed continuously into the identity through a path of homeomor-
phisms of the cylinder. For maps of the closed strip IR X [a, b], this condition clearly implies that the boundaries
have to be preserved, and hence Condition (1) here is the analog to Condition (19) in Definition 4.1. It will
appear clearly in next section that the periodicity of the function S implies the periodicity F' o T = T o F,
i.e. Condition (4) of Definition 4.1, which is necessary for /" to induce a map of the cylinder. Finally, the
condition that v be a diffeomorphism here can be relaxed: one can require that ¢/ only be an embedding, i.e.

a diffeomorphism of IR? into a proper subset of IR?, to the cost of some (manageable) complications.

Remark 4.5 There exist several other definitions of monotone twist maps in the literature. Most noteworthy
are the topological definitions, where the map is only required to be a homeomorphism (and not necessarily a
diffeomorphism). The twist condition takes different forms with different authors. One commonly used is that
the map y — X (z,y) be monotonic (Boyland (1988), Hall (1984), Katok (1982), LeCalvez (astérisque) ).
A much milder condition is considered in Frank (1988), where certain neighborhoods must move in opposite
directions around the annulus. The preservation of area is sometimes discarded by these authors, replaced by a
condition that the map contracts the area, or that it is topologically recurrent. The topological theory for twist
maps is extremely rich and would be the subject of an entire book. Our choice of working in the differentiable

category stems from the possibilities of generalization to higher dimensions that it offers.

Exercise 4.3 Show that a map of the bounded annulus which is homotopic to Id preserves each boundary
component (Note: the converse is also true, but much harder to prove).

5. Generating Functions and the Variational Setting

A. Generating Functions

In the previous section, we have seen that the lift ' of a twist map of either the cylinder or the annulus comes
with a function S such that F*ydx — ydz = YdX —ydx = dS and S(x +1,y) = S(z,y). The first equation
expresses the fact that F' preserves the area, whereas the periodicity of S, expresses the zero flux condition.
On the other hand, the twist condition on F' gives us a function ¢ which we view as a change of coordinates
¢ (x,y) — (2, X).Inthe (2, X) coordinates(®) the equation Y'dX — ydx = dS(z, X) implies immediately
that the functions —y(z, X') and Y (z, X) are the partial derivatives of .S:
- 05(z, X)
or

05 (x, X
(5.1) y= Y = %

These simple equations are the cornerstone of this book. The function S(z, X) is called the generating
function of F in that from S we can retrieve F, at least implicitly: ¢~ is given by (z, X) — (z, — g—i) hence
1) is implicitly given by S. Thus F' is defined by:

2 Remember that under the change of coordinates 1, a function S changes according to S — S o). Likewise,
yr—yoyand Y — Y o).
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(5.2) F(z,y) = (X o¢(,y), g—f((w(x,y)))

and the two coordinates of F' are given implicitly by the function S and its partial derivatives. In Proposition
PROPgfstm of Chapter STM, we give conditions under which a function on IR? is a generating function of the
lift I of some twist map. We also show that the correspondence between maps and their generating functions

(mod constant) is one to one and continuous. The following exercise gives two necessary conditions for a

function to generate a twist map:

Exercise 5.1 Show that if S(x, X) is the generating function of a positive twist map, then:
a) 8125(:1), X) <0
b) S(z+1,X +1) = S(z, X)

Exercise 5.2 Show that if F' the lift of a twist map of the annulus $' x [0, 1] then S(x, X) can be interpreted
as the area of the triangular shaped area with vertices (z,0), (X,0) and (X, Y’) shown in Figure 5. 1. (Hint.
Show geometrically on this picture that ¥ = g—f(. For y = —5=, consider the preimage of this triangular

region by F'). Solve question b) of the previous exercise using this geometric construction.

(xy) 7
(X.Y)

S(x,X) S(x,X)

Fig. 5. 1. The generating function as an area

Exercise 5.3 Show that the inverse of a positive twist map with generating function S(z, X) is a negative
twist map with generating function —S(X, z).

B. Variational Principle

The lift F' of a twist map gives rise to a dynamical system whose orbits are given by the images of points of

IR? under the successive iterates of F. The orbit of the point (z¢, %) is the biinfinite sequence:

{. .. ($,1,y71), (1'071/0)7 (xlayl)v | (xk,yk) . }

where (2, yx) = f(Tr—1,Yk-1).

Lemma 5.1 Let F be a monotone twist map of A or R? and let S(xz, X) be its generating function.

There is a one to one correspondence between orbits {(zr, yx) = f¥(x0,90)} ez of F and sequences

{z}rez satisfying:

(5.3) NS (zp, xpy1) + 025 (xp—1,28) =0 Vk € Z.



5.Generating Functions and Variational Setting 21

The correspondence is given by: yr, = —01S(Tk, Ty1)-

Proof. Let{(xr,yr)}recz beanorbitof F'. Since (z, yr) = f(xr_1, yr—1) forall integer k, Equation (5.1)

implies:
yr = —018(xk, Tpy1) = 02S(wp—1, k).

Conversely, let {x } ez satisfy Equation (5.3) and set y, = —015(zk, xk+1), for all integer k. Then,
applying Equations (5.2) and (5.3) :

f@r-1,y6-1) = fov™ (w1, 7k) = (k, 02 (Tk—1, 7k))

= (2, =015 (xk, Ty1)) = (ke Yi)-

O
Equations (5.3) can be interpreted as “discrete Euler-Lagrange” equations for some action function on
the space of sequences. Indeed, let F’ be the lift of a twist map of the cylinder, and S(x, X) its generating

function. Given a sequence of points {zy, ...,z }, We can associate its action defined by:

M—

W@M---JM) = Z S(fﬂk,if/kﬂ)

=N

—=

ko

Corollary 5.2 (Critical Action Principle) A sequence {x ..., 25} is the projection of an orbit segment
of F on the x-axis if and only if it is a critical point of W restricted to the subspace of sequences
{wy,...,wp} with fivred endpoints: wy = Ty, wpr = Tpy.

Proof. Given a sequence {zy, ...,z },introduce the sequences

yp = —01S(xp, xpq1) and Yy = 02S(ap, 2p—1).

In particular, F'(zy, yr) = (g1, Yi). If W is the restriction of W to the set of sequences with fixed endpoints

zn and 7, a direct calculation yields:

M-1
AW (an, o) = Y (Vo1 — yi)dag.
k=N+1
Hence {xx,..., 2z} is a critical point for W if and only if Y;,_; = y;, which is a rephrasing of Equation
(5.3) , i.e. the sequence {(zn,YN),-- ., (Zrr, yar)} is an orbit segment. O

Exercise 5.4 Adapt Lemma 5.1 to a situation where the map F' is a composition of different twist maps
F = Fy o...0 Fy with generating functions Si,..., Skx. Note that you do not need to assume that all the F;
are either positive twist (or all negative twist). If they are, one calls F' a positive (resp. negative) tilt map.



22 1 or TWIST: TWIST MAPS OF THE ANNULUS (February 14 1999)

C. Periodic Orbits

Let F be the lift of a twist map f of the annulus A, or cylinder C. Suppose that some orbit {z, yi } xcz of F

satisfies:
(5.4) Than = Tk + M

that is, F"(x, y) = T™(xk, yx). Then f™(proj(zk,yr)) = proj(zk, yx), and thus the orbit of (x, yg) is
the lift of a periodic orbit of f. We say that a sequence {x } satisfying (5.4) is a (m,n) sequence. An orbit
whose « projection is an (m, n) sequence is called a (m, n) orbit, or an orbit of type (m,n). Hence, under n
iterates of F', points in a (m, n) orbit get translated by the integer m in the x direction. Down in the annulus,
this can be interpreted as the orbit wrapping m times around the annulus in n iterates. Conversely, it is not
hard to see that any periodic orbit of f of period n lifts to an (m,n) orbit of a lift F', for some integer m which

does depend on the choice of F'. The proof of the following is identical to that of Corollary 5.2:

Proposition 5.3 A (m,n) periodic sequence is the x- projection of a m,n periodic orbit if and only if

its is a critical point of W (zg, ..., Thktq) = Z?ig_l S(xj,xj11) for one (and hence for all) k € Z.

Exercise 5.5 Show by an example that the number m for a periodic orbit of a twist map depends on the
lift.

D. Rotation Numbers

Another interpretation of the numbers 2,  in a periodic orbit is that the average displacement in the « direction
of the points in a (m,n) orbit is m/n. In general, if {x), yi }rez is any orbit, one can try to compute the
limits:

Ty

. . x
lim —, lim —
k—+4oo k k——c k

If these limits exist, they are called respectively the forward and backward rotation numbers. If they are

equal, they are called the rotation number. Since limy_.o 5 = limg .o “3%, the rotation number is

an asymptotic measure of the average displacement in the « direction along an orbit. Obviously, an (m,n)
periodic orbit has rotation number m/n. We also call rotation number of the point z = (z,y) the rotation

number of its orbit under F'; we denote this number by pf(z).

Exercise 5.6 For those who know Birkhoff’s ergodic theorem, show that, if f is an area preserving map of the
annulus, py(z) exists for a set of points z of full Lebesgue measure in A (Hint. lim 220 = lim ¢ E’f(xj —
x;j—1) is the time average of some function).
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6. Examples
A. The Standard Map

As noted in the introduction, one of the most widely studied family of monotone twist maps is the so called
standard family, or standard map. We show how to retrieve explicitly the standard map from its generating
function. Let
1
S(z, X) = §(X - ‘77)2 + V()

where V' is 1-periodic in x. Define

y=—-0Sx,X)=X—z+V'(x)

Y = (925([L‘,X) =X —ux.

then it is easily seen that

X=z+4+Y

Y = Y+ VI(T )7
That is, S generates the lift of a twist map:

Fla,y) = (X,)Y) = (z+y+V'(2),y + V'(2)).

Taking as “potential” V' the 1-parameter family #cos(%mc), we do indeed get the standard family:

k k
Fi(z,y)=(z+y— %sin(%m‘), y— %sm(%rx))

When V = 0 (or k is equal to 0 in the standard family), the generating function is (X — z)? = %Dis2 (z,X)

and the map it generates is the shear map:

FO(‘Tay) = (I+yay)

which is completely integrable, in the sense that each horizontal line {y = yo} (covering a circle in C) is
invariant under Fp, and that the restriction of Fj to {y = yo} is a translation: = — = + yq (lift of a rotation
of angle 27yg). We will see in Chapter HAM that Fj, is the time 1 map of the geodesic flow for the Euclidean
metric on the circle.

As noted in the introduction, an important question about the standard family (or any set of maps containing

a completely integrable one) is: which features of Fj survive as one perturbs the parameter k away from 0?
Exercise 6.1 Check all the axioms of twist maps of the cylinder on the standard map.

B. Elliptic Fixed Points of Area Preserving Maps

The study of the dynamics around conservative elliptic fixed points was the motivation behind the birth of
twist maps. It started when Poincaré studied the dynamics around an elliptic periodic orbit in the restricted
3-body problem. This is a Hamiltonian system (see Chapter SG) with 2 degrees of freedom, whose energy
surface is 3—dimensional. Poincaré considered the return map on a 2—dimensional transverse section to the
periodic orbit. Since the system is Hamiltonian, the return map is symplectic (see Theorem THMhamsym of

Chapter SG). Generically, it is also shown to satisfy a twist condition. To formalize this a little, we present
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here the Birkhoff Normal Form Theorem. Poincaré was interested in proving that an elliptic periodic orbit is
stable (leading to the more difficult question of the stability of the solar system), and in finding many periodic
orbits close by. Both these problems were solved affirmatively for generic maps, the first by the KAM theory
(see INVchapter) and the second by the theorem of Poincaré-Birkhoff (see TWISTsecpb).

Fig. 6. 2. A Poincaré section around the periodic orbit of the point z*, with the return map R.

Let F' be a symplectic C*° diffeomorphism in a neighborhood of 0 in IR?, which has 0 as a fixed point.
Since det D f(0) = 1, the two eigenvalues are either real A, 1/\ or complex \, X and conjugated on the unit
circle. In the first case, we say that 0 is a hyperbolic fixed point, in the second case that it is an elliptic fixed
point (see also Appendix 1 or SG). If F' is the return map of a periodic orbit based at z* as above, the periodic
orbit is called elliptic or (resp. hyperbolic) when z* is an elliptic (resp. hyperbolic) fixed point for R.

Suppose now that 0 is an elliptic fixed point and that D f(0) has eigenvalues A = €27 and X (i.e. Df(0)
is a rotation of angle o). Suppose moreover that A" # 1 for nin {1,..., ¢} for some integer q. We can make
a change of variable z = x 4 iy,Z = x — iy and write the Taylor expansion of order n of F(z) in these

coordinates: .

f(2) =) Ri(z.2) +ol]2]")

k=1

Theorem 6.1 (Birkhoff Normal Form) There exists a symplectic ( for the form dx A dy), C* diffeo-
morphism h, defined near 0 and having 0 as a fized point such that:

ho foh™t(z) = Aze?™P () 4 o(|z|17Y)

or, in polar coordinates (z = re'?™?):
f=Tofol (r0) = (0+a+ PG+ ollr"), -+ oflr™)
where P(z) = a1z +...+anz™ with 2m+1 < q. Each of the “Birkhoff invariants” ay, is generically

non zero.

For a proof of this, we refer to LeCalvez (1990) . There are also versions that require less differentiability

(see Moser (1973) ). The point of this theorem is that, if we make the generic assumption that some ay, is
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non zero, the map F’ satisfies a twist condition in a neighborhood of » = 0 (for » > 0). Note that, in polar
coordinates, the map f preserves the form rdf A dr, (which is only non—degenerate for » > 0 . By making
a further change of variables that preserves the vertical foliation {# = ct}, one can get a map that preserves
df A dr (see Chenciner (1985) ). This last map preserves no boundaries. However, one can extend it to a
boundary preserving map of a compact annulus. The main results in the theory can often be made precise
enough to tell apart the dynamics of the original map from that of the extension. Hence the dynamical study

around conservative fixed points reduces to the study of twist maps.

C. The Frenkel-Kontorova Model

The variational approach in Section 5 was encountered by Aubry (see Aubry & Le Daeron (1983)) while
studying a model in condensed matter physics. In this model, one considers a chain of particles whose nearest
neighbor interaction is represented by springs. The chain of particles lies on the surface of a linear crystal

represented by a periodic potential V (z) = k/4n%cos(2mx).

(.
X, x, X

Fig. 6. 4. The Frenkel-Kontorova Model.

If zj, represents the location of the kth particle of the chain, this particle is in equilibrium whenever the

sum of the forces applied to it is null:
k.
(6.1) (41 — zk) — (T — Tp—1) — %sm@ﬂxk) =0
This equation can be rewritten dI/ = 0 where W, the energy of the configuration of particles is given by :

1 k
W = ZS(xk,ka) = Z §(a"k — Tpi1)? + mcos(%’xk).
k k

We recognize S as the generating function of the Standard map. Hence equilibrium states of the Frenkel-

Kontorova model are in 1-1 correspondence with orbits of the Standard map.

D. Billiard Maps

We revisit here the example of the billiard map presented in the introduction. Consider the dynamics of a ball
in a convex, planar billiard. This ball is subject to simple laws : it goes in straight lines between two rebounds

and the incidence and reflexion angles are equal at a rebound. We reproduce here a figure of the introduction:
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Fig. 6. 5. In a convex billiard, the point z and angle ¢ at a rebound uniquely and continuously determines
the next point X and incidence angle ©.

Let x be the arc length coordinate with respect to a given point on the boundary C' of the billiard, which
we orient counterclockwise. Let y = —cos(6) where 6 is the reflexion angle of a point of rebound. Because
of the convexity of the billiard and the law of reflexion, a pair (x, y) at a rebound determines its successor
(X,Y), and vice versa. Hence we have constructed a homeomorphism f : (z,y) — (X,Y) of the (open)
annulus $' x (—1,1) which is actually a C*~? diffeomorphism if the boundary is C* (LeCalvez (1990) ). We
call f the billiard map. If we increase y while keeping x fixed, the convexity of C' implies that C'(X') moves
in the positive direction along C'. Thus:

X
dy

and the billiard map satisfies the positive twist condition.

(6.2) >0

We now show that f is exact symplectic by exhibiting a generating function for it. Let S(z, X) =

|C(X) — C()|| then, since C’ = 9< is a unit tangent vector:

oS 1 y _

% =561 [C'(2).(C(x) — C(X))] =y
(6'3) oS -1 /

9% = 5o X [C"(X).(C(X) - C(x)] =Y
which is to say:
(64) YdX — ydx = —dS(I, X)

Thus, for the billiard map, the action function W = " S(xy, 2x1) is nothing more than the perimeter
of the trajectory segment considered. For instance, periodic trajectories correspond to polygons in a given
P, g-type who are critical points for the perimeter function. Figure 6. 6 shows that a period 5 orbit might come

in different orders.

Exercise 6.2 Show that the billiard map for the round billiard is given by:

f(:r.y) = (CL‘ + 260571(7y)7y)'

Exercise 6.3 Show that, for the billiard map, the equation dW = 0 expresses the equality between the angle
of incidence and the angle of reflexion at each rebound.

7. The Poincaré-Birkhoff Theorem

In this section, we give a complete proof of the Poincaré-Birkhoff theorem, also called Poincaré’s last theorem.
We refer to Section 3.0for some motivation for this theorem. We use here some elementary material about
circle diffeomorphisms, which the reader can get familiarized with in the appendix at the end of Chapter AM.
We also use techniques of Conley for the gradient flow of the action function that the reader can read about
in Appendix 2 or TOPO. We consider a map f of the compact annulus A = $' x [0,1] and its lift F' to
A =1R x [0,1] . We do not assume that f is a twist map, but rather that the restriction of F' to each boundary
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component u , which are lifts of circle diffeomorphisms, have rotation numbers p+ of F' |ui which satisfy

p— < p+ (See . We say that F' satisfies the boundary twist condition.

Theorem 7.1 (Poincaré-Birkhoff) The lift F' of an area preserving map of A which satisfies the
boundary twist condition with p— < 0 < p; has at least two fixed points. More generally, if m/n €

[p—, p+], and m,n are coprime then F has at least two m,n—orbits.
Proof. We follow the proof of LeCalvez (astérisque) , which is based on the following simple lemma:

Lemma (Decomposition) 7.2 Any area preserving map f of a bounded annulus A isotopic to the

Identity, can be written as a composition of twist maps:

f=fako...0ofr

Proof. Ttis a general fact (left as an exercise to the reader) about topological groups that the connected
component of the neutral element is generated by finite products of elements in any given neighborhood U
of the neutral element of the group. Let fj be the shear map f(z,y) = (x +y mod 1,y). Since the set
of maps satisfying the twist condition is open, there is a neighborhood U of Id in the set of area preserving
maps of A whichissuchthat f € U = f; Lo f is a negative twist map . Hence any f in U can be written as:
f=foolfy lof ), a composition of two twist maps (one positive, the other negative). The group of area and
orientation preserving maps of the annulus being connected, any map in that group can be written as a finite
combinations of f as above. ad

Let f be area preserving and let F' be a lift of f to the covering space .A. Then F' = Fyk o... o F; where
Fy, lifts a twist map f,. Let Sy be the generating function for FJ,. If we let

2K
Wo(x) = Z Si(Th, Trt1) x € Xoox = {Tox+1 = 71}
k=1

then the Critical Action Lemma 5.3 shows that the critical points of 1, correspond to periodic orbits under
the successive f’s, and hence to fixed points of f. To find these critical points, we study the gradient flow (*
of —W), and exhibit a compact set P of X 2x which must contain critical points for the action. The set P is
an isolating block in the sense of Conley, i.e. a compact neighborhood whose boundary points immediately
exit P in (small) positive or negative time (see Appendix 2 or TOPO ). This condition on the boundary implies

that the maximum invariant set for ¢? is in the interior of P (hence the term “isolating”).

Lemma 7.3 Whenever p_ <0 < p4, the set
P={z € Xoox |0< —01Sk(zg,2141) < 1}
is an isolating block for the gradient flow ¢t of —Wy. Moreover,
P~8!'x0,1]% x[0,1)%!

with exit set P~ =§' x [0,1]% x 9([0, 1]%~1)
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Proof. Setting y,, = —1Sk(2k, x+1), the faces of the boundary OP of P can be written as {y, = 0}
or {yr = 1} for k € {1,...,2K}. The behavior of the flow at a face y;, = 1, say, is given by the sign of

dyr _ -

dt Yk-
. d . .
(7.1) Uk = (O1Sk (s 2ps1)) = —O011Sk(Ths Ty 1)k — O12Sk (Thy Thoy1 )T g1
We let Yy, = 0ySk(zk, Tr11), i-e- Fi(wr, yr) = (wx11, Vi) With this notation —g2 = Y, 4 + yj, and
Equation (7.0) reads:
(7.2) Uk = 0115k (Tk, 1) (Yeo1 — yk) + 0128k (@h, Trr1) Ve — Yrr1)

and the invariance of the boundary component IR x {1} of IR x [0, 1] under Fj, tells us that, when y;, = 1
then Y, = 1 as well. Since y;+1 < landhence Y, | <1,

(7.3) Y1 -y <0, Yi—yry1 >0.

Assume that k is even. Then fj, is a positive twist map and —012Sk (zk, zr11) > 0. We need to determine
the sign of 0115 (xk, xr11) on the subset {y;, = 1} of P. On this set, we have x;, = a(zy1) Where a is
the restriction of Fj~ ! to 3y = 1, this latter set being parameterized by z. Since a is the lift of an orientation
preserving circle diffeomorphism, we have a’(x) > 0 for all z. We differentiate the equation 1 = 9S(a(z), x)
with respect to x :
0=d (x)011S(a(x), z) + 012S(a(z), x)

from which we deduce that 9115 (z,a(z)) > 0. Going back to Equation (7.2) , we see that if we are away
from the boundary of the face y, = 1 (i.e., in particular, y; # 1, [ = k — 1, k + 1), then the inequalities in
(7.3) are strict, and we get 7, < 0: the flow is strictly entering P through this face, or exiting it in negative
time.

If we are on an edge of the face y,, = 1, the inequalities (7.3) may be equalities. But this cannot be the
case for all k: if it were, (2, ),z Would be critical and (2, yi) would be a fixed point for f on the boundary,
which is impossible since then the rotation number p; = 0, a contradiction to p_ < 0 < p4.So we can
assume, say Y, 1 —y; < 0,y = Y141 = ... = Yy, = 1, in which case (7.2) tells us that j; # 0 and the flow
exits P in either positive or negative time at this point of JP.

The proof of the case £ odd is exactly similar. We let the reader show in Exercise 7.4 that P and its exit
set P~ have the topology advertised. O

This Lemma puts us in a situation which, since the work of Conley & Zehnder (1983) is a classic one in

the field of symplectic topology. It can be schematized by the following diagram:

-

l {

st X [01F o [0Q1f1?
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Fig. 7. 2. The gradient flow at the boundary of the isolating block P

Given this topological data on its gradient flow, Proposition 50.3 tells us that W, must have at least
cl(8*) = 2 of critical points. This completes the proof of the Poincaré-Birkhoff Theorem. The more general
case of periodic orbits with rotation number m /n € (p—, p+) derives from the fixed point case by considering
the map £ (-) — (m, 0), which has new rotation numbers on the boundary n(p_ —m/n) < 0 < n(p; —m/n)

and whose fixed points correspond to m, n periodic orbits of F'. a

Corollary CORvarprin or TWISTcorvarprin is 5.2, Proposition TWISTpropcritperiod is 5.3, Section
TWISTsectionvariation is 5, Section TWISTsecexamples is 23,Section TWISTsecpb is 26
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THE AUBRY-MATHER THEOREM

June 15 1999

I have decided to make a compact chapter, with no flow proof. That will come in the new
GCchapter.

Action to be taken: Find the proof for the lemma extending annulus maps to cylinder
maps. Find the drawing of Chenciner for Lipshitz condition on AM sets. Draw the 4 figures.
Find the right reference for the no crossing lemma in refmanemml. Add a statement of KAM
before AM. Proofread

8. Introduction

The orbits of the twist map f, whose lift is the completely integrable shear map given by Fy(z,vy) = (x+y,y),
possess the following four fundamental properties, some of which we have yet to define:

(1) They lie on invariant circles which are graphs over the circle {y = 0}.

(2) They are ordered cyclically, as orbits of rotations on the circle.

(3) They come with all rotation numbers in (—00, +00).

(4) They are action minimizers.

The KAM theorem (see THMkam) implies that, in the measure sense, most of these invariant circles
will ”survive” a small perturbation of f. The rotation number of these survivors has to be very irrational
(diophantine). One cannot hope for all these circles to survive under arbitrary perturbation of the map f;. In
fact, it is known (ref ???: check jdm) that for £ > 0.9716354, the standard map has no invariant circle. In the
context of the Standard family, the Aubry-Mather theorem implies that, for each invariant circle of f, and for
each \ > 0, there exists an invariant set for f) which can be seen as the remnant of the invariant circle. The

properties of the orbits exhibited by the Aubry-Mather theorem will all be defined in subsequent sections.

Theorem 8.1 (Aubry-Mather) Let F : IR? — IR? be the lift of a C? twist map of the cylinder with
generating function S satisfying the following growth condition:

lim Sz, X) — +o0

| X —z|—o0

Then F has orbits of all rotation numbers in IR Moreover, these orbits can be chosen to have the
following properties:

(1) They are cyclically ordered
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(2) They lie on closed F-invariant sets, called Aubry- Mather sets that form graphs over their pro-
jection on the circle {y = 0} and are conjugated to closed invariant sets of lifts of circle homeo-
morphisms: either lifts of periodic orbits, Denjoy Cantor sets (and optionally, orbits homoclinic
to these sets) or the full circle.

(3) They may be chosen to be action minimizers.

We will see that an invariant Cantor sets must occur each time there is no invariant circle of a given irrational
rotation number. The existence of these invariant Cantor sets was the striking novelty of this theorem. Often,

the term “Aubry-Mather sets” is restricted to denote only the invariant Cantor sets.

Sketch of the proof

We will find periodic orbits of all rational rotation numbers by minimizing the periodic action W,,,,,. Aubry’s
Fundamental Lemma will imply that W, ,,-minimizers are “cyclically ordered”, i.e. ordered like orbits of
circle homeomorphisms. The cyclic order property enables us to take limits of these periodic orbits (they will
be in a compact set if their rotation numbers are in a bounded set). Cyclic order also implies that the rotation
number of the limiting orbit exists and is the limit of the rotation numbers of the periodic orbits.

One way in which this presentation differs from the excellent surveys of this subject by Meiss (1992) or
Hasselblat & Katok (1995) is the focus on the cyclic order property at the level of sequences (that are not
necessarily realized by orbits). I found it a convenient bridge between the study of the dynamics of circle
homeomorphisms (which appears in the appendix to this chapter) and that of Aubry-Mather sets.

We preceed our study by a Lemma, which implies that we can reduce our study to twist maps of the

cylinder.
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Lemma 8.2 Let f be a C*. k > 2, twist map of a compact annulus A. Then f can be extended to a C*
twist map of the cylinder C, in such a way that it coincides with the shear map (z,y) — (x + cy,y)
outside a compact set. In particular, letting k > 2 the generating function of any lift of the extended
map satisfies the growth condition ‘ lim S(z,X) — +oo.

—z|—o0

As a corollary of this lemma, we can specialize the Aubry-Mather theorem to maps of the compact annulus:

Theorem 8.3 (Aubry-Mather on the compact annulus) Let F' be the lift of a twist map of the bounded
annulus and suppose that the rotation numbers of the restriction of F' to the lower and upper bound-
aries are p_, and py respectively. Then F has orbits of all rotation numbers in [p_, py]. These
orbits are minimizers, recurrent, cyclically ordered and they lie on compact invariant sets that form
(uniformly) Lipshitz graphs over their projections. These sets may either be periodic orbits, invariant

circles or invariant Cantor sets on which the map is semi-conjugate to lifts of circle rotations.
Proof. 777
9. Cyclically Ordered Sequences and Orbits

If amap G : IR — IR is the lift of a circle homeomorphism which preserves the orientation, it is necessarily

strictly increasing and must satisfy G(« + 1) = G(z) + 1. Hence, if {2 } ycz is an orbit of G, it must satisfy:

(9.1) v ST+ p= Tpy < Tjp1 +p,Vh jop € Z.

We will say that a sequence {z }xcz in IRZ% is Cyclically Ordered, (or COin short) if it satisfies (9.1) . Clearly

the CO sequences form a closed set for the topology of pointwise convergence in RZ: ) — x whenever

x] — xy, for all k. Not that this topology is the same as the product topology on the space of sequences. Using

the partial order on sequences

z<y< {z <ypx#yl,

we let the reader check that an equivalent definition of CO sequences is:
(9.2) Vm,n € Z, Tmn@ > & O Tpp® < T

where

(T‘m,nm)k = Thym T N

We will investigate this order relation and the maps 7,, ,, in greater detail in GCchapter. We say that the orbit
{(zk,yx) } ez of atwist map is a Cyclically Ordered orbit or CO orbit if {z} rcz is CO. These orbits come
with various other names in the litterature: Well Ordered (has no hint of the cyclic ordering), Monotone (is
used in too many contexts), Birkhoff (this order was apparently never mentioned by Birkhoff) (*)

3 This is not an indictment of the authors who have used these terminologies: the author of this book has
himself used them all in various publications...
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Lemma 9.1 Let {z;}rcz be a CO sequence then p(x) = limy .o zx/k exists and:
(9.3) |z — xo — kp(x)] < 1.

Moreover @ — p(x) is a continuous function on CO sequences, when the set of sequences has been

given the topology of pointwise convergence.

Define:

COpap) = {x € CO | p(x) € [a,b]}.

The following lemma shows that it is easy to find limits of C'O sequences, as long as their rotation numbers

are bounded.

Lemma 9.2 The sets COy, 41/T1,0 and COjqp N {x € RZ | o € [0,1]} are compact for the topology

of pointwise convergence.

We give the (simple) proofs of both these lemmas in the appendix to this chapter. The fact, given by these
lemmas, that the rotation number behaves well under limits of CO-sequences is one of the essential points
in the theory of twist maps that does not generalize to higher dimensional maps: to our knowledge, there is
no canonical definition of CO sequences in IR", n > 2 which ensures the existence of rotation vectors which
behave well under limits.

There is a visual way to describe CO sequences, which we now come to. A sequence « in IRZ is a function
Z — IR. One can interpolate this function linearly to give a piecewise affine function IR — IR that we denote
by t — z;. The graph of this function is sometimes called the Aubry diagram of the sequence. We say that
two sequences  and w cross if their corresponding Aubry diagrams cross. There are two types of crossing:
at an integer &, in which case (1 — wy_1)(2Zg+1 — wr41) < O or at a non integer ¢ € (k, k 4 1), in which
case (xy — wg)(2k+1 —wi41) < 0. These inequalities can be taken as a definition of crossings. Non—crossing
of two sequences can be put in terms of the strict partial order on sequence: x, y do not cross if and only if
x <y . In particular a sequence x is CO if and only if it has no crossing with any of its translates
Trm,n -

Xj+1 —_—

M

Wi
J Wi+l
Xi+1 X+l J

T

- X|
- Xk+1 k+1

Fig. 9. 0. Aubry diagrams of sequences and their crossings: in this example the sequences x and w have
crossings at the integer k and between the integers j and j + 1.
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10. Minimizing Orbits

A sequence segment (T, . .., T, ) is (action) minimizing if
Wk, 2m) < WYk, -y Ym)

for any other sequence segment (yg, . . ., ¥, ) with same endpoints: x, = Yk, Ty, = Y. Since minimizing
segments are necessarily critical for TV, they correspond to orbit segments called (action) minimizing orbit
segment . A bi-infinite sequence is called a (global action) minimizer if any of its segments is minimizing
and the orbit it corresponds to is a minimizing orbit, also called minimizer, when the context is clear. Note that
the set of minimizers is closed under the topology of pointwise limit. Finally a W,,,,,-minimizersin X,,,,, is
a periodic sequences that minimize the function W,,,,,.

A recurrent theme in the Calculus of Variation is that minimizers have regimented crossings. In the case
of geodesics on a Riemmanian manifold, geodesics that (locally) minimize length cannot have conjugate
points, i.e. small variations with fixed endpoints of a minimizing geodesic only intersect that geodesic at the
endpoints, ( Milnor (1969)), and geodesics that minimize length globally cannot have self intersections (Man&
(1991)). We will see, in the present theory, that minimizers satisfy a non-crossing condition, which implies

that W,,,,,—minimizers are CO (and more generally that recurrent minimizers are CO).
Lemma 10.1 (crossing) Suppose that (z — w)(X — W) < 0. Then:

Sz, X) + S(w, W) — S(z, W) — S(w, X) <0,

and equality occurs iff (x —w)(X —W) =0

Proof. We can write:
S(z, X) — S(z,W) = /01 S (z, Xs)(X — W)ds,
where X; = (1 — s)IW + sX. Applying the same process to h(x) = S(z, X) — S(z, W), we get:
S(z, X) + S(w, W) — S(z, W) — S(w, X) = h(z) — h(w) =
/ / 0125 (2, X (X — W) (2 — w)dsdr = A\(X — W)(z — w)

for some strictly negative \, by the positive twist condition and for z,, = (1 — r)w + rz. O
The following is a watered down version of the Fundamental Lemma in Aubry & Le Daeron (1983). We
follow Meiss (1992) :

Lemma 10.2 (Aubry’s Fundamental Lemma) Two distinct minimizers cross at most once.

Proof. Suppose that  and w are two minimizers who cross twice. We perform some surgery on finite
segments of « and w to get two new sequences &’ and w’ with at least one of them of lesser action,
contradicting minimality. There are three cases to consider: (i) both crossings are at non integers, (ii) one

crossing is at an integer, (iii) both crossings are at integers.
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Case (i):Letty € (i — 1,4) and 2 € (4,7 + 1) be the crossing times. Define:

o= Wk if kelij] I if keli,j]
k T otherwise k wy, otherwise

Letting W denote the action over an interval [N, M| containing [j — 1, k + 1], we easily compute that:

W(z') + W(w")-W(x) — W(w) =
S(xi—1,wi) + S(wi—1,2;) — S(wi—1, ) — S(w;—1,w;)
+S(xj, wit1) + S(wj, zjr1) — S(xj, zj1) — S(wy, wira)-

The Crossing Lemma 10.1shows that this difference of actions is negative, contradicting the minimality of x
and w.

Case (ii): In this case, only one crossing will contribute negatively to the difference of action of new and old
sequences. We still get a contradiction.

Case (iii) Leti — 1 and j + 1 be the crossing times  amd w, and construct ' and w’ as before. In this case
the difference in action between old and new segments is null. All the sequences must be minimizing, and
hence correspond to orbits. But we have z;_» = w]_,, ;-1 = w]_,. Hence the points ¢! (z;_2,7;_1)
and ¢~ (w]_,,w] ;) of IR? are the same and generate a unique orbit under F. This in turn implies that

x = w are not distinct. O

Corollary 10.3 W,,,,-minimizing sequences are CO and their set is completely ordered for the partial

order on SeEqUENCeES.

Proof. Since the proof of Aubry’s Lemma dealt with finite segments of sequences only, it also applies to
show that two W,,,,-minimizers in X,,,,, may not cross twice within one period n. But two m, n-periodic
sequences that cross once must necessarily cross twice within one period. Hence two W,,,,,-minimizers cannot
cross at all. If x is a W,,,, minimizer, 7; ;a is also a Wy, ,,-minimizer. Since they do not cross, one must have
eitherx < 7 jx or 7y ;& < x,foralli,j € Z, i.e. xis CO. O

We end this section by a proposition which we will need only in GCchapter.
Proposition 10.4 Any W,,,-minimizer is a minimizer.

Proof. We show that if « is a W,,,,,-minimizer is also a Wy, 1., minimizer for any k. This implies that x is
a minimizer on segments of arbitrary length: if « is a Wy, ., minimizer, any segment of « of length less than
kn is minimizing. Hence x is a minimizer. Take a Wy, x,-minimizer w. If w is not m, n-periodic, then w
and 7,, ,w are distinct. By the Corollary 10.3, they cannot cross. Suppose, say, that 7,, ,w > w. Since Tp, »

trivially preserves the order on sequences, we must also have 7%

2 W > w, acontradiction to the fact that w
is km, kn- periodic. Hence w is in X,,,,, and its action over intervals of any length multiple of »n cannot be

less than that of . Hence « is also a Wy, 1, minimizer. a

Exercise 10.5 Show that a minimizer corresponding to a recurrent (not necessarily periodic) orbit of the
twist map is CO. (Remember that the orbit zj of a dynamical system is called recurrent if zo is the limit of a
subsequence zy;. Equivalently, zo is in its own w limit set). More generally, show that the set of minimizers
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of rotation number w is completely ordered. (Hint. Mimic the proof of Proposition 10.4 : if an appropriate
inequality is not satisfied, there must be a crossing. By recurrence, there is another one, a contradiction to
Aubry’s Lemma).

11. CO Orbits of All Rotation Numbers
A. CO Periodic Orbits

We prove that the set of 1W,,,,,-minimizers is not empty. By Corollary 10.3 this will show the existence of CO

orbits of all rational rotation numbers.

Proposition 11.1 Let the twist condition for the lift of a twist map F be uniform:

X (z,y)

0 Vv R>.
9 >a > (x,y) €

Then Wi, is proper and bounded below, and hence has a minimum.

We remind the reader that h : X — IR is proper function if the inverse image of a compact set is compact.
If X = IR", then this translates to: the inverse image of any bounded interval is bounded. If / is also bounded

below, it must indeed attain the inf,cr» = o for some x since, for instance, h ! [ — 1, + 1] is compact.

Proof of Proposition 11.1 1t is an immediate consequence of the following lemma (see MacKay & al.
(1989)):

Lemma 11.2 There is a constant o, and two strictly positive constants 3 and vy such that :

S(x,X)>a— X —a|+7|X —af

Proof. We can write:

1
Sz, X) = 5(z,x) +/ DS (x, Xs)(X — x)ds,
0
where X; = (1 — s)z 4+ sX. Applying the same process to 955, we get:
1
Sz, X)=S(x,z) + / 25 (Xs, Xs)(X —x)ds
Jo
1 1
—/ ds/ 0128(X,, X ) (X — x)%dr
0 0
We can conclude the proof of the lemma by taking
a= ﬁl&l{S(x,x), 8= ImneéﬁdagS(a:,Xﬂ

(which exist by periodicity of S) and v = a/2. ad
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B. CO Orbits of Irrational Rotation Numbers

The existence of CO orbits of irrational rotation numbers is a simple consequence of the existence of CO
periodic orbits: pick a sequence z*) of Win,, n,—Mminimizers, with my/ny — w as k — oo. By using
appropriate translations of the type 7,, o on x(®) (which neither change their rotation numbers, nor the fact
that they are minimizers) we can assume that =(*) € [0, 1]. The sequence my, /n;, is bounded and hence, by
Corollary 10.3 the sequences %) are in CO, 4 N {x € IR? | ¢ € [0, 1]} for some a, b € IR. Lemma 9.2
garantees the existence of a converging subsequence in COy, ;) and Lemma 9.1 shows that the limit of this
subsequence has rotation number w. Finally, note that the periods n;, — oc as k — oo. In particular, any finite

segment of x is the limit of minimizing segments, hence minimizing itself. O
12. Aubry-Mather Sets

We have proven Part (1) and (3) of the Aubry-Mather theorem: existence of cyclically ordered, minimizing
orbits of all rotation numbers. We now prove Part (2) of the Aubry-Mather theorem: the cyclically ordered
orbits that we found in the previous section lie on Aubry-Mather sets, which now describe.

We say that a set M in IR? is F-ordered if, for z,2" in M,

n(z) < w(') = m(F(2)) < n(F(2)),

where 7 is the x-projection. If moreover M is invariant by F' and F'~1!, then the sequences =, x’ of 7—
coordinates of z and 2’ satisfy < @’. An example of F'-ordered invariant set is the set of points in a CO orbit
and all their integer translates (In fact, this is an alternative definition of CO orbits). Note that an invariant
circle for the map which is a graph (we will see in INVchapterthat all invariant circles are graphs) is F'-ordered.
We now want to explore the properties of F'-ordered invariant sets. Crucial to the properties of these sets is
the following ratchet phenomenon (I owe this terminology to G.R. Hall), which is a somewhat quantitative

expression of the twist condition:

Z;.
e,

O

z ) N FlzO .
m F(z) F(zz)

z-

Fig. 12. 0. The ratchet phenomenon for the lift of a positive twist map F': there are two cones @, and O}, in
IR? centered around the y and z-axes respectively, such that, if z, 2’ are two points of IR? with 2’ € z + O,,
then F(z) € F(z) + On. More precisely, for a positive twist map 2’ € z + 6 = F(2') € F(z) + 6}, where
the half cones 9:,63 have the obvious meaning. The same holds for the half cones ©, and ©, . If g is
negative twist (eg. F_l), then the signs are reversed. The same cones can be used for F~! as for F.

Lemma 12.1 Let F' be the lift of a twist map satisfying % > a > 0 in some region. Then, in that

region, F' satisfies the ratchet phenomenon for some cones ©,, O whose angles only depend on a.
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Proof. Left as an exercise.
Proposition 12.2 The closure of an F—-ordered invariant set is F—ordered and invariant.

Proof. The invariance is by continuity of F'. Suppose that, in the closure M of M there are z, 2’ in M, with
7(z) < w(2')but w(F(z)) = w(F(z")) (the worst scenario). By the ratchet phenomenon for F' =1, F'(z) must
be above F'(z') and m(F?(2')) < n(F?(z)), i.e. the x orbits of z and 2’ switched order. This is impossible

since in M the order is preserved.

Proposition 12.3 If M is an F-ordered invariant set, then it is a Lipschitz graph over its projection:
there exists a constant K depending only on F such that, if (x,y) and (z/,y!) are two points of M,

then:
lyr —y| < Kl|at — x|

with K only depending on the twist constant a = inf s %—Z{.

Note that a, and hence K can be chosen the same for all F-ordered sets in a compact region.

Remark 12.4 Applied to the special case of invariant circles, Proposition 12.3shows that any invariant circle
for a twist map which is a graph is Lipschitz. This is a theorem originally due to Birkhoff, who also proved

(see INVchapter) that all invariant circles for twist maps must be graphs.

Proof. The proof of Lemma 12.3 shows thatif M is F'-ordered, we cannot have z, 2’ in M and 7(z) = w(2’)
unless z = 2’. Hence 7 is injective on M, and M is a graph. To show that M forms a Lipschitz graph over
its projection, let z and 2’ be two points of M and x and «’ the corresponding sequences of z-coordinates of
their orbits. Assuming 7(z) < 7(z’), we must have x < x’.If 2’ € 2 + O, the ratchet phenomenon implies
that F~'(z') € F~'(z) + O, ,i.e. ¥’ | > x_1,a contradiction. Likewise 2’ cannot be in the cone z + O, ,
and hence it must be in the cone complementary to ©,, at z. This cone condition is easily transcribed into a

uniform Lipschitz condition |y’ — y| < K|z’ — z|. |
Lemma 12.5 All points in an F-ordered set have the same rotation number.

Proof. This is a consequence of the fact (Lemma AMlemmax<yrot in the appendix) that if x < x’ are two

CO sequences, they must have the same rotation number. a

Definition 12.6 An Aubry-Mather set M for the lift F' of a twist map f of the cylinder is a closed, F-ordered

set invariant under F, F'~! and the integer translation 7.

Theorem 12.7 (Properties of Aubry-Mather sets) Let M be an Aubry-Mather set for a lift F' of a twist

map of the cylinder.
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(a) M forms a graph over its projection w(M), which is Lipschitz with Lipschitz constant only

X
dy>a”

depending on a where
(b) All the orbits in M are cyclically ordered and they all have the same rotation number, which is
called the rotation number of M.
(¢) The projection w(M) is a closed invariant set for the lift of a circle homeomorphism, and hence

F restricted to M is conjugated to the lift of a circle homeomorphism via .

We remind the reader that a conjugacy between two maps F' : M — M and G : N — N is a homeomor-
phism h : M — N such that h o F' = H o h. Taking the closure of all the integer translates of the points in

the CO orbits found in the previous section, we immediately get:

Theorem 12.8 Let I be the lift of a twist map of the cylinder. Then F has Aubry-Mather sets of all

rotation numbers in IR . Any CO orbit is in an Aubry-Mather set.
Note that this theorem gives part (b) of the Aubry-Mather theorem.

Proof of Theorem 12.7 We have shown in Lemmas 12.6 and 12.5 that (a) and (b) are in fact properties of
invariant F'-ordered sets. As for Property (c), since 7 is one to one on M, F' induces a continuous (Lipschitz,
in fact) increasing map G on w(M) (by G(n(2)) = w(F(2)). Since M and thus 7 (M) are invariant under
integer translation, we have G(z + 1) = G(z) + 1. The set w(M) is closed and invariant under integer
translation since M is. If (M) = IR then G is the lift of a circle homeomorphism. If 7(M) # IR, then its
complement is made of open intervals. The fact that G is increasing on 7 () allows one to extend G by linear
interpolation on each interval in the complement of 7 (M ). The resulting map G is increasing, continuous and
G(z + 1) = G(x) + 1, hence the lift of a circle homeomorphism. By construction G(7(z)) = 7(F(z)), and
7r| s 1s a continuous, 1-1 map on the compact set M/, hence a homeomorphism M — w(M). Thus 7 is a
conjugacy between F on M and G on (M), which is a closed and invariant set under G and G~ . O

If G is the lift of a circle homeomorphism constructed in the proof of Theorem 12.7, the possible dynamics
for invariant sets of circle maps described in the appendix become, under the conjugacy, possible dynamics
on Aubry-Mather sets M for F'. Hence an Aubry-Mather set M is either:

(i) an ordered collection of periodic orbits with (possibly) heteroclinic orbits joining them, or
(ii) the lift of an f-invariant circle, or
(i) an F-invariant Cantor set with (possibly) homoclinic orbits in its gaps.

The rotation number of M is necessarily rational in Case (i), and necessarily irrational in Case (iii). In
Case (ii), M may have either rational or irrational rotation number, as the example of the shear map shows.
However, it has been shown (Zehnder (???generic prop of twist maps)) that maps with rational invariant circles
are non generic. As for homoclinic and heteroclinic orbits as in (i) and (iii), they have been shown to exist
each time there are no invariant circles of the corresponding rotation numbers Hasselblat & Katok (1995) ,
Mather (1986) .

The feature that is striking in the Aubry-Mather Mather theorem is the possible occurence of Aubry-Mather

sets as in (iii). The F-invariant Cantor sets have been called Cantori by Percival (1979)who constructed them
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for the discontinuous sawtooth map (a standard map with sawtooth shaped potential). This type of dynamics
does occur in twist map, since it can be shown that many maps have no invariant circles, and hence the irrational
Aubry-Mather sets must be of type (iii), ¢.e. contain a Cantori.

Although one can construct Aubry-Mather sets that are not made of minimizers, the name “Aubry Mather

set” is often reserved to the action minimizing Cantori M, as defined below:

Proposition 12.9 For each rotation number w there is a unique Cantorus M, made of recurrent
minimizing orbits of rotation number w. The closure of any CO minimizing orbit of rotation number

w 18 contained in M,,.

Proof. A CO minimizing orbit forms an F-ordered set, contained in an Aubry-Mather set, and hence
conjugated to an orbit of a circle homeomorphism. The closure of the CO minimizing orbit is therefore in a
Cantorus, conjugated to the w-limit set of the circle homeomorphism. As limit of minimizers, this Cantorus
is made up of minimizers. We now prove that this Cantorus is unique: suppose not and there are two of
them. Exercise 10.5 implies that the (disjoint) union of these two Cantori forms an F'—ordered set, hence
conjugated to a closed invariant set of a circle homeomorphism. Each Cantorus is the w-limit set of its
points. This is a contradiction to the uniqueness of w limit sets of circle homeomorphisms proven in Theorem

AMthmcircleomlimset. a
13.1 Appendix: Cyclically Ordered Sequences and Circle Maps

In this section, we prove Lemma 9.1, and Lemma 9.2. We then recover important facts about circle homeo-
morphisms and their invariant sets using the language of CO sequences. Part of the proof below is classical,

due to Poincaré in his study of circle homeomorphisms.

A. Proof of Lemmas 9.1 and 9.2

T —TQ
n

Proof of Lemma 9.1.Let x be a CO sequence. We want to prove that the sequence { }nez is a Cauchy

sequence as n — £00. We do the case n — 4-oc here, the case n — —oo will follow.

Given n € IN, let «,, be the integer such that:
(13.1) T+, <z, <79 + 0y + 1.
We prove by induction that
(13.2) rg + kay, <z < a9+ ka, +k, VkeN.
Indeed, step 1 in the induction is just (13.1) , and if we assume step k, i.e. (13.2) then, since « is CO, we get
Ty + ko, < Tt < Tn + ko, + k.

Using (13.1) this gives g + (k + 1)a, < 2(g41)n < w0 + (K + 1), + (k4 1), which is the step & + 1 and
finishes the induction.
Dividing (13.2) by k we get
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(13.3) ap < T " 20 4.
Since this is true for all £ > 0,
(13.4) Thn —T0 _ Tn = To| | Tkn Z L0 Tn — X9 Si.
Writing 2, = #»—*¢, and assuming m > 0,n > 0 we have that
1 1
(135) |Z'n72m| < |Zn72mn|+|zmn72m‘ < -+,
n . m

and hence z,,n € IN, is a Cauchy sequence whose limit we call p(x).

To see how the case n — —oo follows, let m — oc in (13.5) , and multiply by n:
(13.6) |zy, — 20 — np(x)] < 1.
Since in all the above we could have replaced x( by an arbitrary z,,,, m € Z, the following also holds:
(13.7) [Ty, — 2m — (n—m)p(x)] <1 Vm,n € Z.

We let the reader check that this last inequality implies that lim,, ,_ 2, = p().
The continuity of p is also a consequence of Formula (13.6) . Suppose (/) — a pointwise as j — oo.

Constructing sequences z(/) as above, and denoting p(z?)) = w;, p(z) = w, (13.6) yields

(13.8) 2 —wl < 2, - el <

=
Eol i

Since z/) — z, forall k and € > 0,
s = il < oy = 2 + 1o — 21+ 10—l < 7+ e
whenever i, j are big enough. Hence {wy, } xcz is a Cauchy sequence, whose limit we denote by w. Letting
Jj — o0in (13.8) yields w = p(z). O
Proof of Lemma 9.2 Lemma 9.1 implies that COy, ) N {x | wo € [0, 1]} is a closed subset of the set:
{zx € R? | 21, = 20 + kw + Yk, (T0,w, y) € [0,1] x [a,b] x [-1,1]%, with yo = 0}

which is compact for the product topology, by Tychonov’s theorem. We let the reader derive a similar proof
for CO[a,b]/leo. O

B. Dynamics of Circle Homeomorphisms

The orbits of an orientation preserving circle homeomorphism are (by definition!) Cyclically Ordered. From

Lemma 9.1, we can deduce the following theorem, due to Poincaré (1985):

Theorem 13.1 All the orbits of the lift F' of an orientation preserving circle homeomorphism f have
the same rotation number, denoted by p(F'). The rotation number p is a continuous function of F,

where the set of lifts of homeomorphisms of the circle is given the C© topology.
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Proof. We start by a simple but useful lemma.
Lemma 13.2 If two CO sequences x,x’ satisfy x < &' then p(x) = p(x’).

Proof. The rotation numbers are the respective asymptotic slopes of the Aubry diagram of x and x’. If
p(x) # p(x'), the the Aubry diagram must cross: there must be a kg and a k; such that z, > z} and

rg, <}, . That contradicts = < x'. |

Continuing with the proof of Theorem 13.1, since F' is increasing, two distinct orbits = and w of F'
satisfy £ < w or w < x. From the lemma = and w have same rotation number. If f, — f in the C°
topology, then the f,, orbit of a point 2 (a CO sequence) tends pointwise to the f orbit of . By Lemma 9.1,
lim p(fn) = lim p({ £} (2)}) = p({f*(2)}) = p(/). 0

We now remind the reader about the structure of invariant sets of circle homeomorphisms. Remember
that the Omega limit set w(x) of a point x under a dynamical system f on some space X is the set of
limit points of all subsequences {x, } where z), = f*(x) and k; — 400 as j — 400, i.e. the set of limit
points of the forward orbit. Likewise, the Alpha limit set a(x) is the set of limit points of the backward orbit.
The following theorem, which basically appears in Poincaré (1985), classifies the possible dynamics of circle

homeomorphisms:

Theorem 13.3 Let [ be a circle homeomorphism and F a lift of f. If p(F) is rational, then, for
any v € $', w(z) and a(x) are periodic orbits. The orbit of x is either periodic (in which case
x € w(z) = ax)) or it is heteroclinic between a(z) and w(z).

If p(F) is irrational, then, for any x,2’ € 8%, a(z) = a(z’) = w(z) = w(a’). Call this set 2(f).
Then (f) is either the full circle, or a minimal invariant set which is a Cantor set. In the first
case any orbit is dense in the circle, and f is conjugated to a rotation by p(F). In the second case,

either x € Q(f) is recurrent, or it is homoclimic to 2(f), a “gap orbit”.

We remind the reader that a Cantor set K is a closed, perfect, and totally disconnected topological set.
Perfect means that each point in K is the limit of some (non constant) sequence in K, and totally disconnected
means that, given any two points ¢ and b in K, one can find disjoint closed sets A and B witha € A,b € B
and A U B = K. In the real line or the circle, a closed set is totally disconnect if and only if it is nowhere

dense. A set X is nowhere dense if Interior(Closure(X)) = 0.

Proof of Theorem 13.3

Rational rotation number. Suppose p(F') = m/n. Then F — m must have a fixed point, otherwise
forall z € R, F™(z) — x # m and we can assume F" (z) — = > m. By compactness of $*, p(F) > m/n,a
contradiction. Hence F" has an m, n-periodic orbit. By continuity, on any interval / where F™ — Id —m is non
zero, it must stay of a constant sign. This sign describes the direction of progress of points inside the orbit of 1
towards its endpoints: they must be heteroclinic to the endpoint orbits. Conversely, if ' has an m, n-periodic

orbit, its rotation number and thus that of F' must be m/n.
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Irrational rotation number. Suppose p(F) is irrational. Let 2 € $' and denote by = {2}, }xc7 its
orbit under f (with = = ). Suppose w(z) = $'. Then w(z’) = $* for any other 2/ € $*, otherwise there
would be an interval (a, b) not containing any z}, = f*(2’).But (a, b) would contain some [z,,, z,,,] by density
of . The intervals f —*("~™)[z,, x,,,] must cover $' and hence f*(" ")z’ € (a, b) for some i, a contradiction.
We guide the reader through the proof that f is conjugated to a rotation by p( f) in Exercise 13.5.

Suppose w(z) # $*. Then, since w(x) is closed, its complement is the union of open intervals. Take another
point 2. We want to show that w(z") = w(z). We will prove that w(z’) C w(x): by symmetry w(z) C w(z’).
This is obvious if 2 € w(x). Suppose not. Then 2’ is in an open interval 7 in the complement of w(x) whose
endpoints are in w(x). The orbit of I is made of open intervals in the complement of w () whose endpoints are
orbits in w(x). Since there is no periodic orbit, these intervals are disjoint: by the intermediate value theorem
f¥(I) c I would imply the existence of a fixed point for f*, hence a periodic orbit. The length of these
intervals must tend toward 0 under iteration. Thus the orbit of =" approaches the endpoint orbit of I arbitrarily
i.e. it is asymptotic to w(z). Hence w(z’) C w(x). In particular w(x) = (2(f) is a minimal invariant set: any
closed invariant subset of (2(f) must contain the w-limit set of any of its point, hence 2( f) itself.

We now show that {2( f) is a Cantor set. That it is closed is a property of w-limit sets. It is perfect since
x € £2(f) means that z € w(z) and hence f™*(z) — x for some ny ' co with all the f™*(x)’s are in w(z).
To prove that (2(f) is nowhere dense, first note that the topological boundary 0£2(f) = 2\ Interior(£2(f))
must satisfy 02(f) = 2(f) or 02(f) = 0: 92(f) is closed, invariant under f and included in 2( f) which is
a minimal set. But 92(f) = () means 2(f) = Interior(2(f)) is open, and because it is also closed, it must
be all of $*, which we have ruled out. The alternative is 962(f) = £2(f), which means I'nterior(2(f)) = 0,

what we wanted to prove. O

Remark 13.4 A circle homeomorphism with an invariant Cantor set cannot be too smooth: Denjoy (see
Hasselblat & Katok (1995) , Robinson (1994) ) proved that if f is a O diffeomorphism of $' with irrational
rotation number and derivative of bounded variation, then f has a dense orbit (i.e. £2(f) = $*) and is therefore
conjugated to a rotation of angle p(F). On the other hand, Denjoy did construct a C'* diffeomorphism with
£2(f) a Cantor set. The idea is simple: take a rotation by irrational angle «.. Cut the circle at some point 2 and
at all its iterate f*(x). Glue in at these cuts intervals I}, of length going to 0 as & — oo, in such a way that the
new space you obtain is again a circle. Extend the map f by linear interpolation on the ;. You get a circle
homeomorphism with rotation number .. With some care, one can make this homeomorphism differentiable,
but only up to a point (C! with Holder derivative). The complement of the 7;’s in the new circle is a Cantor

set, which is minimal.

Exercise 13.5 In this exercise, we prove that if a circle homeomorphism has a dense orbit, then it is
conjugated to a rotation.
a) Prove that z is a CO sequence with irrational p(z) iff

Vn,m,p € Z, xn < Tm+p<=np(x)<mp(x)+p

(Hint. Use Formula (13.7) for multiples of m and n). What is the proper corresponding statement for CO
sequences of rational rotation number?
b) Suppose the circle homeomorphism f has a dense orbit . Build a map h : $' — $' by first defining it on
x by:

2 > k()



13. Appendix: CO Sequences 45

Use a) to show that h is order preserving and show that its extension by continuity is well defined, has
continuous inverse and preserves orbits.

Lemma AMlemmax<yrot is 13.2, Theorem AMtheoremperiodic is 6.3, Section AMsectionlimits is 7,
Lemma AMlemmaaubry is 10.2, Corollary AMcorollaryaubry is 10.3, Exercise AMexominordered is 10.5,
Lemma AMlemmacoestimate is 9.1, Lemma 11.2is AMthmconvest, Proposition AMpropwmnmin is 10.4,
Proposition AMproplipschitz is AMthmlipschitzProposition AMpropmomis 12.9, Theorem AMthmcircleom-
limset is 13.3, Formula AMformgqgeod is (13.6)
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CHAPTER 3 or GC

GHOST CIRCLES

June 30, 1999

In Chapter AM, we saw how traces of the invariant circles of the completely integrable map persist,
sometime in the weak form of invariant Cantor sets, in any twist map. The main result of this chapter, Theorem
GCthmamordered, provides a vertical ordering of these Aubry-Mather sets in the cylinder, by showing that
they belong to family of nontrivial ???circles that are graph over the circle {y = 0}. These circles are mutually
disjoint and are ordered according to the rotation number of the Aubry-Mather sets. This result was written in
Angenent & Golé (1991).

To do this, we establish important properties of the gradient flow of the action functional in the space of
sequences. The central property, given by the Sturmian Lemma, is that the intersection index of two sequences
cannot increase under the gradient flow of the action. One important consequence is that the flow is monotone:
it preserves the natural order between sequences. This fact yields a new proof of the Aubry-Mather Theorem.
It also enables us to define special invariant sets for the gradient flow that we called ghost circles, which we
study in some detail here. The family of circles that neatly arranges the Aubry-Mather sets are projections of

ghost circles in the cylinder.

14. Gradient Flow of the Action
A. Definition of the Flow

We consider a twist map f of the cylinder and its lift © whose generating function .S is C2. For simplicity,
we will assume that the second derivative of .S is bounded. This assumption is satisfied for twist maps of
the bounded annulus which are extended to maps of the cylinder as in AMlemmaextend. In this section we
investigate the property of the “gradient” flow of the action associated to the generating function S of F'

solution to:
(14.1) 7VW(J))]C = I = 7[315(Ik,1‘k+1) + (923(:17]6,1, ”Ek)]

Since this is an infinite system of ODEs, we need to set up the proper spaces to talk about such a flow.

We endow IRZ with the norm :

We let X be the subspace of IRZ of elements of bounded norm, which is a Banach space. On bounded subsets
of X, the topology given by the above norm is equivalent to the product topology, itself equivalent to the
topology of pointwise convergence. Remember from Chapter AM that Z? acts on IR by:
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(Tm,nw)k =Tgtm TN

The map 7p ;1 which we also denote by 7" has the effect of translating each term of the sequence by 1. The
map 71 o which we denote also by ¢ is called the shift map, as it shifts the indices of a sequences by 1.

We define X/Z := X/7j,1 and we can choose as a representative of a sequence « one such that g € [0, 1).
More generally, in this chapter, the quotient of any subset of IRZ by Z will be with respect to the action of

the translation 7' = 79 ;.

Proposition 14.1 Suppose that the generating function S is C? with bounded second derivative. The
infinite system of O.D.E’s

(14.2) —VW((B)k =T = —[615($k,Ik+1) + 825(.’5]6,1, $k)]

defines a C* local flow ¢t on X as well as on X/Z, for the topology of pointwise convergence. The

rest points of C* on X correspond to orbits of the map F.

Proof. We prove that the vector field —VW is C* by exhibiting its differential. The proposition follows
from general theorems on existence and uniqueness of solutions of ODEs in Banach spaces (eg. Lang (1983)

, Theorems 3.1 and 4.3). The following map is the derivative of x — —VW (x):
L= {vikez = {Brvk—1 + kv + Brt10k+1thez
ap = —5)225($k7171‘k) - 8115($k;1?k+1); B = _8125‘(1%71;1%)
Indeed, this map is linear with (uniformly) bounded coefficients, hence a continuous linear operator. Clearly:
—VW(z)v - L(v) = [Jv]|(v)

with lim,_,g ¢ (v) = 0. O

B. Order Properties of the Flow
IRZ is partially ordered by:

T <YoViez Tk < Yk
We also define x < y to mean © < y, but  # y; and we write = < y to denote the condition z; < y; for all
J € Z.The order interval [z, y] is defined by:

[@,y] = {z e R? [z <z <y}

and the positive order cone at x

Vi@)={ye X[z <y}

with a similar definition for V_(x). These cones are closed for the topology of pointwise convergence.
The following statement and was observed in Angenent (1988), and is related to the maximum principle

for parabolic PDEs.

Theorem 14.2 (Strict Monotonicity of () For x,y € X with * < y one has (*(x) < ('(y) for all
t> 0.
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We will give a simple proof of this theorem in the appendix to this chapter ???. It is also a consequence of
the Sturmian Lemma (see below), which was stated in Angenent (1988). Both ??? were communicated to the
author by Sigurd Angenent. In Chapter AM, we defined the notion of crossing of two sequences «, y in RZ
in terms of their Aubry diagrams. We remind the reader that such crossing occurs when there isa k € Z at
which either x; — yi and z; 1 — yi+1 have opposite signs, or z;, = y and rj_1 — yx—1 and Tpy1 — Yr+1
have opposite signs. We say that two sequences are transverse if they have no tangency, i.e. thereisno k € Z
at which x;, = y, and 1 — yx—1 and z; 1 — yr+1 have same sign. We now define the intersection index

I(x, y) to be the number of such crossings.

Lemma 14.3 (Sturmian Lemma) Let .,y € X have different rotation numbers. If x,y are not

transverse, then for all sufficiently small € > 0 o™z, p**y are and:

I(p =z, 0 y) > I(¢°x,¢y).

Otherwise, as long as © and y stay transverse, their intersection index does not change.
Figure of tangency???
Proof. See the appendix.

Corollary 14.4 The sets CO, CO,,, and X,, are all invariant under the flow ¢*, and so are their

quotients by the action of T' =79 1.

Proof. The inequalities of the type < 7,, &, which define the sets CO and CO,, are all preserved under
(*. The invariance of X, comes from the periodicity of the generating function S and its derivatives: when
x € X, the infinite dimensional vector field VIV for the the ODE (14.1) is a sequence of period n (made of
subsequences of length n equal to VIWp,,).

15. The Gradient Flow and the Aubry-Mather Theorem

In this section, we show how the existence of CO orbits of all rotation numbers can be recovered from the
monotonicity of the “gradient” flow (¢. From Lemma 9.2 and Corollary 14.4, we know that the set CO,, /Z is
compact and invariant under the flow (*. Rest points of the flow in this set lift to CO orbits of rotation number
w. It turns out that, even though ¢? is not the gradient flow of any function, we can still make it gradient like
when restricted to the appropriate subsets.

Denote by X = {z € X | supyez |7 — 71| < K}.

Theorem 15.1 Let C C XX /Z be a compact invariant set for the flow ¢t. Then C must contain a
rest point for the flow. In particular COy/Z contains a restpoint and thus the map has a CO orbit

of rotation number w.
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Proof. Assume, by contradiction, that there are no rest points in C'. We show that, for some large enough
N, the truncated energy function Wy = ZJXN S(x, 1) is a strict Lyapunov function for the flow ¢* on
C'. More precisely, we find a real a > 0 such that é—iWN(w) < —a for all © in C'. This immediately yields a
contradiction since on one hand Wy decreases to —oc on any orbit in C, on the other hand, the continuous

Wy is bounded on the compact K. To show that Wy is a Lyapunov function for some /V, we start with:

Lemma 15.2 Let C be as in Theorem 15.1. Suppose that there are no rest points in C. Then, there
exist a real €9 > 0, a positive integer Ny such that, for all x € C
J+N
. 2
N>No=VieZ Y (VW(x))’ > .
J

Proof. Suppose by contradiction that there exist sequences 7j,,, IV,, and (™) with N,, — oo such that

(15.1) 3 (VW(m("))k> 0.
Jn
Let m(n) = —j, — [N,/2] where [] is the integer part function, and let '™ = ¢™(™ ("), This new

sequence x'(") is still in C, and satisfies:

No—[N, /2] )
Z (VW(m("))k> — 0 asn — oo.
k=—[N,/2]

By compactness of C, it has a subsequence that converges pointwise (i.e. in the product topology) to some x>
in C. Clearly, VW (2>);, = lim,, oo VW (2/™); = 0 for all k and thus 2> is a rest point, a contradiction.
O

We now show that Wy is a strict Lyapunov function on C'. By chain rule:

%WN(:::) _ lZN 018 (20, 041 ) VIV ()5 + OnS x,cﬂ)vvv(w)w]

N N+1
=— lz als(wk, :Ek+1)VW(:B)k + Z (925($k_1, xk)VW(a:)k]
-N —N+1

= — 615’(.1',]\7, £E,N+1)VW($),N — (925(1"]\7, £EN+1)VW(CE)N+1

_ f: (VW (2)i)

—N+1

(15.2)

For all z in X ¥, we have |z}, — ;1| < K and hence, by periodicity, S(xs,_1, 71), its partial derivatives

and thus VIV, are all bounded on that set. In particular, we can find some M depending only on K such that
|—({915(1‘7N, ?[37N+1)VW(111)7N — 825(xN, ?L‘N+1)VW(:E)N+1 ‘ <M

for all  in XX and all integer k. We claim that for N > (M + 2)Ny/(2¢0) (Where Ny, £ are as in Lemma
15.2), Wy is a Lyapunov function. Indeed, N > (p + 1)Ny where p > M /ey and we can split the sum
ZJXN 41 (VW(:L’);JZ into p sums of length greater than Ny. By Lemma 15.2, each of these sums must be
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greater than £, and thus the total sum must be greater than M + 2¢(, making the expression in (15.2) less
than —2¢. O

Remark 15.3 As in Chapter AM, we can derive from Theorem 15.1 the existence of Aubry-Mather sets of
all rotation numbers. This proof does not yield the fact that the orbits found are minimizers. This apparent
weakness may be an asset in considering possible generalizations of this theorem to higher dimensions (see
777). This proof is a variation of the one given in Golé (1992 b). It was inspired by arguments found in Koch
& al. (1994) , who prove an interesting generalization of the Aubry-Mather Theorem for functions on lattices

of any dimensions.

16. Ghost Circles

Definition 16.1 A subset I" C IRZ is a Ghost Circle, hereafter GC, if it is
1. strictly ordered: z,y € I' = x < yory < x.
2. invariant under the Z2 action (bY Tin,n), as well as under the flow (*,

3. closed and connected.

We think of the GC’s as the surviving traces in the sequence space IRZ of the invariant circles of the
twist map as one follows a one parameter family of maps away from a completely integrable map. We will
see in the Section 17 that GC’s can be constructed by bridging the gaps of the Aubry-Mather sets (identified
to their corresponding subsets of rest points in IR%) with connecting orbits of the gradient flow (.

Any sequence « in a GC I'" is CO: since 7,,,,« must also lie in I, which is ordered, we must have
T < T OF Ty, & < . Moreover, the fact that /" is ordered implies, by Lemma 13.2, that all sequences

in I" have same rotation number. We will call this p(I"), the rotation number of the ghost circle.

Proposition 16.3 Let I be a ghost circle.

a) The coordinate projection map RZ — R defined by © — xo induces a homeomorphism of I" to
IR. The corresponding projection map ]RZ/Z — IR/Z induces a homeomorphism between I'/Z and
the circle.

b) The set of ghost circles is closed in the Hausdorff topology of closed sets of RZ, and it is compact

in COyqp/Z. The rotation number on GCs is continuous in this topology.

We will see in GClemmonlimgcthat part b) of this proposition can be improved: monotonic (for the order

on GCs defined at the end of this section) sequences of GCs with bounded rotation numbers converge uniquely.

Proof of Proposition 16.3 We show that, for any x,y in [, the projection § : © +— =z defines a
homeomorphism from [z, y] N I” to the interval [z, 3] in IR. As before, we give IRZ the product topology.

The projection map ¢ is continuous and the set [x, y| is compact, by Tychonov Theorem, as a product of
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closed intervals. Clearly  preserves the strict order: © < y = xo < o and hence it is one to one on I". Take
any two points < y in I". As a continuous injection, the map § defines a homeomorphism on the compact
set I' N [x,y]. We show that 6(I" N [z, y]) = [6(x), d(y)]. For this, it suffices to show that I" N [x, y] is
connected. Suppose not and I"' N [z, y] = A U B where A and B are closed and disjoint in I" N [x, y]. There
are two possibilities: either both x and y belong to the same set, say A orelse x € A,y € B.In the first case,

we could write I" as the union of two disjoint closed sets:

[=[(V_(2)nT)UAU (Vi (y) N D)]|J B,
+

a contradiction since I is connected. The other case yields the same contradiction. Since I is ordered, any
bounded open ball for the product topology intersects I” inside an interval [x, y]|. Hence what we have shown
above implies in particular that J is a local homeomorphism on I". To show that it is a global homeomorphism,
it suffices to show that it is onto. Since /" is T—invariant, if « is a point of I, then 7,,, g« is as well, and hence
the set {z¢g +m | m € Z} isin §(I"). By what we proved above, all the points in between are also in §(I")
and hence § is onto IR.

This proves a). To prove b), note that if I, — I" as k¥ — oo then any point « € I is limit (in the product
topology of R%) of points x(®) € I,. Since Tm,n and the flow (* are continuous, I” must be invariant under
these maps. “Close” and “connected” are adjectives that also behave well under Hausdorff limits. Finally,
to see that I is strictly ordered, note that if «,y are in I", we can find sequences =(*),y*) € I}, with
x = limz®, y = lim y*). By restricting to a subsequence, we can assume x*) < y*) for all k. Since I,
is strictly ordered and (*-invariant, we must have ¢ *z(*) < ¢~*y(*) and hence ¢tz < ¢'y. The strict
monotonicity of the flow now implies: < y. The continuity of the rotation number is a direct consequences
of the continuity o on CO sequences, given by Lemma 9.1. O

It follows from this proposition that any GC has a parametrization £ € IR — z(§) € I of the form

(16.1) z(§) = (- 7-1(8), & 71(8), w2(8), - ++) -

where the z;(£) are strictly increasing and continuous functions of £. In particular { +— 2 (£) is a homeo-

morphism of IR. Invariance of I” under the Z? action 7 implies that 2; (£ 4+ 1) = x;(£) + 1, so that the
define homeomorphisms of the circle as well; 7-invariance also implies that 22(€) = x1(x1(£)), and more
generally that the z,, are iterates of .

Any GC projects naturally to a circle 71" in the annulus, where the projection 7 : IRZ — A is defined by

m(x) = (z0, —015(x0, 1))

Proposition 16.3 Let I be a GC for the twist map f. Then wI" and f(wI") are periodic graphs over
the x axis in IR®. More precisely they are graphs of functions o(x) and (x) such that there is a

constant L < oo, depending only on the map, and, where the derivatives are defined,

J@)>-L (@<L

Proof. 1If one parametrizes " as in (16.1) , then 7 [ is the graph of
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(16.2) y =—015(& 71(8)) = »(§).
The image f(wI") is the graph of y = 925(x_1(£), £). We now give a proof of the Lipschitz estimate. Using

the parametrization of the projection of our GC as in (16.2) , it is enough to prove that the derivative of ¢ is
bounded below. The same proof would hold for the estimate for the image f(7I") of our circle. Applying the
chain rule to (16.2) , we find: i
¢ =—0115 — 0128 - d—g > —011S.

This last term is bounded below by our assumption on the second derivative of .S. a

We end this section by giving a condition that insures that GCs do not intersect. We can define a partial
ordering on GC’s as follows. Let I}, I be GCs: then we say I < I3 if

(i) forallxz € I',a’ € [Lonehasx M «’ and I(x,z’) = 1;

(i) p(I1) < p(I3),ie. p(x) < p(z’).

Lemma 16.4 Graph Ordering Lemma [f [} < Iy then the circle wl7 lies below wls.

Proof. Let :m(f ) (¢) be parametrizations of the form (16.1) for I'; (j = 1,2). Then 7/ is the graph of
;&) = (& —nS(&, mgj) (£)). We claim that mgl) &) < mg2) (&) for all €. Indeed, for a given & the sequences
:Esll)(f) and 27 (&) intersect at site n = 0. Since they are transverse, we must have xgl)(f ) # x§2> (€); by
comparing rotation numbers we then get xgl) &) < x?)(f ). By combining this inequality with the twist

condition 0125 < 0 we then conclude that 1 (£) < p2(€), as claimed. O

Exercise 16.5 Prove that the set of © sequences corresponding to orbits of an nontrivial invariant circle for
the map is a GC. (If the map has a transitive invariant circle of rotation number w, then its associated GC
is the only GC with rotation number w (Golé (1992 a), Lemma 4.22). We conjecture that this remains true
when the invariant circle is not transitive (i.e., of Denjoy type)).

17. Construction of Ghost Circles

This section will show that GCs are plentifull. In the first subsection we construct GCs whose projection
passes through any given Aubry-Mather set. The next subsection will specialize to GCs with rational rotation
numbers. For generical twist maps, we construct smooth GCs containing periodic minimizers. In Section 18

we will refine this construction to obtain ordered sets of GCs, whose projections do not intersect.

A. Ghost Circles Through Any Aubry-Mather Sets

Let M, the minimal, recurrent Aubry-Mather set of rotation number w. It corresponds bijectively to the set,
callit X, of @ sequences of orbits in M. By Aubry’s Fundamental Lemma 10.2, Y/, is a completely ordered
subset of CO,,. If « is a recurrent minimizer, than so is 7,, ,x for any m,n € Z, so X/, is invariant under 7.
Each point of X, corresponds to an orbit of I, and thus is a rest point of ¢¢. In Golé (1992 a), we proved the

following theorem:

Theorem 17.1 The set X, is included in a ghost circle I', and hence the Aubry-Mather set M,, is

included in the projection wI' of a ghost circle.
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Proof (Sketch) X, is a Cantor set whose complementary gaps are included in order intervals of the type
|z, y[ where z, y € X,,. A theorem of Dancer and Hess (1991) on monotone flows implies that, in conditions
that are satisfied in the present case, if £ < y are two rest points for the strictly monotone flow (¢ and there
is no other restpoint in [z, y| then there must be a monotone orbit (i.e. completely ordered) of (¢ joining x
and y. Hence we can bridge all the gaps of X, with ordered orbits of (?, taking care to do so in an equivariant

way with respect to the 7 action. The resulting set is a GC. a

B. Smooth, Rational Ghost Circles

We now build rational Ghost Circles by piecing together the unstable manifolds of mountain pass points for
Wp.q in X, 4. This construction will be crucial when we build disjoint GCs in Section 18. Let w = p/q be

given. Beginning here and throughout Sections 18 and 19 , we shall assume the following:
For any p/q € Q Wy is a Morse—function on Xpq. (17.1)

This is a generic condition on twist maps, as will be proven in Proposition STMPpropgeneric. Since a
GC consists of CO sequences we may assume that p and ¢ have no common divisor (see Exercise AMexow-
ellordering). Let v € X, be a critical point of W,,,. The second derivative of W, at x is a Jacobi matrix: it

is tridiagonal (with positive “corner” elements as well) with positive subdiagonal terms:

o P 0 - [y
fr az B2 e 0
(17.2) —VQqu(:I}) = 0 52 Qa3 s
ﬂqfl
ﬂq 0 . ﬂqfl Oy
where a; = —8225(1']',1,:17]') — 8118($j,Ij+1), and 6j = —8125(:@-,1,@) > (. Due to the Perron—

Frobenius theorem, the largest eigenvalue \g of —V?W,,(z) is simple, and the eigenvector ¢ = (¢;) corre-
sponding to A\ can be chosen to be positive: {; > 0,7 = 1,...,q. (See Angenent (1988), Proposition 3.2
and Lemma 3 4). If x is a critical point of index 1, there exist two orbits .y (x;t), ¢ € IR of the gradient flow

¢ of Wy, with ay (x;t) — x as t — —oo, and with
ap(zt) =z e+ 0(M).

These two orbits, together with  itself, form the unstable manifold of «. The orbits «v. (x; t) are monotone,
oy being increasing, and «_ decreasing; since 741 o = @ % 1 are also critical points, we have x — 1 <
ay (x;t) <z + 1 so that the o1 (¢) are bounded. Hence the limits

w4 (x) = lim ay(x;t)

t—o00

exist; they are critical points of 1, and there are no other critical points y with w_(2) < y < @ or
<y < wi(x).If y > x is another critical point, then y > w, (x). refangenentperiodic, Theorem 1,
shows that the points w, () are local minima of W,,. We now show that the orbits a1 (x;t) converge to
these points along their “slow stable manifold”, tangent to the largest eigenvalue of —V?W,, (w. (z)). Indeed,
since w (x) are minima, all the eigenvalues are negative, and thus the largest one has the smallest modulus.

All orbits in the stable manifold of w (x) except for a finite number that are tangent to the eigenspaces of
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the other eigenvalues, are tangent to this “’slow stable manifold”. But the other eigenvectors are in different
orthants than the positive or negative ones ( Angenent (1988)). Hence oy (x;t), which are in the positive or
negative orthant of w4 (), must converge to w. (x) tangentially to the eigenvector of largest eigenvalue.

To construct a GC in W,,, we first consider the set of critical points such a GC must contain.

Definition 17.2 A subset A C X, is a skeleton if the following hold.
S1 A consists of critical points of W, with Morse index < 1,
S5 A is invariant under the Z2 action 7,
Ss A is completely ordered.
A skeleton A is maximal if the only skeleton A’ with A C A" C X, is A itself.

Lemma 17.3 A mazximal skeleton A for W, exists.

Proof. Choose r, s with 7p 4+ ¢s = 1 and define 7 = 7, 5 as in Exercise AMexowellordering. By Aubry’s
fundamental lemma the set Ay of absolute minimisers of W), is a skeleton. We fix some element x € Ay.

Any skeleton .4 D Ay is completely determined by
B=Anz,7(x)]={z€ A:x < z < 7(x)}.

Indeed, given BB we can reconstruct .4 as follows:

oo

(17.3) A= |J 7 B).

Jj=—oc
Conversely, any ordered set of critical points 5 C [z, 7(x)] determines a skeleton A O Ag by ((17.3) ). The
closed order interval [z, 7(x)] is compact and W, is a Morse function, so there are only finitely many critical
points in [z, 7(x)]. We can therefore choose a maximal ordered set of critical points 5 C [z, 7(x)] and be

sure that the corresponding .4 is a maximal skeleton. O

Lemma 17.4 Mountain Pass Lemma If the skeleton A is maximal, then every other point (according

to the order) is a local minimum; the remaining points are minimaxes.

Proof. If & < y are consecutive elements of A then we must show that « and y cannot both be local
minima, while one of them must be a local minimum.
Step 1. If z and y both are local minima then the following standard minimax argument shows that

there is a third critical point with index 1 between @ and y. Define () = [z, y] and consider

Q= {ze@: qu(z) <~}

Each (), is compact, and if v > max W, then (), = @ is connected. On the other hand, @), with

q }Q
7o = max (Wpq (@), Wpe(y)) is not connected, since & and y are local minima of . Consider

1 = inf{y > 70 : @, connected}.
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By compactness (), itself is connected, and hence v; > <. Suppose there is no critical point of W, in
|, y[- Recall that  is forward invariant under the gradient flow: (*(Q) C @ for ¢ > 0. By compactness of
Q~, = Ny>~, Q- there is an e > 0 such that ' (Q+,) C @, —., which implies that ), _. is also connected,
a contradiction. Hence there is at least one critical point z €|x, y[, with W, (2) = 71. If the Morse index of
all such z were 2 or more, then the Morse Lemma TOPOlemmorsewould show that ()., with y slightly less
than v, would still be connected — so the index of at least one such z is 1. But now we have a contradiction:
if & and y are both local minima, then there is a minimax point z €]z, y[and AU {7, ,z : m,n € Z} isa
skeleton; this cannot be since A was maximal.

Step 2. Next we show that either  or y is a local minimum.If x is not a local minimum, then
wy(x) =1limy_ oo oy (x; t) is a local minimum. But w, (z) < y, so w, (x) = y, and we find that y must be
a local minimum. Likewise, if y is not a local minimum, then = w_ (y) must be one. ad

We have all the ingredients necessary to show the following, which was proven in a slightly different form
in Golé (1992 a), Theorem 3.6.

Theorem 17.5 Assume W, is a Morse function. If A is a mazimal skeleton, then
I'y ={ax(xz;t) : t € R,z € A is a minimaz} U A

is a C1 Ghost Circle.

Proof. Ttis simple to check that, by maximality, /"4 is connected, and a ghost circle. As a union of unstable
manifolds, /"4 is smooth except perhaps where different unstable manifold meet, at the minima. But we
showed above how the orbits o1 (x; t) must converge tangentially to the one dimensional eigenspace in the

positive-negative cone of the minima. Hence the GC constructed is also smooth at the minima. O

Exercise 17.6 Check that I'4 is indeed a GC.

18. Construction of disjoint Ghost Circles

We now arrive at the main result of this Chapter, which provides a vertical ordering of Aubry-Mather sets:

Theorem 18.1 (Ordering of Aubry-Mather Sets) Given any interval [a,b] in R there is a family of
nontrivial circles C,,w € [a,b] in the cylinder such that:

(a) Each C,, is the projection of a GC I, and hence is a graph over {y = 0} (as is f(C,)).

(b) The C,, are mutually disjoint and if w > &', C,, is above C,y.

(¢) Each C,, contains the Aubry-Mather set M, of recurrent minimizer of rotation number w.

This section and the next two are devoted to the proof of this theorem. We will first construct, in this
section and next one, finite families of rational ghost circles. In Section 20, we will take limits of such families

and conclude the proof of the theorem.
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Let wy,...,wy be distinct rational numbers. The construction of the preceding section provides us with
maximal skeletons Aj, ..., A; and corresponding GC’s I'4,, ..., I 4, . It is not immediatly clear from this
construction that the projections C'; = 714, are disjoint. In this section we show that the skeletons can be
chosen so that the C'; are indeed disjoint.
Definition 18.2 A family of skeletons .4; C X, . is minimally linked if any pair x € A;,y € A; withi # j

i

is transverse with I(z,y) = 1.

Theorem 18.3 Disjointness Theorem If A; C X, o, is a minimally linked family of mazimal skeletons,

then the projected GC’s Cj = nl'y; are disjoint.

Proof. Order the A; so that their rotation numbers p; = p;/q; are increasing. Then we claim that
(181) Ty = Ty < Tay <+ < T'a.

Disjointness of the projected GCs then follows directly from the Graph Ordering Lemma. To see why (18.1)

holds, we consider any pair (") € I'y,,z\Y) € I' 4; and assume that they are not transverse. By the Sturmian

Lemma

(18.2) I (Ctm(i),Ctm(j)) >1

for all those ¢ < 0 at which (*x( 0 ¢t2(). Butlim; . o ¢tz = y® for some y") € A; (I = i, ). Since
the A; are minimally linked we must have I(y(*), y)) = 1, which contradicts (18.2) . O
Theorem 18.4 For any k-tuple w1, . . .,wx of rational numbers there exists a minimally linked family
of skeletons A, ..., A such that each A; is a mazimal skeleton.

This theorem, combined with the Disjointness Theorem, provides us with a disjoint family of circles
Cj = ml4; in the annulus. The construction of the .A;’s will be such that they automatically contain the
absolute minimizers of W,,,, which by Proposition 10.4 are the minimal energy orbits of Aubry—Mather. In
our proof of Theorem 18.4 we begin with constructing a maximal k-tuple of skeletons, and then show that

each skeleton in this k-tuple is maximal.

Proof of Theorem 18.4 Let M be the set of absolute minimizers of W, on X, ;.. Aubry’s fundamental
lemma implies that Mi,..., M, is a minimally linked family of skeletons. As in the proof of Lemma
17 3one easily finds a maximal k-tuple of skeletons A, ..., A, with M; C A;, by observing that there are
only finitely many of such extensions. We shall now show that each .A; is a maximal skeleton.

Assume that one of the A;, say A; is not maximal. Then there is a critical point z € W), 4, with index

1491
0 or 1, such that A; U {z} is completely ordered. In particular, there must exist a couple of adjacent critical
points < y in A; with z €]z, y[. We must deal with two different cases:

A. Both  and y are local minima of W, ;.

B. At least one of the critical points x or y has index 1.
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Case A. By a minimax argument we will show that there is a critical point between x and y which allows
us to extend 4, to a larger skeleton A} for which (A7,...,.A;) is still minimally linked. This would then
contradict maximality of (Aj, ..., A), and thereby show that Case A cannot occur. To carry out the minimax

argument we consider
R={weW,q x<w< Y, Vj>2Voes,; v M w and I(v,w) = 1}.

and its closure () = 2. The Sturmian theorem again implies that {2 and hence () is forward invariant under the
gradient flow (*. Also, as in Lemma ???, ) is compact, as are the sublevel sets Q, = {w € Q : W, 4, (w) <
~}. To obtain a critical point other than  and y in ) we must show that not all the (), ’s have the same topology.
If vo = max (W, 4, (), Wp, 4, (y)), then Q. is again not connected, since « and y are local minima. On the

other hand we have
Lemma 185 Q = 2 is connected.

Postponing the proof of this statement to the next section, we can now easily complete the minimax

argument. Indeed, as in Lemma 17.4,
y1 = inf (7 > o : Q~ connected)

is a critical value of W), 4, , so there must be a third critical point w € (. By the Sturmian Lemma w must lie

in (2, and it follows from the Morse lemma that w has index 1. Put

(18.3) Al =AU {1 yw :m,n € Z};
then (A},...,.Ax) is a minimally linked family of skeletons extending (A, ...,.Ax), and we have our
contradiction.

Case B. Assume that  is not a local minimum, and put w = w. (x). Then w is a critical point of W), 4,
and is therefore transverse to any v € A; with j > 2, by Lemma 3.5. We claim that I (w, v) = 1. Indeed, for
t — —oo we have oy (x;¢) — x. Since (Ay,...,.As) is minimally linked, we find that for all ¢ sufficiently
large negative oy (x; t) and v are transverse with I (« (z;t),v) = 1. By the Sturmian Lemma I (v (x; t), v)
cannot increase, and since oy (; t) and v have different rotation numbers I (o (x;t),v) > 1 for all ¢: hence
I{ay(z;t),v) = 1 for all . Letting t — 400 we get I(w,v) = 1, as claimed. Defining .4} as in ((18.3))
we again get a larger minimally linked family of skeletons, a contradiction. If x is a local minimum then y

cannot be one, and consideration of w_(y) leads to a similar contradiction. ad

19. Proof of Lemma 18.5

We must show that () = (2 is connected. We shall do this by showing that any w € (2 can be connected to
viaapath~y:[0,1] — 2 U {x}.
Forany j € Z and any =, w € X, 4, we put

Aj(x:w)={vj:v €A U---UA}N[z;,w;).
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For simplicity we shall write x | A U - - - U A, when we mean that 2 ) v forevery v € Ay U --- U Ay.

Proposition 19.1

(1) Aj(z: w) is finite, for each j.

(i) Ajiq,(@:w) = A; +p1.

(i) If z € Xpp,q0 and © < z < w, then zM Ay U---U Ay, if and only if they are tranverse in the
index range 0 < 7 < ¢y.

Proof. (1) : W,

the action of 7, ,,, m,n € Z. (iii) is a consequence of (ii). a

;q; 18 @ Morse function. (ii) holds because x, w € X, ,, and the A; are invariant under

We define the height of w over x by

If the height /. (x : w) vanishes then all the A;(x : w) are empty and we can define v(t) = tw + (1 —t)x.
Since z; < 'yj(t) < wj forall j and 0 < ¢ < 1, it follows from part (iii) of our last proposition that
y@E) M A U---U A for 0 < ¢ < 1,0 that v(t) stays within Q. Call this a move of type 0.

We will now assume that h(x : w) > 0, and will show how to decrease it to zero. Suppose that for some
[ one has w; = v; > x; for some v € Ay U---U Ag. Then there is an ¢ such that 0 < ¢ < w; — x; and

(w; — e, w;) N A;(x : w) is empty and we can define

, wj —e if j =1lmod q,
wsr = .
J wy otherwise.

As before one can connect w and w’ by y(t) = tw + (1 — ¢)w’ without leaving (. Call this a move of type 1.

Assuming now that w; # v; for all 7, we will move the sequence w down by interpolating it linearly to:

L0 _ max A;(x : w) ifi=1mod ¢,
¢ w; otherwise

for some judiciously chosen [. Call this is a move of type 2. Clearly z() e Xpiqp and = < 20 < w,
20 = 2(49) and h(z : zgl)) = h(z : w) — 1. We need to show that for at least one [ € Z, this move does
not change the intersection index of w with the elements of A5 U - - - U Ay. Consider the set of elements in

As U - - - U Ay, that are immediately below w:

a;’ =ger max A;(x : w).

Assume that, among the sequences a® at least one has rotation number greater than that of = and pick the
one, say a® which has the largest rotation number (If all ¢®¢ have lower rotation number than x, pick the
one that has the lowest and proceed similarly). In the following, we only worry about the possible changes of
intersection index in the range 0 < j < q. The periodicity condition (ii) of Proposition 19.1 insures that if

there are changes of index, they must occur periodically. There are three cases (see Figure 19. 1) to consider:
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R p———

1
1
1
1
m
Xj-

Case 2

Fig. 19. 1. The two possible moves of type 2

Case 1: aij > wji1

Choose | = j and move w to z(!) as defined above. This could only change the intersection index of w with

a®i . Butin this case this intersection index remains the same: since p(a®/) > p(w) = p(x),and I(a% ,w) =1,

we must have aj{ 1 < a;’; 7 < w;_1. Hence the one crossing of w and a*/, which occured between j and

7 + 1 is now moved to a crossing that occurs at j, with no other crossing introduced with this or any other

sequence of A U --- U Ay.

Case 2: a7}, < aj}]

Since by assumption p(a®/+*) < p(a®’), we must have a;’*' > a7’ and thus a;’*" > w;, by maximality of

a;j . Now choose I = j + 1 and move w to z(!): the one crossing of w and a®+', which occured between j

and j + 1 is now moved to a crossing that occurs at j + 1.

Case 3:a},, = a;7]

The equality a;’ = a}* cannot be true for all i > j since otherwise w and a*/ would have same rotation

number. Hence for some 7 > j, Case 1 or 2 must occur. Apply the procedure for these cases there.
Concatenating moves alternating between type 1 and 2, we get a curve in () between w and and a sequence

which has zero height. Concatenate this with a move of type O to get a curve in () between w and . o
20. Proof of Theorem 18.1

Let wy, ws, - - - be an enumeration of the rational numbers in the interval (a, b).

Proposition 20.1 There is a family of GCs {Fln), . ,FT(Ln)}, where [’j(n) has rotation number w;, and
where Fi(n) < Fj(n) if wy <wj. Each Fi(n) contains at least one minimizing periodic orbit of rotation

number w;, and generically all of them.

Proof. If one assumes that the map f is such that the Morse property 17.1 holds, then, according to
Theorem 18.4, one can find a minimally linked family of maximal skeletons {Ag’”) A } such that Ag-n)
has rotation number w; and contains all the absolute minimizers of that rotation number. The corresponding

GCs Fi(n) = I', () then satisfy the required conditions.

K3
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In general, when the Morse property 17.1 is not satisfied, one can approximate f by smooth twist maps f.
which do satisfy 17.1 (since this condition is generic); One thus obtains GCs Fj(;l) , and by the compactness
of the set of GCs with a fixed rotation number (Proposition 16.3) one can extract a convergent subsequence
whose limit will then be a family {Fl("), ceey F,(Ln)} of GCs. But we need to make sure that limits of strictly
ordered rational GCs stay strictly ordered. To see this, notice that the set Fi(f;) X FJ‘(,Z) is, when ¢ # j,included
in:

2;; = {(v,w) € PCO,, x PCO,, : vM w and I(v,w)=1}

where PCQ,, is the set of periodic CO sequences of rotation number w:
PCOp/q = COp/q N Xpg-

The set (2;; is, by the Sturmian lemma, positively invariant under the product gradient flow ¢* x ¢* corre-
sponding to any twist map. In fact: (¢* x ¢*)(Clos £2;;) C (Int §2;;), as can easily be checked (i.e. Clos §2;;
is an “attractor block” in the sense of Conley.) As Hausdorff limit of compact sets in {2;;, the set Fi(”) X Fj(")
is in Clos £2;;. But, since it is both positively and negatively invariant under ¢* x ¢, I 'z-(n) X Fj(n) must in
fact be in Int (2;; where the intersection number is well defined and always equal to 1. In other words, we
have shown that, whenever w; < w; one must have I'™ < I’ j(”). Finally, the set I'™ contains at least a
minimizing periodic orbit, since the sets I Z-(;Z) contain by construction al/l the minimizing periodic orbits of

period w; for f., and limits of minimizers are minimizers. O

Rational C_’s

We now construct the C,,’s of Theorem 18.1, starting with all the rational w € [a,b]. Again, we use the
compactness of the set of GCs: For each n the proposition provides us with GCs F‘l("), A F,(ln) with rotation
numbers w1, . .., w,. By compactness we can extract a subsequence {n;} for which the Fl("j ) converge as
j — oo to a GC of rotation number w; . Using compactness again, we can extract a further subsequence n; for

(n3) (n})

which I} 7" and I, ’" both converge; repetition of this argument and application of the diagonal trick then

) converge to some limiting GC I ',Eoo) (of rotation number

finally gives a subsequence n// for which all F,in;f
wpk) as j — oo. By the same argument as in the previous proposition, the limits F,EOO) satisfy Fi(oo) < Fj(oo)
whenever w; < w;. We then define C,,,, = w1 k(,oo) and by the Graph Ordering Lemma 16.4, the C,,, s are
disjoint. In the generic case, each Fi(") contains all the periodic minimizers of rotation number w;, and hence

)

so must the limit FZ-(OO . In the non generic case, I 'Z-(oo) must contain at least one periodic minimizer of the

energy.

Irrational C_’s

To complete our family of rational GCs with irrational ones, we once again take a limit. We could proceed
in a way similar to what we did in order to get all rational GCs, but we would have to appeal to the axiom
of choice (no diagonal tricks on uncountable sets!). To avoid this, we first prove a proposition of monotone
convergence of GCs. We shall write I} < I if either Iy < I or p(11) = p(I) and 717 is ( not necessarily
strictly) below 71 .This last condition is equivalent to mgl) &) < x§2) (€) in the notation of the proof of the
Graph Ordering Lemma 16 4.
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Proposition 20.2 Monotone Convergence for Ghost Circles Let I'U) be an increasing sequence of GCs,
i.e. assume that

r®<r@<pr@ <.
Assume also that the rotation numbers p; = p(I" @)Y are bounded from above. Then there is a unique
GC I'™) such that I'D — (%) g j — 0o0. Moreover, if x(j)(f) is the parametrization of I'D) with
sc(()j)(g) =&, then the T]EJ)(f) converge monotonically and uniformly to m,(coo)(f), where (%) (€) is the
parametrization of I'°) with g;g‘”)(g) =¢

Of course, the corresponding theorem for decreasing sequences also holds. We postpone the proof of this
proposition till the end of this section.

Assume now that we have constructed the rational GCs I k(:oo) as above. For any number w € (a, b), rational
or otherwise, we can then define two GCs Fj: as follows. Choose a sequence of rational numbers wp,; Which
increases monotonically to w. The Monotone Convergence Theorem tells us that the limit of the corresponding
GGCs I ,§j°) must exist. We denote this limit by I . This procedure might produce an ambiguous definition of
I, since the result could depend on the choice of the sequence n;: If one has two such sequences, n; and
n; , then the F,g?o) and I’ 7(1300) might have two different limits /" and I". However, one can take the union of the
two sequences to obtain a third sequence 7, i.e. {n}} = {n;} U {n’}. The wy then also increase to w, so
that the I” 75(,),0) also must converge to some GC /™. Since n; and n; are subsequences of 7/, both sequences
n; and n; I]nust produce the same limiting GC: hence I" = I" = I, and the definition of I is independent
of the choice of the n;. We choose to define C,, = w1, (or 71}, but with the same choice of + or — for all
w in order to avoid using the axiom of choice...).

We now check that, for w irrational, the unique Aubry-Mather set M, of recurrent minimizers (see
Proposition 12.9) is included in C,,. We can take a sequence of periodic Aubry minimizing sequences
xk e F,goo) where wy, /' w (\, if one chose C,, = 7I'"). Then ¥ — x, an Aubry minimizing sequence in
I, . The orbit that  corresponds to is recurrent and minimizing, as limit of recurrent and minimizing orbits.

Its closure, which is also included in C,,, must be M,, . From our definition of 177, it is clear that:
wi <w<wy = I <7 IF <,

for rational w;, w; and irrational w. Hence the set formed by the rational GCs I ,goo) and the irrational ones
I, is completely ordered according to their rotation numbers. By the Graph Ordering Lemma 16.4,the C,’s

(irrational and rational) that we have constructed are mutually disjoint. a

Remark 20.2 If w is a rational number, I, is no longer necessarily in PC'O,, but is certainly in CO,,. It may
contain the sequences corresponding to homo(hetero)clinic orbits joining hyperbolic periodic orbits of rotation
number w. Hence we may (and, probably, generically do) have three distinct Ghost Circles I, < I, < I."

) for some k. We will call their projections C, C,, and C.} respectively.

for each rational w where I, is I ,500
Instead of the set {C,, },c[q,p5 Of strictly non mutually intersecting curves that we have found in Theorem
18.1, one might prefer to consider the bigger set {C,, U Cl U C,; },c(a,)- It is not hard to check that this is a

closed set of GCs.

Proof of Proposition 20.2
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Proof. Tt follows from the Graph Ordering Lemma 16.4 tthat the l‘;cj )(f ) are monotone in j. We have
assumed that the rotation numbers of the I") are bounded, so we may as well assume they are bounded by
some integer M . This bound implies for [ > 0 that xl(j ) (&) <&+41(M + 1), and in view of the monotonicity
of the :z:l(j) (&) they converge to some :vl(oo) (€). For negative [ one finds that xl(j) (&) > £+ 1(M + 1), so that
the xl(j ) (&) decrease to some xl(oo) (). Clearly x§°°> () is a nondecreasing function of £. We shall show that
it is strictly increasing, and continuous.

2°)(€) is strictly increasing. Let € < 1 be given. Then t — (*(2()(¢)) and ¢ — ¢*(x() (1)) both are on
the GC I'U), so that they must be ordered in the same way for all ¢ € IR. At t = 0 we have

&= @(€)o < M@V (m)o =1

so this ordering must hold for all ¢. Upon taking the limit j — oo we find that ¢*(2(°)(¢)) < ¢t (2(>)(n))

holds for all ¢. By the Strict Monotonicity lemma we must have strict inequality for all ¢, unless we have

equality for all ¢. Equality cannot happen of course, since x(()oo)(é ) =¢&<n= x(()oo) (n). Hence we have

2% (£) < (%) (n); in particular (> (¢) < 2{> ().

:c§°°)(§) is continuous. Since the :vgj )(5) are monotonically increasing in both j and &, their limit is
increasing and lower semicontinuous in . Thus we only have to show that x§°°> €)= x§°°) (£ 4+0). Assume
that 2{°(¢) < 2{°(¢ + 0) and define @ = {!>(¢) + 2{°°) (¢ + 0)} /2. Then there is a sequence §; | 0
such that () (¢ + §;) = a. As before we consider ¢! (21 (¢ + §;)) and ¢* (219)(€)), and take the limit
j — o0o. Then, after passing to a subsequence if necessary, ¢ (z\)(¢ + d;)) — ¢t (z*) for some z* with
zy = £ and 27 = a, while ¢* (219 (€)) — ¢! (2(°°)(£)). Moreover we will have ¢t (z*) > ¢t (2(>9)(¢)) for

all ¢, again with either strict inequality for all ¢ or equality for all ¢. But this contradicts the fact that at ¢ = 0

we have 2 = £ = 207 (¢) and 27 = a > 2(°)(¢). Thus 2! (¢) is indeed continuous. Since the {7’ (¢)

increase monotonically to :1:§°°> (€), and since q;§°°) (&) is continuous, the convergence must be uniform (Dini’s

theorem). Therefore the :vl(j ) (£), being iterates of xgj ) (&) also converge uniformly.
One now easily verifies that () = {2(>) : ¢ € R} is a GC, and that it is the limit in the Hausdorff

metric of the I's, O

Exercise 20.3 Complete the sketch of this alternating conclusion of the proof of Theorem 18.1: For each
p=(wi,...,wg) in QF, and k arbitrary, consider the set g =U I',,;, union of GC’s whose projections

. wi;Ep
do not intersect. Let

Jla,p) = closure{(z,y) € (CO[a,b])2 ‘ I(Tmpnz,y) <1, Y(m,n) e Z>}.

This is a compact attractor block for the flow on the cartesian product. Let K C Jj4 be the maximum
invariant set in Ji, ). Then K and its projection K " on the first component are both compact. Take an
increasing (for the inclusion) sequence of finite subsets p of @, say {p’};en such that UJ.E]N P =Qna,b].
Since K’ is compact, assume that the sequence {G,i}iew converges to a set L in K'. Now show that for
all w € [a,b], LN CO,, contains at least one Ghost Circle. Show that two GCs I, I',s of different rotation
numbers in £ must satisfy I, N I, = (). To construct a partition, i.e. a family of non intersecting circles ,
pick (using the axiom of choice!) one Ghost Circle of L for each w in [a, b].
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21. Remarks and Applications
A. Remarks

1) Let’s note that the techniques introduced in this chapter have a scope that goes beyond proving the vertical
ordering of Aubry-Mather sets. Angenent (1988)introduced the flow ¢ and its monotonicity. He used it
to prove, for instance, the existence of periodic orbits that, in the generic case, would come from “elliptic
islands around elliptic islands”, as well as homoclinic and heteroclinic orbits between hyperbolic points. The
remarkable fact is that his results do not make any generic assumption. Indeed, removing generic assumptions
about transversality of unstable manifolds is often a major hurdle in proofs that use hyperbolicity, and can
be seen as an advantage of variational techniques. As an example, it was this kind of technical hurdle that
barred Tangerman & Veerman (1990a)to obtain a complete proof that the Aubry-Mather sets are vertically
ordered, a fact that they conjecture in that paper. In a larger context, Angenent (1990) continued exploring
the notion of monotonicity and its relationship to the maximum principle of parabolic PDEs and obtained a
generalization of the Aubry-Mather theorem. As noted before, Koch & al. (1994) and Candel & de la Llave
(1997) use gradient flow technics to prove interesting Aubry-Mather type theorems about functions on lattices
of any dimensions. More recently MacKay et al. have ....?
2) Ghost circles first appeared in Golé (1992 a). They stem from an effort I was making in understanding the
Ghost Tori of my thesis (see Chapter 4). I had constructed circle within the Ghost Tori. My advisor G. Hall as
well as R. MacKay and J. Meiss asked me if I could prove their projections were graphs. This launched the
work in Gol€ (1992 a), where I also recover a result similar to that of
on existence of invariant circles In his work on toral and annulus homeomorphisms, LeCalvez (1997)proposes
another way to construct our GCs: take an ordered circle in CO,,/Z which is Y b invariant, but not
necessarily (? invariant. A simple choice is the “straight” circle with zj(¢) = kw + £. Apply the flow
¢t to this whole circle, and take a limit as the time ¢ — co. Le Calvez suggested to us that letting the
flow act on non—intersecting collections of rational GCs may be a way to prove Theorem 18.4.1In a
way that is reminiscent to Le Calvez’ construction of GCs, Fathi (???am) has obtained the generalized
Aubry-Mather sets of Mather by applying a flow in a functional analytic space of Lagrangian graphs ???.
Finally Katznelson & Ornstein (???am via trimming) find Aubry-Mather sets on a collection of pseudo—
graphs that are (not strictly) ordered vertically. They do this by iterating the map on circles in the annulus,
trimming the image of the circles at each step so that they remain pseudo—graphs (see Chapter 3). It would

be interesting to investigate the parallel between these different methods.

B. Approximate action-angle variables for an arbitrary twist map

Dewar & Meiss (??7?flux min) attempt the construction of approximate action-angle variables using almost—
invariant circles defined through a mean square flux variational principle. We refer the reader to their paper
as to the physical relevance of such coordinates. We show here that similar approximate action variables can
easily be defined from our GC’s. Given any finite number of minimal Aubry-Mather sets, we will produce a
continuous foliation of the annulus by circles such that each of the Aubry-Mather set of our chosen collection
is contained in a different circle of the foliation. Moreover, such a construction will also produce a completely
integrable, albeit not necessarily differentiable map of the annulus that coincides with the original map on the

collection of Aubry-Mather sets and leaves the foliation invariant. We sketch here the simple construction.
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Let M,,,..., M, be an arbitrary collection of minimal Aubry-Mather sets. From Theorem 18.1, we
know that we can produce a corresponding collection 77, ..., I',, of GC’s whose disjoint projections contain
the chosen Aubry-Mather sets. Parameterize these GC’s by their coordinate x( as in (16.1) and order them by

increasing rotation number. Between two succesive GC’s , say I} and [}, 1, construct the continuous family:

Li(§) = ( ot (6), €, 24 (€), - )
with  4(€) = (1 - 0)21” (€) + 21"V (¢)
(€)= (24)7(€)

(k)

. 1
where, since both z;"’ and x&lﬁ_ )

are lifts of homeomorphisms of the circle, =} also is (it must be periodic
and monotone); (z})’ represents the jth iterate of this homeomorphism. It is not hard to see that, for ¢ # 0
or 1, I} has all the properties of a GC except for that of being invariant under the flow. In particular it is
a circle in CO,,, /701 on which the shift 7, o acts as a circle homeomorphism with rotation number w; =
(1 — t)wg + twy1. Its projection 71} is a graph in the annulus. The circles 71} do not intersect for different
t’s since in the (¢, 21) coordinates, they are the linear interpolation along the 21 axis of the non intersecting
graphs of xgk) and xgkﬂ) . Repeating this process between each pair of adjacent I';’s in our finite collection
gives the continous foliation 7/ advertised. The completely integrable map is given by 7 ¢ acting on the
family /7 of Ghost Circles, or alternatively by m o 71 g o 7 * acting on the annulus, which is the topologically
embedded image (by ) of the family .

Since for generic maps the rational GC’s can be made (', the above construction yields, when starting
with a generic map and rational Aubry- Mather sets, a C'! foliation (after smoothing the glueing of our
interpolations). All the minimizing periodic orbits of the chosen rotation numbers are then embedded in the
construction. One can also take a limit of this process, by adding more and more Aubry- Mather sets. One
obtains an ordered continuum of circles in IRZ which contains our set £ of the proof of Theorem 18.1.
Alternatively, we could have started with the set £ of GCs and filled its gaps as above, all at once (gaps will
occur between the I and the I of a given rotation number).

Further study of this object might be interesting in order to draw a parallel between twist maps and families

of circle maps, eg. in the theory of renormalization (see MacKay (??? wsp book)).

C. Partition for transport

In the theory of transport of MacKay, Meiss and Percival MacKay, Meiss & Percival (1984), MacKay, Meiss
& Percival (1986), it is sought to use almost invariant circles in order to form disjoint boxes containing the
“resonance zones” around the elliptic islands (or hyperbolic points with reflexion) of the periodic minimax
orbits of different rational rotation numbers.

It is not hard to see that the pairs C,, /.. of projections of the p/q+ GC’s each enclose the circle C),/,
of Theorem 18.1: they are defined as limits of circles that are respectively strictly above or strictly below
Cp/q- Moreover, as in the almost invariant circles (or partial separatrices) of MacKay, Meiss & Percival
(1986), C,/, and the C,, /. all meet at the minimum p/q orbits, at least when there are finitely many of
them (i.e. generically). C,, . (resp. C,/,_) contains the advance (resp. retrograde) homoclinic orbits (min
and minimax), by an argument of Katok (see Hasselblat & Katok (1995) ). We therefore hope that the boxes
defined by the pairs C), .+ of GC’s may be used as intended for the partial separatrices in MacKay, Meiss &
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Percival (1986). The advantage of our boxes over those formed by partial separatrices is that their boundaries
are graphs and that they are disjoint from one another (statements unproven to our knowledge for partial
separatrices in the general case. See Tangerman & Veerman (1990a) for partial results). Hence the calculation
of the flux through them does not rely on the hypothesis that the turnstiles of MacKay et al. always have the
simple shape of a figure 8. One of the advantages of their partial barriers is that they can canalise the flux
through “cheminees”, i.e., points exit a resonance zone through one turnstile (as opposed to infinitely many
in our case). We refer the reader to MacKay & Muldoon for further arguments in favor of the use of Ghost

Circles in transport theory, as well as some very intersesting pictures.

D. An extension of Aubry’s Fundamental Lemma

As a consequence of Theorem 18.4, we get that any pairs of points in two unlinked maximal skeletons
of distinct rotation numbers have intersection index 1. By Aubry Lemma, we knew this to be the case for
minimizers, but our results shows that it is also true for the minimaxes and local minima in the skeletons. The
relevance of this appears clearer in the light of LeCalvez (astérisque) , where he shows that this intersection
number is in fact a linking number for the corresponding orbits of the suspension flow of the map. Extending
an idea of Hall (1984), he shows that this linking is an obstruction to continue periodic orbits simultaneously,
through paths of periodic orbits in an isotopy of the map to some completely integrable twist map. In our
terminology, his result implies that the periodic orbits corresponding to critical sequences in a minimally
linked set can “continue” simultaneously through curves of periodic orbits of an isotopy of our map to a well
chosen completely integrable map. In particular, LeCalvez already noted that, because of Aubry’s Fundamental
Lemma, any collection of minimum periodic orbits can be continued simultaneously to orbits of a completely
integrable map. A consequence of Theorem 18.4, where we construct minimally linked sets that contain
minimum and minimax orbits, we get, using LeCalvez’ result, orbits of minimax type as well as periodic
minimizers continuing simultaneously to orbits of a completely integrable map fj, through paths of periodic

orbits of a curve of maps joining f to fj.
22. Appendix: Proofs of Monotonicity and the Sturmian Lemma

In this appendix, we give the proofs of Theorem 14.2 and Lemma 14.3. Eventhough it is a consequence of

the latter, we start with a simpler, direct proof of the former. Both proofs are by S. Angenent.

A. Proof of Strict Monotonicity
We let the reader show that if the operator solution of the linearised equation:
(22.1) u(t) = Lu(t)

with
L: {ve}rez = {Brve—1 + arvk + Brr1Vis1frez
o = =028 (-1, k) — 011S(Tk, Tht1),  Br = —0128(Th—1, k)
is strictly positive, then the flow is strictly monotone. L(x(t)) is an infinite tridiagonal matrix with posi-

tive off diagonal terms —012.5(xk, x,11) (see 17.1 for a finite dimensional version) . The diagonal terms
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0115(xk, 1) + 022025 ()1, x1) are uniformaly bounded by assumption. Hence, for any 7' > 0 for which
x(t) is defined when 0 < ¢t < T', we can find a positive A such that:

B(t) = L(z(t)) + Md

is a positive matrix with strictly positive off diagonal terms. If w(t) is solution of the equation (22.1) then

eMu(t) is solution of :

(22.2) v(t) = B(t)v(t),
hence the strict positivity of the solution operator for(22.1) is equivalent to that of (22.2) . Looking at the
integral equation:

w(t) = v(0) + /0 B(s)v(s)ds,

one sees that Picard’s iteration will give positive solutions for positive vector v(0). This will imply, assuming
that v, (0) > 0,v,(0) > 0, forl # k:

t
Vo1 (t) > vpsr (0) + / Brs (s)oe(s)ds > 0
0

The same holding for v;,_;. By induction, vy (t) > 0,Vk € Z and the operator solution is strictly positive.
This finishes the proof of Theorem 14.2. ad

B. Proof of the Sturmian Lemma

Let z;(t) (ip < i < i1, —T <t < t) be a solution of

dzr i
dt

(223) = ai(t)mi,l + bz<t)IZ(t) + ci(t)ariJrl(t) (’LO <1< Zl)

where we assume that the coefficients a;(t), b;(t), ¢;(t) are continuous and satisfy
(224) ai(t),ci(t) Z 5; ai,bi,ci S M

forall -7 <t <T,ig < i< i1,and for some constants 5, M > 0.
Lemma 22.1 Assume
=0 forig<i<i
xl(o){¢ 0 ifi=ip ori=ip.

Then the sequence {x;,(t),...,x;, (t)} has less sign changes when t > 0 than when t < 0.

Proof. First a few reductions. Consider

with b;(t) = exp{— f(f bi(7)dr}; then

dyi

= A;(t)yi— i(0)Yit1,
I (O)yi—1 + Cs(t)yit1

where
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Bi_1(t) Bi1(t)
0 B
b;(t) vanish. Note that {;(¢) } and {y;(¢) } have the same sign changes.

Ai(t) =det a;(t), Ci(t) =qet

In other words, we may assume that the

The coefficients A;, C; satisfy
(22.5) Se M < Ai(t),Ci(t) < MetMT
By integrating the differential equation for y;(t) we find that for i( < ¢ < 1 one has

(22.6) zh<t>::J€ AP gicr(7) + Co(7)yisn (1) }dr

Proposition 22.2 For ig < i < i1 one has
(22.7) yi(t) = Mt" =" + Nt " 4o ([t] 7" + |t[*77) (t —0)

where the constants M; and N; are given by

m—&@&d@m&m@fﬂ&’
m:@@amw~%l@%#%'

We shall prove this by induction. The relevant property of the coefficients M;, N; is that the M; have the
same sign as y;, (0), and the IV; have the same sign as y;, (0). Furthermore, one of the two terms in (22.7) always
dominates the other, unless i —iq = i; —i,i..unless i = 015 if§ < b0 theny,; (1) = M;t' 040 (t'~'0),
if i > 234 then y;(t) = N;th —% + o (t1 )

Proof. We may assume i; — ig > 2. The y;(t) are continuous, and hence bounded as ¢ — 0. Therefore it
follows from (22.6) that |y;(¢)| < C'|¢| for [t| < T'.

If iy — ¢g = 2, then the only ¢ with iy < i < 41 is¢? =49+ 1 =¢; — 1, and we have

Yio+1(1) Z/O {Ais+1(0)yi,(0) + Ci,—1(0)ys, (0) + o(1) }dr
= AL’DJrlt + Nioflt + O(t),

as claimed.

If i1 — ig > 2, then y;,12(t) = o(1), and (22.6) implies

¢
o (0) = [ {40} 0) + o1}
= Miy 19, (0)t + o(2)-
Likewise (22.6) implies y;, —1(t) = N;,—1Yi, (0)t + o(t).If i; —ig = 3 this proves the claim; if i1 —ig > 3,
then forall ig+1 < i < i; — 1 one deduces from (22.6) and the estimate |y;+1(t)| < C |¢| that |y;(¢)| < Ct2.
The general induction step in the derivation of (22.7) is as follows. Assume that it has been shown that

(22.7) holds for all 7 with iqg < i < ig + k,or iy — k < i < i1; moreover assume it has been shown that
lyi ()] < Ct]* forig + k < i <iy — k.
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Ifig + k = i3 — k, then (22.7) implies

t
Yio+k(t) = / {Aig 4k (0) My k1 ™+ Ciy—k(O)Niy g™+ 0 (7771 Jar
0

= io+ktk + Ni17ktk +o0 (tk) )

with
1
Mgk = Ai0+k(0)EMio+k*17
1
Ni, &= Cilfk(o)%Nilkarl-

In this case the claim is proved.

Otherwise ig + k < 47 — k, and a similar computation shows that (22.7) holds when ¢ = iy + k and
i = i1 — k. Finally, using (22.6) again, one finds that for iq + k < i < i; — k the estimate {yiﬂ(t)| <C \t|lC
implies |y;(t)] < C |t/*"", which completes the induction step.

Lemma 22.1follows directly from the proposition. If y;,(0) and y;, (0) have the same sign, say they are
positive, then the expansion (22.7) implies that all y;(¢) are positive for ¢ > 0; For small negative ¢ the
sequence Vi, (t), Yio+1(t), - - -, Yi, (t) alternates signs, except in the middle, i.e. if i1 — i¢ is odd then y;, 1 (t)
and ;441 (t) (with k = [25"2]) will have the same sign.

Indeed, (22.7) says the sequence {y;, (¢), ...,y (t)} has the signs as the sequence

2 ko 4k k—1
(co,crt,cat®, .o cp_1t™, cpt™, cpp1t™ ..., cok—1t, Cok)
if iy —ip = 2k is even, and {y;, (%), ..., y;, (t)} will have the same signs as the sequence
2 +1 :
(co, 1ty cat®y ..., thk+ ,Ck+1tk, ooy Coty Copt1)

if iy —ip = 2k + 1 is odd; here the c;’s are positive constants, with the possible exception of the coefficient
c. of t**1 in the second sequence.

If y;,(0) and y;, (0) have opposite signs, then one can again use the expansion (22.7) to derive that the
sequence {y;(t)} has exactly one sign change for ¢ > 0,and i; — iy — 1 sign changes for t < 0.1fi; —ig = 2,
then {v;, (t), Yig+1(t), Yi+2(t)} is “transverse” to the zero sequence for all small ¢, whatever the sign of
Yio+1(t) is.

Thus, if {y;, (t),..., i, (t)} is not transverse to the zero sequence at ¢ = 0, then either iy > iy + 2, or
i1 = ip + 2, and y;,(0) and y;, (0) have the same sign. In either case we have shown that the number of sign
changes of {y;,(t),...,v:, ()} drops att = 0. O

Lemma 22.1implies the following:

Lemma 22.3 If {z;,(t),..., 2, (t)} is a C' solution of ( 22..1), with z;,(t), z;,(t) # 0 for all ty <

t <ty, then
(a) the number of signchanges of {x;,(t), ...,z (t)} does not increase;
(b) this number drops whenever {x;,(t),...,x;, (t)} is not transverse to the zero sequence.

Lemma 22.1also implies the fundamental theorem on intersections which we use in the paper.
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Theorem 22.4 Let (), y(-) € CO be different solutions of

dxy,
d—tk = —028(xp—1,7k) — 015 (T, Ty1) 5

then I (x(t),y(t)) does not increase, and decreases whenever x(t) and y(t) are not transverse.

Proof. By the mean value theorem the difference z(t) = x(t) — y(¢) satisfies a linear equation of the form
(22.1).If z(t9) M y(to),then I (x(t),y(t)) is constant for ¢ near #y.
If x(tp) and y(to) are not transverse, then since (o) # y(to) one can choose iy < i; such that
20 (tg) # 0, 2% (t9) # 0, while 2%(tg) = 0 for ip < i < i;. Lemma 22.1then implies the theorem. O
The other situation in which we use the result about I (x(t), y(t)), i.e. the case when x(t), y(t) belong to

different X,,’s can be dealt with in the same way.

Lemma GTClemmaxskel is 17.3, Lemma GClemgraphordering is 16.4, Lemma GClemmonlimgc is
20.2, Theorem GCthmamordered is 18.1, Theorem GCthmdisjointgc is 18.4, Lemma GClemmountainpass is
17.4, Theorem 15.1is GCthmamflowproof, Corollary GCcorocoinv is 14.4, Theorem GCthmmonotoneflow

is 142
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SYMPLECTIC TWIST MAPS

9/25/99

This is the version revised on January 12 1998. It minimizes the use of symplectic theory
or of homotopy (in the torus case). The general case could be moved to another chapter.
Birkhoff-Lewis: point to the idea of proof: intersection of Lag tori. Get the hyperbolic metric
right. Find page in Gallot on diffeo TM = M. Find the whereabouts of Eduardo’s picture
(which map, which orbit). State Birkhoff’s normal form for invariant diophantine tori (see
Yoccoz, page 754-07, Herman IMA?)

In this chapter, we generalize the definition of twist maps of the annulus to that of symplectic twist maps
in higher dimensions. In many cases, around elliptic fixed points, area preserving planar maps yield twist maps
of the annulus $* x IR. Likewise, symplectic maps in IR27 around their elliptic fixed points lead to symplectic
twist maps of T™ x IR", the cotangent bundle of the n dimensional torus. This is one among many other
reasons which make T™ x IR" one of the most natural spaces to study. Another reason is that, although these
notions are at least implicitly present, almost no knowledge of manifolds, fiber bundles and differential forms
is needed for the study of symplectic maps on this space. Hence we devote the first sections of this chapter to
defining symplectic twist map of T" x IR" and exploring their relationship with their generating functions.

Nonetheless, cotangent bundles of many other manifolds do occur in mechanics (eg. the configuration
space of the solid rigid body is SO(3)) and there too it is possible to define and make use of symplectic twist
maps. For this part of the chapter, the reader should be familiar with the notion of cotangent bundle, differential

forms as are given in Section 46 of Appendix 1 or SG.

23. Symplectic Twist Maps of T" x R"

A. Definition

Let T" = IR"/Z" be the n—dimensional torus. An analog to the annulus in higher dimensions which is most
natural in mechanics is the space T™ x IR", which can be seen as the cartesian product of n annuli. We give
T™ x IR™ the coordinate (q,p) = (q1,---,Gn,P1,---,Pn). In mechanics, ¢1,...,q, would be n angular
configuration variables of the system, whereas p1, . . ., p, would be their conjugate momentum, and T" x IR"
is the cotangent bundle T*T" of the torus T".

The following is a generalization of the definition of twist maps of the cylinder:
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Definition 23.1 Let F be a diffeomorphism of IR2n and write (Q(q, p), P(q,p)) = F(q, p).Let F satisfies:

1) F(g+m,p) = F(q,p) + (m,0)
2) Twist Condition: the map v¥r : (g,p) — (q, Q(g, p)) is a diffeomorphism of IR2n.
3) Exact Symplectic: In the coordinates (g, Q),

(23.1) PdQ — pdq = dS(q,Q)
where S is a real valued function on IR2n satisfying:
(23.2) S(@g+m,Q+m)=5(q,Q), YmeZ".

Then the map f that F' induces on T" x IR" is called a Symplectic Twist Map.

As for maps of the annulus, S(q, Q) is called a generating function of the map F: Equation (23.1) is

equivalent to
p=-25(q,Q))

(23.3)
P 262‘5’((1’ Q)a

and thus F' is implicitely given by .S since
F(q,p) = (QoYr(q,p), 025 o¢hr(q,p)) with
/(l);l (qv Q) = <q7 _als(qa Q))

Note that the prescription of F' through its generating function S is often more theoretical than computa-

(23.4)

tional: it involves the inversion of the diffeomorphism 1" .

B. Comments on the Definition

(1) The periodicity condition F'(q+m, p) = F(q,p)+ (m, 0) implies that ' induces amap f on T" x IR"™.
It also implies that (in fact is equivalent to) f is homotopic to /d (see the Exercise 23.1).

(2) The twist condition (2) of definition 23.0 implies the local twist condition often used in the litterature:
Condition(2") det 9Q/0p # 0,

We will explore in Section 26extra assumptions under which the local twist implies the global twist of
Condition (2).

(3) Interms of differential forms, PdQ —pdq = F*pdq— pdq. The periodicity of S givenby S(g+m, Q+
m) = S(q, Q) in the (g, Q) coordinates becomes S(q +m, p) = S(q, p) in the (g, p) coordinates (i.e.
applying ¥, 1Y.In particular S induces a function s on T" x IR™ such that f*pdq — pdq = ds (q is seen
as coordinate on T"™ here). This last equality expresses the fact that f is exact symplectic. As is made

more precise in Chapter SG, if f is exact symplectic it is also symplectic:
/¥ pdq —pdq =ds = d(f*pdq — pdq) =0 = f*dp A dq = dp A dq.

Any symplectic map of IR2n is exact symplectic, but it is not true of maps of T" x IR": the map
f(qa,p) — (q.,p+m),m # 0 is symplectic but not exact symplectic. As for maps of the annulus, exact

symplecticity can be interpreted as a zero flux condition, but the flux is now an n dimensional quantity.
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Exercise 23.2 Each homeomorphism of the torus T™ is homotopic to a unique torus map induced by a
linear map A of Gl(n,Z) (the group of invertible integer n X n matrices). Likewise, each homotopy classes
of homeomorphisms of T™ x IR™ has exactly one representant of the form A x I'd where A € Gl(n,Z). Show
that any lift F' of a map homotopic to A x Id satisfies:

F(q7p):(Q7P):>F(Q+m7p):(Q+Am7p)

Exercise 23.3 Show that if F/(q,p) = (Q, P) is the lift of a symplectic twist map with generating function
S(q,Q), then F~(Q, P) = (g, p) is also the lift of a symplectic twist map with generating function —S(Q, q).

Exercise 23.4 Show that if ' and F’ are two lifts of the same symplectic twist map F, their corresponding
generating functions S and S’ satisfy:

S(a,Q) = 5'(¢,Q +m),

where m € Z™ is such that F' =T, o F.

C. The Variational Setting

As in the case of monotone twist maps of the annulus, the generating function of a symplectic twist map

induces a variational approach to finding orbits of the map.

Proposition 24.1 (Critical Action Principle) Let f1,..., fn be symplectic twist maps of T*T", and
let Fy, be a lift of Fy, with generating function Sy.There is a one to one correspondence between
orbits segments {(@y_1,Ppr1) = Fr(qy,py)} under the successive Fy.’s and the sequences {q,}rez
in (IR™)% satisfying:

(24.1) 1 Sk(ap- A1) + 2Sk-1(ap_1.q;) =0
The correspondence is given by: p;, = —01Sk(Qy: Qpyr)-

Proof. Ttis identical to the case n = 1 , Corollary 5.2. O

As in the case n = 1, Equation (24.1) can be interpreted as:

VIW(q) =

0 with

N—1

Z Sk(Q: Drer)-
0

25. Examples

Example 25.1 The Generalized Standard Map

The generalized standard map or standard family is the family of symplectic twist map whose lift is

generated by the following functions:
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53(@.Q) = 3 1Q — al* + VA(a).

where V), is a family of C? functions that are Z"—periodic, \ a parameter on some euclidian space and
Vo = 0.1t is trivial to see that .S satisfies the periodicity condition Sy(g + m,Q + m) = Six(q, Q). To find

the corresponding map, we compute:

p=-015(q.Q) =Q —q—VVi(q)
P =0,5\(q,Q)=Q —q
from which we immediately get:
Q=g+p+VVig)
P=p+VVi(q)

In other words, the standard map is given by:

(25.1) Fx(g,p) = (@+p+VVa(q),p+ VVa(q))

In the case n = 2, the following is the most widely studied potential. It is due to Froeschlé (1972)(see also
Kook & Meiss (1989), Froeschlé & Laskar (199?77)):

1
V@1, q2) = W{Kl cos(2mqq) + Ks cos(2mga) + hcos(2m(q1 + ¢2))}-

In this case A = (K, K»,h) € IR, and the standard family attached to this potential is a three parameter
family of symplectic maps of T? x IR?. The picture on the bookcover represents the stable and unstable
manifolds of a periodic orbit ??? for this map, with parameter???.

When A\ = 0, the map F), of (25.1) becomes:

Fy(q,p) = (g +p,p).

This is an instance of a completely integrable symplectic twist map: such maps preserve a foliation of T" x IR™
by tori homotopic to T™ x {0}. On the covering space of each of these tori, the lift of the map is conjugated
to a rigid translation. The term “completely integrable” comes from the corresponding notion in Hamiltonian
systems (see Example 25.3.)

The reason why the standard map has attracted so much research is that it is a computable example in
which one may try to understand questions about persistence of invariant tori as the parameter \ varies away

from 0, as well as study the various properties of its periodic orbits.
Examples 25.4 Hamiltonian systems

Historically, symplectic twist map appeared as Poincaré return maps in Hamiltonian systems. We develop
this idea in Section 19.

Hamiltonian systems in 7*T"™ have also another way of yielding symplectic twist maps: when restricted
to an appropriate domain, the time ¢ map of a Hamiltonian system is often a symplectic twist maps.

As a basic example, the Hamiltonian flow generated by:

1
H(q,p) = §<Ap,p> with A" = A, det A #0
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is completely integrable, in that it preserves each torus {p = p,} and its time ¢ map:

9'(q,p) = (¢ + t(Ap), p)

is a completely integrable symplectic twist map. If A is positive definite, g¢ restricted to { H = 1} is just the
geodesic flow for the flat metric %(A‘lv, v) on T". (See 26.)
More generally, if F'(g, p) = (Q, P) is the lift of the time ¢ of some Hamiltonian function H, then:
Q = q(e) = q(0) + e.H, + o(€?)
P =p(e) = p(0) — e.H, + o(€?),

and F satisfies the local twist condition “ %_cg (2(0)) is non degenerate” whenever H,, is non degenerate. This
remark was made by Moser (1986) in the dimension 2 case. From this local argument we will derive conditions
under which the time ¢ of a Hamiltonian is a symplectic twist map .

We will also see that, even if the time ¢ map of a Hamiltonian system is not twist, its time 1 map can, for
large classes of Hamiltonian systems, still be decomposed into the product of twist maps. Chapter 4 explores

these issues in detail.

Exercise 25.5 Compute the expression of the lift of a symplectic twist map generated by:

5(0.Q) = 1 (A@~0).(Q ~a)) +c(@—a) + V(a)

Where A is a nondegenerate n X n symmetric matrix. (This is yet a further generalization of the standard
map.)

26. More On Generating Functions

In this section, we explore more in detail the relationship between generating functions and symplectic twist

maps.

Proposition 26.1 There is a homeomorphism® between the set of lifts F' of C* symplectic twist maps

of T*T™ and the set of C? real valued functions S on IR2n satisfying the following:

(a) S(g+m,Q+m)=15(q,Q), YmeZ"

(b) The maps: ¢ — 325(q, Q) and Q — 015(q,, Q) are diffeomorphisms of R"™ for any Q, and
g, respectively.

(c) S(0,0) =0.

This correspondence is given by:

(26.1) Flg.p)=(Q.P) = {11; = %5(q,Q)).

Proof. Let F be alift of a symplectic twist map and S(g, Q) be its generating function. For such F' and S,
we have already derived (26.1) from PdQ — pdq = dS, and (a) is part of our definition of symplectic twist

4 In the compact open topologies of the corresponding sets
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maps . To show that S satisfies (b), first notice that, by (26.0) , @ — —91.5(q,, Q) is just the inverse of the
map p — Q(qy, p), which is a diffeomorphism since ¢r : (g, p) — (g, Q) is a diffeomorphism by the twist
condition. We also have the composition of diffeomorphisms:
(O F
(¢.Q) — (a.p) = (Q,P)

which implies that the map ¢ — P(q, p,) is a diffeomorphism (that is, F~! satisfies the twist condition),
which finishes to prove that S satisfies (b). Since two generating functions of the same F' only differ by a
constant there is exactly one such S(0,0) = 0.

Conversely, given an S satisfying (b), we can define a C'! exact symplectic map F of IR2n by:

F(q,p) = (Qovr(q,p), 025 or(q,p))
where %;1(% Q) = (qa 7815((17 Q))
It is easy to check that such a pair F', S satisfies (26.1) . Since .S satisfies (a), I a lift of a diffeomorphism

of T*T™ : (a) also holds for 915 and 025, which implies that F'(q + m,p) = (Q + m, P) whenever
F(q,p) = (Q, P).Exercise 23.2shows that F' must be homotopic to the Identity. Because of (b), F’ satisfies

(26.2)

the twist condition. Hence the map F' (uniquely) defined from (26.1) is a symplectic twist map and it is not
hard to see that the correspondence we built between the maps F and the functions .S is continuous in the C'"*
and C? compact open topologies respectively. ad

In practice, to recognize whether a function S on IR2n is a generating function for some F', it is usefull
to have a criterion to decide when S satisfies condition (b) in Proposition 26.0. This is the purpose of the

following Propositions:

Proposition 26.2 Let S: IR2n — IR be a C? function satisfying:
(1)S(@g+m.Q+m)=25(q,Q), YmeZ"
(26.3) (it)det D128 # 0

(iii)  sup  [[(0125(q,Q)) || = K < oo.
(g,Q)€R2n

Then S is the generating function for the lift of a symplectic twist map .

Proof. The proof is an immediate consequence of Lemma 26.3 applied to the two maps ¢ — 925(q, Q)
and Q — 915(qo, Q) (note that ||(021.5) || = ||(9125) ! |)) and of Proposition 26.1.

Lemma 26.3 Let f : RY - R" be a local diffeomorphism at each point, such that:
sup ||(Dfx)*1H =K < 0.
zeRN

Then f is a global diffeomorphism .

We postpone the proof of this lemma to the end of the section.
O

The following Proposition gives a condition under which the local twist condition can be made global.
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Proposition 26.4 Let F(q,p) = (Q, P) be a symplectic map of R2n with F(q+m,p) = (Q+m, P).
Suppose that

(26.4) sup  [|(0Q(q,p)/dp) " || < 0.
(g,p)€R2n

Then F is the lift of a symplectic twist map .

Proof. By Lemma 26.3, for each fixed q, the map p — Q(q, p) is a global diffeomorphism of IR". This
implies that ¢r: (g, p) — (g, Q) is a global diffeomorphism of IR2n. O

Proof of Lemma 26.0 We first prove that f is onto. Let yo = f(0) and take any y € IR™. Let y(t) =
(1 — t)yo + ty. By the inverse function theorem, f~! is defined and differentiable on an interval y([0, ¢)).
Let a be the supremum of all such e in [0, 1]. If we prove that f ! is also defined and differentiable at a, then
a = 1, otherwise, by the inverse function theorem, we get the contradiction that f ! is defined on [0,a + «),

for some « > 0. For any ty,¢1 € [0, a), we have:
1 w(t) = £ wto))|| < sup [[DfHy@)| Iy — voll [t1 — tol
tel0,a)
< K |ly — yol| |t1 — to] .

So that, for any sequence ¢, — a, the sequence f ~!(y(t,)) is Cauchy. This proves the existence of £~ (y(a)),
which implies that f is onto. Since f is onto and open, it is a covering map from R to R".Sucha covering
has to be one sheeted, since IR” is connected and simply connected. (See Appendix Covering spaces.) This
finishes the proof. O

Finally, we end this section with a useful formula.

Proposition 26.5 The following formula relates the differential of a symplectic twist map F to the
second derivatives of its generating function:

*0115.(0128)71 *(0125)71
DFqp) =

p

8215— 8225.8115.(({“)123)71 —8225’.(8128)71

where all the partial derivatives are taken at the point (q,Q) = ¥r(q,p).

Proof. We will show that %—g = —(0125)"1(q, Q), where, as usual, we have set F'(q,p) = (Q, P).
Differentiating the equality: p = —9;.5(q, Q) with respect to p, viewing Q as a function of g, p, one gets:
oQ
Id = —0128 —
12 (q ) Q) op
The computations for the other terms are similar. O

Exercise 26.6 a) Show that if instead of Condition (1) in the definition of symplectic twist maps we ask F’
to be homotopic to A x Id, where a lift A of A is in GI™(n, Z), then Proposition 26.5 remains true, replacing
(a) by: ~

S (g+m.Q+ A(m)) = S(q.Q).

b) Find the map generated by
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5a.Q) = 3(a—A"'Q* + V()

Note that this exercise shows, in particular, that there are plenty of examples of exact symplectic maps of
T*T"™ that are not homotopic to I'd and hence cannot be Hamiltonian maps.

Exercise 26.7 Let IB" denote a compact ball in IR™. Show that if f : IB" — IR™ is a differentiable map
satisfying :
inf (dfyv,v) > a{v,v), VveR"

reIB™

then f is an embedding (diffeomorphism on its image) of B™ in IR™.

27. Symplectic Twist Maps on Cotangent Bundles of General Compact
Manifolds

If the manifold M is not covered (topologically) by IR™, problems occur when we want to make the definition
of symplectic twist maps of 7* M as global as in T*T": there cannot be a global diffeomorphism from a
fiber of 7* M to the universal cover M. This is why we must restrict ourselves to a neighborhood U of the
O—section in 7™ M, feeling free to take U = 1™ M whenever possible.

In the following U will denote an open subset of 7" M such that:

(27.1) 77 (q) NU ~ interior(IB™)

where 7 : T* M — M is the canonical projection, and IB” C IR™ denotes the n-ball. Hence U is a ball bundle
over M , diffeomorphic to 7 M , but relatively compact in 7 M . In practice , the neighborhood on which we

let our maps act will be of the form:
U={(a.p) e T"M | H(q,p) < K}

for some function H convex in p. When it makes sense, we canlet U = T*M or U = T* M (e.g., when M

is covered by IR™). As in Appendix 1 or SG, we denote by ) the canonical one form on 7* M.

Definition 27.1 A symplectic twist map F' is a diffeomorphism of an open ball bundle U C 7™M (as in
(27.1) ) onto itself satisfying the following:

(1) F is homotopic to Id.
(2) F is exact symplectic: F*\ — \ = S for some real function valued S on U.
(3) (Twist condition:) the map ¢r : U — M x M given by g (z) = (7(2), 7 o F(z)) is an embedding.

The function S = S o 1/);1 on ¢ (U) is called the generating function for F'.

We leave the reader to check that, in coordinates, this is an obvious generalization of the definition of
symplectic twist map of T*T", with the appropriate restrictions of domains. If M/ = IR", one can take

U = T* M and modify the above definition slightly to make it more global by changing (2) into:

@) If F: T*M — T*M is alift of F,the map ¢z : U — M x M given by 15(2) = (7(2), 7o F(z)) is
a diffeomorphism (of IR2n).
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It is not hard to adapt the proof of Proposition 26.1 to the more general:

Proposition 27.2 There is a homeomorphism between the set of pairs (F,U) where F is a C*

symplectic twist map of U C T*M and the pairs (S,V) , where S is in the set of C? real valued

functions S on an open set V' (diffeomorphic to U) of M x M satisfying the following:

(i) The map q — 025(q,Qq) (resp. Q — 015(qy, Q)) is a diffeomorphism of the open set
{(g,Q)}INV (resp. {(gy,@)}NV) of M into <T50M> NU (resp. (T;OJW) NU) for each
Qo (resp. qq.)

(it) S(do,q0) =0, for a given q,.

This correspondence is given by:

(27.2) F(g,p)=(@Q P) & {11):__ 5285351(,%?)?)

Remark 27.3 As noted before, if M 22 IR", we can choose U = M x IR" = IR2n in the above definition

and proposition. In this case Corollaries 26.2 and 26.4 also remain valid.

Exercise 27.4 a) Prove Proposition 27.2. Verify that, although we have written things in local coordinates,
everything in Proposition 27.4 has intrinsic meaning (e.g. 015(qq,Q)is an element of Ty M, which only
depends on the point g, and not the coordinate system chosen).

b) Prove that if M in Proposition 27.2is the covering space of a manifold N with fundamental group I,
and if S satisfy S(vq,v7Q) = S(q, Q) as well as (i) and (ii), then the symplectic twist map that S generates
is a lift of a symplectic twist map on V.

Exercise 27.5 Show that the set of C' twist maps on a compact neighborhood in the cotangent bundle of
a manifold is open (Hint: prove first that the twist condition is an open condition).

A. The Standard Map on Hyperbolic Manifolds

The examples of symplectic twist maps in general cotangent bundles will mainly come from the next chapter,
as time ¢ of Hamiltonian system satisfying the Legendre condition. In this section, we generalize the standard
map further to cotangents of hyperbolic manifolds. We assume a little background in Riemmannian geometry,
some of which we review in 26. Recall that a hyperbolic manifold M of dimension n is one that is covered
by the hyperbolic half space H" = {(x1,...,2,) € R" | 2,, > 0} given the Riemmannian metric ds? =
9%2 Z? dz? (?77), which has constant curvature -1. Geodesics on IH" are open semi circles or straight lines
pgrpendicular to the boundary {z,, = 0}. The relevant property of the geometry of IH", and hence of any
hyperbolic manifold, is that the exponential map is a global diffeomorphism exp : TIH" — H" x IH", a
corollary of the Hopf-Rinow Theorem (Gallot, Hulin and Lafontaine (1987), Section ???). The generalization

of the standard map that we present now is in fact valid for any Riemmanian manifold with this property.

Proposition 27.6 Let S: H" x H" — IR be given by:

S(q.Q) = %Dis2(q, Q)+ V(g),
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where V : H" — R is some C? function, and Dis is the distance given by the hyperbolic metric.
Then S is the generating function for a symplectic twist map that we called the generalized standard
map on IH™. Furthermore, if V is equivariant under a group of isometries X of H" representing the
fundamental group of the hyperbolic manifold M = " /X, then S is the generating function for a
lift of a symplectic twist map on T*M .

Proof. We show that S complies with the hypothesis of Proposition 27.4. We take M = IH", U = T*H" =
H" x IR". We now prove that g — 9>.5(q, Q) (resp. Q — 91.5(q,, Q)) is a diffeomorphism IH" — IR".In
Section 26we remind the reader how the geodesic flow and the exponential map of a Riemmannian manifold
can be seen both on the tangent bundle and the cotangent bundle (via the duality given by the Legendre
transform). In the cotangent bundle the geodesic flow G¢ is the hamiltonian flow with Hamiltonian the dual
metric g(q)(p, p) and the exponential map is exp, (p) = oG (q, p) = Q(q, p), where G*(q,p) = (Q, P).
We also prove that, if (g, Q) is in the range where (q, p) — g x exp(q, p) has an inverse (the case for all
(g, Q) € H" x H" here), then:

' __P___P
1 Dis(q, Q) = Ipll ~ Dis(q, Q)

(27.3) i s -
9,Dis(q, Q) = P - Dis(q, Q)

and hence 9, Dis?(q, p) = —p, d,Dis?*(q, p) = P. The assumption that the exponential is a diffeomorphism
means, in this notation, that p — Q(q,, p) is a diffeomorphism for each fixed g, and G* is a symplectic
twist map . Likewise P — q(Q,, P) is a diffeomorphism because G, the inverse of asymplectic twist
map must be a symplectic twist map itself. Thus we have established that the maps g — 0- %DisQ(q, Qo)
and Q — 0, %Disz(qo, Q) are both diffeomorphisms for each fized q,, Q,. Coming back to our generating

function, we have proven that:
1.
g — 025(a, Q) = 925, Dis*(a, Qo)
is a diffeomorphism, and

Q — (a0, Q) = 1 3Dis* (a0, @) + dV (o)

must also be a diffeomorphism TH" — T, TH" since we added a constant translation by dV'(q,) to a diffeo-
morphism. Proposition 27.4concludes the proof that S is the generating function for a twist map of T*IH"™.

The last statement of the proposition is an easy consequence of Exercise 27.4. O
28. Elliptic Fixed Points

As we will see in Appendix 1 or SG, the study of Hamiltonian dynamics around a periodic orbit of a time

independent Hamiltonian reduces to that of a symplectic map:
R :IR2n — IR2n, such that R(0) =0,

called the Poincaré return map.
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We now follow Moser (1977). If 0 is an elliptic fixed point, that is DR(0) has all its eigenvalues on the

unit circle, a normal form theorem ??7(find ref.) says that (generically?) the map R is, around O given by:
Qr = qrcosPy(q. p) — pisin®y(q,p) + fr(q.p)

Py = qrsin®@i(q, p) + prcosPr(q. p) + gr(q.p)

Dr(q,p) = ok + > Brla? +p})-
=1

where the error term f};, gy, are C°.(%)

We now show how this map is, in “polar coordinates”, a symplectic twist map of T*T", whenever the
matriz { Bk } is non singular.

Let V be a punctured neighborhood of 0 such that: 0 < Y, (¢} + p}) < e.

We introduce on V' new coordinates (7, 6 ) by:

qx = V2rgecos2mly, pr = /2riesin2mly

where 0, is determined modulo 1. One can check that V' is transformed into the “annular” set:
N 1
U—{(Ok,rk)eTanR re >0 and Zk:rk<§}

Since the symplectic form dg A dp is transformed into 2wedr A d@, R remains symplectic in these new

coordinates, with the symplectic form dr A df. In fact, R is exact symplectic in U. To check this, it is enough

/ rd@z/rd@.
JRy vy

(see Exercise 46.7). It is easy to see that 4wer,dfy, = prdqr — qrdpx, so by Stokes’ theorem:

47re/rd€:/ pdqfqdp:fZ/ w
y oD D

where D is a 2 manifold in V' with boundary 0D = . Since R preserves w in V/, it must preserve the last

to show that, for any closed curve v:

integral, and hence the first.
To see that R satisfies the two other conditions for being a symplectic twist map, we just write R(6,r) =

(@, R) in the new coordinates then:

@k :Ok =+ 'L/)Fk (’l“) =+ 01(6)
Ry, =7k, + 01(€)

n
with ¥p, = ap + € Z 285171
=1

where €101 (¢, 0, 7) and its first derivatives in , @ tend to 0 uniformally as ¢ — 0. We can rewrite this as:

R(O,7) = (0 +eBr+a+o1(€),r + 01(e)) .

5 actually, one only need them to have vanishing derivatives up to order 3 at the origin and be C'! otherwise.
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So for small ¢, the condition det 9@ /dr # 0 is given by the nondegeneracy of B = {3}, one uses the fact
that R is C'! close to a completely integrable symplectic twist map to show that R is twist in U (the twist
condition is open.) The fact that it is homotopic to /d derives from Exercise 23.2.

Note that the set V' and therefore U are not invariant under R. Howeyver, it is still possible to show the
existence of infinitely many periodic points for R: this is the content of the Birkhoff— Lewis theorem (???:

state it precisely somewhere) (see Moser (1977)) .

Lemma STMdiffeo is 26.3, Exercise STMstmopen is 27.5, example STMstandardexample is 25.1,
Proposition STMsuffstm is 26.2, formerly a Corollary (Coro), Proposition STMlocglobal is 26.4, Section
STMsecelliptic is 28.0, Proposition STMpropdiff is 26.5, STMpropactionpr is Proposition 24.1, Exercise
STMexohomt is 23.2.
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PERIODIC ORBITS FOR SYMPLECTIC TWIST
MAPS OF T*T"
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29. Presentation Of The Results

Rewrite the ghost tori section (too silly!). Points to be made: parallele with Floer homology,
possible dynamic use (2 dim case and more). The proof of Corollary 33.2 can be made using
Conley theory only: do that if I get rid of Morse theory in TOPO

In this Chapter, we give some results on existence and multiplicity of periodic orbits of different rota-
tion vectors for symplectic twist map of 7*T". The introduction of more refined topological tools yield an
improvement on the results of Golé (1989)(see also Golé (1991)).

Similarly to the case n = 1,a point (g, p) € IR2n is called a m, d—periodic point for the lift F' of a map
fof T*T" if

F(q,p) = (g +m,p)

where m € Z" and d € Z™". The rational vector ™ is called the rotation vector of the orbit of (q,p).
In general, the rotation vector (when it exists) of a sequence {q,}rcz € (IR")% is given by the limit:
p(q) = limg— o gj-

The maps that we consider here satisfy either one of the following two assumptions: F' = Fiy o...0 F}
is the product of lifts of symplectic twist maps of 7*T", with generating functions S, such that either the

following convexity or asymptotic linearity conditions:

Convexity There is a positive real a such that:

(291) (a) <3125k(q,Q).v,v> < —aH’uHQ, vanaUEIR‘nvke {L?N}
Equivalently:

0Q\
(20.1) (b) Fila.p) = (Q.P)  and <(ap) v,v> >alvl®, VoeR"

uniformly in (g, p).

Asymptotic Linearity
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51(a.@) = 5(4(Q ~ 0).(@ ~ ) + Rela. Q)

with:
(29.2) (a) A = A}, det A #0

N
(29.2) (b) det > A'#£0

1

. VRi(q,Q)
29.2) (c im —= =0.
(20.2) (e) lQ—gll— [Q —q|
Equivalently:

Fi(q,Q) = (g+ A, 'p+6(q,p), p+7(q,p))
with (29.2) (a) and (b) holding for A and:

lim = lim
Ipl—oo [Pl Ipll—cc ||p]|

(29.2) (C/) . @(‘Lp) . T(q,p) _

Theorem 29.1 Let ' = Fyo...o Fy be a finite composition of symplectic twist maps Fy, of T*T"
satisfying either the convexity condition (29.1) or the asymptotic condition (29.2) . Then, for each
relatively prime (m,d) € Z" X Z, F has at least n + 1 periodic orbits of type m,d. It has at least

2™ of them when they are all non—degenerate.

The proof of this theorem appeared in several pieces: the existence in the convex case was given by Kook
& Meiss (1989). Their proof of multiplicity was corrected by the author in Golé (1994). The proof of the
theorem with the asymptotic condition is the center of the author’s thesis Golé (1989)(see also Golé (1991)).
The proof we present here is also more unified, and hopefully simpler. It also improves on our previous results

where, in certain cases, we could not garantee the existence of more than 2"~ ! periodic orbits.

Comments on Conditions (29.1) and (29.2) . In Chapter STM, Proposition 26.5, we derived
g—g(q, p) = — (0125(q, Q))71 , by implicit differentiation of p = —9,5(g, Q). The convexity condition
(29.1) (a) thus translates to (29.1) (b). Note that (29.1) (b) means that F' has bounded, positive definite twist.
MacKay & al. (1989) imposed this condition on their definition of symplectic twist maps, a terminology that
we have taken from them. Remember that Proposition 26.4in Chapter STM shows that the bounded twist
condition (29.2) implies the global twist condition.

As for Condition (29.2) we stress that each Ay, is not necessarily positive definite, but only a nondegen-
erate symmetric matrix. This is what Hermann (1990)called the indefinite case. If we set R, = 0 in Sy, we
obtain a quadratic generating function for a linear symplectic twist map L (q,p) = (g + A,;l p,p). Thus, if
L =Ly o...oLj,condition (29.2) implies that

dN

(29.3) L(q,p) = (g + Ap,p) with A= ZA;l
k=1

is a symplectic twist map. Hence Condition (29.2) can be expressed as saying that £’ is asymptotically linear

(and asymptotically completely integrable), in that it is close to L at co: (29.2) (c”) shows that
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i F(@.p) - L(g, p)|

= 0.
llpl|—o0 Pl

We leave it to the reader to show that the generating function and map conditions in (29.2) are indeed equivalent.

Example 29.2 The generalized standard map satisfies both conditions (29.1) and (29.2)

Outline of the proof. In the convex case, we start by finding a minimum for a discrete action function
W, sum of generating functions. The convexity condition, as in the classical calculus of variation gives us
coercion on W, which implies the existence of the minimum. The multiplicity is given by Morse theory on
an adequately chosen sublevel set {WW < C'}.

The case with the asymptotic condition is a relatively easy consequence of Proposition 52.8: we find that
the action function W on the appropriate quotient space of the space of sequences is indeed quadratic at

infinity as required by that Proposition.
30. Finite Dimensional Variational Setting

Let F' = Fy o...o F; where each Fj, is the lift of a symplectic twist map with generating function Sj,. The
critical action principle in Chapter STM tells us that finding orbits of F' can be done by finding solutions of:

(30.1) 015k(qy> Gr+1) + 025k -1(qx—1,qx) = 0
The appropriate space of sequences in which to look for solutions of (30.1) corresponding to 1, d—points of
Fis:
X ={g e (R")” | gpray = @1 +m}
which is isomorphic to (IR™)?": the terms (qy, - - . , ;) determine a whole sequence in X, and we will use

them as a coordinate system for this space. Finding a sequence satisfying (30.1) in X, is equivalent to finding

g = (q;,---,q,y) which is a critical point for the function:
dN
W(a) = Z Sk(qka qk+1)7
k=1

in which we set g;n 1 = q; . In fact, the proof of the critical action principle ( see Proposition 24.1and also

Corollary 5.2) reduces in this case to the suggestive formula:

dN

(30.2) dW (@) =Y (Pi1 — py)dgy.
k=1

The search for critical points of W will be made by studying the gradient flow solution of

dq(t)

T = —vW(a(t)

where t is an artificial time variable. Written in components, this equation is the differential equation:

4r = —01Sk(qy, Qk+1) — 025k-1(qk1,qy)
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which for C? functions Sj’s defines a local flow (! on X. This flow will certainly be defined for all ¢ € IR

whenever the second derivatives of the Si’s are bounded: the vector field — VW is then globally Lipschitz.
We need to complicate matters some more. First, notice that X has trivial topology, so we should take

advantage of the periodicity of W . Formally, this can be done by remarking that W is invariant under the

diagonal Z™ action: W o 7, = W, n € Z" where

Ta(q1s- -2 ay) = (@1 + 71,0 oy + 1)

Hence W induces a function on the quotient X /Z" . This operation takes in account the fact that the maps
F and F}, are all lifts of maps of 7*T". Without this condition it is easy to find maps of IR2n without
m, d-orbits,eq. (q,p) — (g,p+ a).

But we go one step further. We are not satisfied with finding distinct m, d—points, but we want to make
sure that different critical points of our function W correspond in fact to different m, d—orbits of F'. To this

effect, we note that 1V is also invariant under the N*" iterate oV of the shift map:

0Dk = Qpy1-

This is because Sy n = Sk, and thus 0¥ permutes circularly the terms of 1. Hence we can define W
succesively on the quotients: o .

X=X/r=X/Z" and

X =X/o" =X /(Z" x Z)
of X by the actions of 7,,, n € Z" and o'V Since the action of o on critical sequences corresponds to the
action of F' on points of 7*T", distinct critical points of W on X correspond to distinct orbits of F'.

The following lemma, due to Bernstein & Katok (1987), describes the topology of the problem:

Lemma 30.1 The quotient maps: X — X and X — X are covering maps , and thus so is X — X.

The space X is homeomorphic to T™ x (IR™)N—1

with base T" and fiber (IR™)4N 1.

, whereas X is a (not always trivial) fiber bundle

Proof. We make the change of variables:
1
q= IN 21: qy
Vp =qpy —q, —m/dN, ke{l,...,dN -1}
and think of q as the base coordinate and v as the fiber. In these coordinates:

Tn(q,v) = (@ + n,v)
m dN—1
o(q,v1,...,v4n-1) = | @+ d_N7v2a'--7de71;7 z:l v;
=
o™ (q,v) = (g+m, v)

(the reader should verify this...) From the first equality, we get:

X dgf X/Zn ~ Tn ~ (mn)del.
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and 0" induces a d—periodic, fixed point free diffeomorphism on X, and thus taking the quotient of X by
oV gives again a covering map. Finally, these coordinates show that X = X /o is a fiber bundle over
(R™/Z")) 5 Z ~T". O

31. Second Variation

In this section, we show how the second derivative of 11/ can be used to decide if a periodic orbit is nondegenerate

or not.

Definition 31.1 A periodic point z of period d for a symplectic twist map F is called nondegenerate if DFY

has no eigenvalue 1.
Suppose F' = Fy o ... o F; where each F}, is a symplectic twist map and let W be defined as before.

Lemma 31.2 An m,d periodic point is nondegenerate for F' if and only if the critical point of W to

which it corresponds is nondegenerate.

Proof. Suppose that (q;,p;) = z1 is an m, d point for F'. We want to solve the equation:
(31.1) DFZ (v) = v

with v € T(T*T"),, . We follow MacKay & Meiss (1983): If g corresponds to the orbit of z; under the the
successive F},’s, it must satisfy:
oW (q)
dq,,

= 02Sk-1(qk—1,qx) + 01Sk(qy> @ y1) = 0.

Therefore, a “tangent orbit” dg must satisfy:

(31.2) S5 10qp_y + (ST + S5 1)dgy + S150q,q =0

where we have abbreviated:

Szkj = 8ijSk(qka Qk+1)-

Remark 31.3 This rather physical argument can be given a more mathematical footing. Consider the following:

T*R" = {((q1,p1): -+ (qansPan) € (T"R)™ | Fi(qy, Pr) = (@1, Prs1) }
~{ge (RN | VW(gQr=0k=1,....dN —1}

The first homeomorphism is between points in the space and their orbit segments of a given length, the second
is given by the correspondence between orbit segments and critical points of the action. If one expresses a
parametrization of an element of 7'(7*IR") with the first representation, one gets the orbit of a tangent vector

under the differentials of the F},’s. If one uses the second identification , one gets (31.2) .
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When @ corresponds to a periodic point (g, p; ), Equation (31.1) translates, in terms of the §g, to:

(31.3) 0qyn i1 = Aoqq

Equations (31.2) ,(31.3) can be put in matrix form as M (\)dg = 0 where M () is the following dNn x dNn

matrix:

SN + 81, Si, 0o ... 0 194N
S Sh+Sh S, - 0
M) = 0 St
: - 0
0 0 a1
SN 0 ... 0 giN-1 gdN—l gdN

(each entries represents an n X n matrix.) Hence the eigenvalues of Dde1 are in one to one correspondence
with the values \ for which det M (X) = 0. More precisely, to each eigenvector of DFZd1 corresponds one
and only one vector §g solution of M (A\)dg = 0. Setting A = 1, we get M (1) = V2W, which finishes the
proof. a

Remark 31.4 The above relationship between eigenvalues of D F? and of V2 can be given a symplectic in-
terpretation: the Lagrangian manifolds graph(dW) and graph(F') are related by symplectic reduction. Lemma

31.2can then be restated in terms of the invariance of a certain Maslov index under reduction Viterbo (1987).

Lemma 31.2 proves in particular that the condition “all m, d orbits are nondegenerate” is equivalent to
“W is a Morse function”. The following proposition shows that both properties are true for generic symplectic

twist maps .

Proposition 31.5 For generic symplectic twist maps , all periodic orbits are nondegenerate and hence

all the functions W are Morse

Proof. We remind the reader that a property is generic on a topological space if it satisfied on a residual set
of that space, i.e. a countable intersection of open and dense sets. Robinson Robinson (???), in his theorem
1Bi, proves that the set of C* symplectic maps with nondegenerate periodic points is residual in the space of
all C'* symplectic maps. He proceeds by induction on the period d of the points(®), We want to adapt his proof
to the space ST M of C! of symplectic twist maps . First note that, since the twist condition is open, ST M
is an open set in the space of C'! exact symplectic maps. The only thing that we have to check, therefore,
is that the perturbations that Robinson uses to kill degeneracy transform exact symplectic maps into exact
symplectic maps. But this is not hard to check: each of these perturbations is given by composing the original
map f with the time one map of the hamiltonian flow associated to a bump function in a small neibourghood
of a given periodic point. Hence the perturbed map is the composition of the original exact symplectic map
with the time 1 map of a Hamiltonian, also exact symplectic by Theorem 47.7. The composition of two exact

symplectic maps being exact symplectic, we are done. a

6 C.Robinson actually deals with higher order resonnances as well, i.e, roots of unity in the spectrum of
DfZ.
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32. The Convex Case

The standing assumption in this section is that /' = Fy o ... o I} where F, is a symplectic twist map with

generating function S}, satisfying the convexity condition:
(291) <8125k(q7Q)'vvv> < 70“”1)”2’ Vq,Q,v EH{”,kE {177N}

The central part of the proof of the convex case, due to Kook & Meiss (1989)consists in proving that the
function W is proper, and hence has a minimum. This is something we have already done in the case n = 1
(see ), and the proof in higher dimensions is identical. (??? Change this sentence if I put the min part of AM
in a MIN chapter)

Lemma 32.1 Let S be the generating function of a symplectic twist map satisfying the convezity

condition. Then there is an o and positive 3 and ~y such that:

(32.1) S(@.Q) >a-Bla—Ql +~la- Q>

Corollary 32.2 Let F satisfy the convexity condition (29.2) . Then there is a minimum for the

corresponding action function W (and hence an m,d—point for F'.)

We have thus found at least one m, d—orbit corresponding to a minimum of W. The reader should be
aware that, unlike the 1 degree of freedom case, this does not imply that the orbit is a global minimizer (see
Hermann (1990) and Arnaud (1989)).

We now turn to the multiplicity of orbits.

This proof can be rewritten using Conley theory only. I should do that if I’'m going to get
rid of the section on Morse theory in Appendix 2 or TOPO... Outline: Use 51.1(about the
retraction): The isolating block W* with empty exit set, so H*(W¥,(W¥)™) = H*(W¥). Also
there is the requisite retraction....

Remember that X is a bundle over T" . Let 7 = T" be its zero section. Let K > supg. s; W (q) . Trivially,
we have:

scwKkYGgex | w<K}

( since W is proper, for almost every K, WX is a compact manifold with boundary, by Sard’s Theorem.)

From this we get the commutative diagram in homology:

H(2) ™ H.X)
(322) i\ S
H, (W)

where i, j, k are all inclusion maps. But k. = Id since X’ and X have the same homotopy type. Hence 7, must
be injective.

If all the m, d—points are nondegenerate, W is a Morse function (a generic situation by Proposition 32.0)
and according to Morse Theory ( Milnor (1969) , Section 3) WX has the homotopy type of a finite CW
complex, with one cell of dimension & for each critical point of index % in W% . In particular, we have the

following Morse inequalities:
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#{critical points of index k} > by,

where by, is the kth Betti number of W, b, > (1) in our case since H, (T") < H.(W’). Hence there are
at least 2 critical points in this nondegenerate case.

If W is not a Morse function, rewrite the diagram (32.2) , but in cohomology, reversing the arrows and
raising the stars. Since k* = Id, j7* must be injective this time. We know that the cup length cl(X) =
cl(T™) = n + 1. By definition, this means that there are n cohomology classes o, ..., a, in H*(X) such
that oy U ... Ua,, # 0. Since j* is injective, j*a; U ... U j*a,, # 0 and thus cl(W¥) > n + 1. WX being
compact, and invariant under the gradient flow, Lusternik-Schnirelman theory implies that 1/ has at least n+ 1
critical points in W% (The proof of Theorem 1 in CH.2 Section19 of Dubrovin & al. (1987) , which is for

compact manifolds without boundaries can easily be adapted to this case.) a
33. Asymptotically Linear Systems

In this section we swap the convexity condition (29.1) for asymptotic linearity of the map (29.2) . In this case,
the periodic action function W does not necessarily have any minimum. The topological tool we use here is
Proposition 52.8.

We remind our reader of our assymption (29.2) : F' = Fiy o... o F} is a product of lifts of symplectic

twist maps of 7*T". The generating function Sy, of F}, satisfies:

51(@.@) = 5(4(Q - 0).(@ - a)) + Rela. Q)

with:

N
(29.2) Ap = A}, det Ax #0, det Y AT #0, lim Vi Q) _ 0
1

IQ=dll—oc [|Q —q|
We view R as a global perturbation term. As before we let Ly (q, p) = (g+ A;lp) and L = Lyo...0oL;.
Then L(q,p) = (¢ + Ap) with A = Ziv A, '. L and all the L’s are completely integrable symplectic twist
maps .

As before, we are looking for critical points of:

dN dN dN
_ 1
W(q) = Z Sk(@r: Gey1) = Z B <Ak(Qk+1 = qi), (Qry1 — Qk)> + ZRk(qu Qjt1)-
k=1 k=1 k=1

where g € X ie., gy, = q;. The first sum in the right hand side is quadratic, call it Q’. It is the action
function for the symplectic twist map L defined above. We change coordinates ¥ : (q,...,qqn_1) — (g, )

as in Section 30:
A
q= Wzquk
Vi =qp —q —m/dN, ke {l,...,dN —1}.

In these coordinates, WV is of the form:
W(g,v) = Q(v) + R(q,v)

where Q is the homogeneous quadratic function:
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1 dN -1 dN—1 1 dN -1
Qv) = —5 <AdN( D Uk)> T3 Y (Ao, vr)

k=1

and R = Z’fN Ry, o W, Postponing the proof that Q(v) is nondegenerate, we conclude the proof of the
theorem.

The maps 7, and ¢ introduced in Section 30 all map fibers to fibers diffeomorphically and linearly in the
trivial bundle X — IR"™ with projection (q, v) — q.Hence Q(q,v) = Q(v) which is quadratic nondegenerate
in the fibers induces in the quotient X of X a function Q which is also quadratic nondegenerate in the fibers
of the bundle X — T™. Finally, it is easy to see that the asymptotic condition on Ry, given in (29.2) implies
that 1 0 1 OR
m%(W* Q)= Tol 90 -0 as |v||—
in X and hence also in its quotient X . We apply Proposition gpqi to conclude the proof of Theorem 29.1.

We now turn to the proof that, given the asumption (29.2) , Q(v) is nondegenerate. The reader could work
the linear algebra out directly. We prefer to give a dynamical argument which might enlight us a bit on the
linear asymptotic condition. Critical points of v — Q(v) form the kernel of Q. On the other hand, critical
points of (g, v) — Q(gq,v) = Q(v) are in one to one correspondence with the m, d orbits of the linear map
L. Since L is a linear completely integrable symplectic twist map , these orbits form an n dimensional plane
parallele to the O section of 7*T". Since the generating function of L is quadratic and the above change of
coordinate ¥ is affine, this plane corresponds 1-1 to an n-plane of critical points of Q(q,v) in X. But the
n-plane {v = 0} is made of critical points of Q(q, v). Therefore, there cannot be any other critical points for
Q(q,v), and hence Q(v) has trivial kernel. O

34. Ghost Tori

Let F' be as in Theorem (29.2) , and W be the corresponding action function for m, d orbits on X. In the proof
of Theorem 29.1(with the asymptotically quadratic condition), we showed that the set of bounded solutions
G = G of the gradient flow of W continues, in the sense of Conley, the one for the completely integrable

map with action function Wy, and that:
H*(Gy) = H*(T") < H*(G)

where (5 is the torus made of critical points of Wj.

Definition 34.1 Let W the action function for a compostion of symplectic twist map F' = Fy o...o F} on
the space X of m, d sequences. A set G in X is called a ghost torus if it is compact, invariant by the gradient
flow of W and if:

H*(T") — H*(G).

Comments 34.2
(a) If F has an invariant torus made of m, d periodic orbits, the orbit of each point on it corresponds to

a critical point in X. Hence the map invariant torus is diffeomorphic to a torus of critical points in X,
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(b)

©

d
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which is trivially invariant under the gradient flow of . This torus is hence a ghost torus, we will call it

a completely critical ghost torus (see Exercise 34.3.)

The spooky connotation in the terminology “ghost tori” can be justified in the following way. One of the
essential avenues for the study of symplectic twist maps is the standard family, which fits quite well in
the setting of Theorem ???. The paradigm expressed by the standard family is that of a deformation of
an integrable map Fy. We have seen that to such a map corresponds a foliation of 7*T™ by invariant
tori, one for each rotation vector. In particular there is exactly one m, d periodic invariant torus for Fj,
corresponding to a completely critical ghost torus in the space X for each m, d. One of the fundamental
questions in the theory is to understand what happens to these invariant tori as one deforms Fj. 7??By
now, this should have been stated a hundred times already??? What Theorem ??? shows is that a “ghost”
of the invariant torus for F{, remains, as the parameter s varies, namely G, but in the space X. This
ghost torus is invariant by the gradient flow of Wy, but does not necessarily corresponds to an Fs—
invariant torus anymore. Indeed, generically, the only dynamically “visible” part of G4 is formed by
the (at least 2", but finite number of) critical points that it contains, which correspond to the m, d periodic
orbits. G is in fact a collection of critical points for W and their connecting orbits for the gradient flow :
intersections of stable and unstable manifolds for the critical points (this is true of any compact invariant
set for a gradient flow.) Here is a table that might be helpful in understanding the analogy we are trying

to draw:

Silly Table
Real World T*T", F
Yonder World X W
Live Being Invariant Torus for F’
Ghost Ghost Torus G for 4q = VIV (q)
Soul H*(T™) — H*(G)
Time Parameter in the Standard Map

Transcending Map 7 from 7*T" to X:

7(q1:p1) = (@1, Qan)> Where (@1, Pri1) = Fi(gy py)-
Appearing Map A from X to T*T":

A(ql; cee aqu) = (q17p1<q17 q2>)

Instead of thinking of G5 as a subset of X, one can remember that the set G is the projection of the 7

and oV invariant set G, in X C (IR")% .

If F'is as in Theorem 29.1(convex case), one can reword the proof of that theorem in order to deduce
the existence of a ghost torus: we have shown in ??? that a map satisfying the convexity condition ???
could be deformed to a completely integrable one, through a path of symplectic twist maps satisfying
this condition. Let Fs be such a path and W the corresponding action function. Since we have seen in
the proof of Theorem ??? that they were no critical points outside of a set WX for K big enough (we
can make K uniform in s € [0, 1]), the set G'; of bounded solutions for the gradient flow of W must be

included in WX and thus (see ???) the sets G; are related by continuation. G is normally hyperbolic, as
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in the proof of Theorem ??? and thus we can conclude this alternate proof of Theorem ??? (convex case)
as in ??? (formno...), and in particular G = (; is a ghost torus for F' = F}.

(e) Ghost tori are quite reminiscent of the set of connecting orbits that supports Floer’s homology complex , as
it is applied to Hamiltonian systems on the cotangent bundle of T" (the space that Cieleback (1992)calls
X in .) It is quite probable that, at least at the (co)homology level, when the map F' is Hamiltonian and
satisfies the hypothesis of Theorem ???, these sets are identical.

(f) We put the title “Rational ghost tori” to this section, because they live in spaces of sequences with rotation
vector m/d. We will discuss later the occurence of irrational ghost tori ???, and their connection with
the KAM and Aubry—Mather theory.

Exercise 34.3 Show that the Transcendence of an F—invariant torus is a completely critical ghost torus.
Show that one is a Live Being if and only if one is the Appearence of one’s own Transcendence. In general,
reread the previous paragraphs and give them more rigorous sense with the help of the maps A and 7.

Theorem thesis is 29.1

Condition STMPtquad is (29.2)

Lemma STMPlemsecvar is 31.2, Proposition 31.5is STMPpropgeneric Condition STMPconv is (29.1) ,
Lemma STMPlemquadconv is 32.1
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CHAPTER 6 or INV (formerly PB)

INVARIANT MANIFOLDS

10/17/99

I just gutted this chapter, formerly PB, of the proof of Poincaré-Birkhoff . I intend to put
survey sections on KAM and separatrices and their splitting (first and last sections).Sections
will have to be revised.This could include proofs that KAM tori are Lagrangian, and orbits on
Lagrangian graphs are minimizers. I might need to move the ”ratchet” proposition to Chapter
AM

35. The Theory of Kolmogorov—-Arnold—-Moser

Will contain the precise statement of the theorem, an idea of the scheme of proof, and proofs
that these tori are Lagrangian and made of minimizers.

KAM theory, which proves the existence of many invariant tori for systems close to integrable, is one of
the greatest achievements in Hamiltonian dynamics. It has historical roots going back to Weierstrass who,
in 1878, wrote to S. Kovalevski that he had constructed formal power series for quasi-periodic solutions to
the planetary problem. The denominators of the coefficients of these series involved integer combinations of
the frequencies of rotation of the planets around the sun, which could be close to zero and hence impeded
the convergence of the series. Weierstrass advised Mittag-Leffler to make this problem of convergence a
question for a prize sponsored by the king of Sweden. In the 271 pages work (Poincaré (1890)) for which he
won the prize, Poincaré does not solve the problem completely, and his tentative answer to the convergence is
negative. In Poincaré (1899) , he speculates on the possibility of such a convergence, given appropriate number
theoretic conditions, but still deems it improbable. It was therefore a significant event when Arnold (1963) (in
the analytic, Hamiltonian context) and Moser (1962) (in the differentiable twist map context) gave, following
the ideas of Kolmogorov (1954) a proof of existence of quasi-periodic orbits on invariant tori filling up a set
of positive measure in the phase space. We can only give here a very limited account of this complex theory,
and refer to Moser (1973) and de la Llave (1993) for introductions as well as Bost (1986) for an excellent
survey and bibliography. There are many KAM theorems, the most applicable ones being often the hardest

ones to even state. We present here a relatively simple statement, cited in Bost (1986).

Theorem 35.1 (KAM for symplectic twist maps ) Let fy be an integrable symplectic twist map of
T x ID™ of the form.:



96 CHAPTER 6 or PB: INVARIANT MANIFOLDS

folg,p) = (g +w(p),p)

where ID™ is a disk in R"™ and w : D" — R" is C* (since fo is twist, Dw is invertible). Let p, be
an interior point of ID™. Suppose that the following condition is satisfied:

Diophantine condition: there are positive constants T and ¢ such that:

n n+1
(35.1) Vk € Z" N0}, D kjwi(po) + knga| = e | Y |kl
j=1 j=1

Then there is a neighborhood W of fo of C°° exact symplectic maps such that, for each f € W, there
exists an embedded invariant torus Ty ~ T™ in the interior of T" x ID™ such that:

(i) Ty is a C* Lagrangian graph over the zero section

(i) f|Tf is C* conjugated to the rigid translation by w(py)

(1it) Ty and the conjugacy depend C* on f.

Moreover the measure of the complement of the union of the tori Tf(py) goes to 0 as || f — fol| goes
to 0.

Remark 35.2

1) The diophantine condition (35.1) is shared by a large set of vectors in IR". As an example, when n = 1,
the set of real numbers y € [0, 1] such that |z — p/q| > K/¢* for some K is dense in [0, 1] and has measure
going to 1 as K goes to 0.

2) The most common versions of KAM theorems concern Hamiltonian systems with a Legendre condition.
In Chapter 6 we show the intimate relationship of such Hamiltonian systems with symplectic twist maps . It
therefore comes as no surprise that KAM theorems have equivalents in both categories of systems. Note that
there are isoenergetic versions of the KAM theorem for Hamiltonian systems, where the existence of many
invariant tori is proven in a prescribed energy level.

3) One important contribution in Moser (1962) was his treatment of the finitely differentiable case: he was able
to show a version for n = 1 (twist maps) where f, and its perturbation are C'', [ > 333 instead of analytic.
This was later improved to [ > 3 and in higher dimension n, to [ > 2n + 1 (at least if the original f is
analytic).

4) There is a version of the KAM for non symplectic perturbations of completely integrable maps of the
annulus, called the Theorem of translated curves,due to Riissmann (1970). It states that, around an invariant
circle for f; whose rotation number w satisfies the diophantine condition (35.1) (only one j in this case),
there exists a circle invariant by ¢, o f for a perturbation f of f, and ¢,(z,y) = (x,y + a) which has same
rotation number as the original (i.e. the map f has flux —a).

5) One may wonder if, among all invariant tori of a symplectic twist map close to integrable, the KAM tori
are typical. KAM theory says that in measure, they are. However Herman (1992a) (see also Yoccoz (1992))
shows that, for a generic symplectic twist map close to integrable, there is a residual set of invariant tori on
which the (unique) invariant measure has a support of Hausdorff dimension 0. Things get even worse when the
differential Dw in Theorem 35.1 is not positive definite: there may be many invariant tori that project onto,

but are not graphs over the O—section, and this for maps arbitrarily close to integrable (see Herman (1992 b)).
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6) KAM theory implies the stability of orbits on the KAM tori, hence stability with high probability. But in
“real situations” it is impossible to tell whether motion actually takes place on a KAM torus. Nekhoroshev
(1977) provides an estimate of how far a trajectory can drift in the momentum direction over long periods of
time: If H(q,p) = h(p) + f-(q,p) is a real analytic Hamiltonian function on 7*T" with f. < e (a small
parameter) and h(p) satisfies a certain condition (steepness) implied by convexity, then there exist constants

€0, Ro,Tp and a such that, if ¢ < ¢, one has:
|t| < Toexp|(e0/€)*] = |p(t) — p(0)] < Ro(e/e0)".

With a (quasi) convexity condition instead of the steepness condition, Lochak (1992) and Pdshel (1993)
showed that the optimal a is % Delshams & Gutiérrez (1996a)presents unified proofs of the KAM theorem

and Nekhoroshev estimates for analytic Hamiltonians.

Whereas we cannot give a proof of the KAM theorem in this book, the following theorem (Arnold (1983))
offers a simple model in a related situation in which the KAM method can be applied in a less technical

way.This will allow us to sketch very roughly the central ideas of the method.

Theorem 35.3 There exists € > 0 depending only on K,p and o such that, if a is a 2w —periodic
analytic function on a strip of width p, real on the real aris with a(z) < € on the strip and such that
the circle map defined by

frx— x4+ 2mp+ a(z)

is a diffeomorphism with rotation number u satisfying the diophantine condition:
K
lu—p/ql > =l V p/qgeQ

then f is analytically conjugate to a rotation R of angle 2wu

Sketch of proof: We seek a change of coordinates H : $* — $' such that:

(35.2) HoR=foH

write H(z) = z + h(z), with h(z + 27) = h(z). Then (35.2) is equivalent to

(35.3) h(z 4 27p) — h(2) = a(z + h(2)).

Since a(z) < e, h must be of order ¢ as well and thus, in first approximation, (35.3) is equivalent to:

(35.4) h(z 4 2mp) — h(z) = a(z)

Decomposing a(z) = > are’®™** h(z) = 3_ bre’** in their Fourier series and equating coefficients on both
sides of (35.4) we obtain:

ag

b, = ei2rky _ |

where we see the problem of small divisors arise: the coefficients b; of i may become very big if u is not

sufficiently rational.
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It turns out that, assuming the diophantine condition and using an infinite sequence of approximate
conjugacies given by solutions of (35.4) , one obtains sequences h,,, a,, and corresponding H,,, f, = H, ' o
f o H,, which converge to H, R for some H. The domain of &,, and f,, is a strip that shrinks with n but in
a controllable way. This iterative process of “linear” approximations to the conjugacy can be interpreted as a
type of Newton’s method for the implicit equation F(f, H) = H 'o fo H = R (given f,find H) and inherits
the quadratic convergence of the classical Newton’s method: R — F(f,,, H,) = O(*") (see Hasselblat &
Katok (1995) Section 2.7.b). a

36. Properties of Invariant Tori

The previous section showed the existence of many invariant tori for symplectic twist maps close to integrable.
These tori are Lagrangian graphs with dynamics conjugated to quasi—periodic translation. In dimension 2,
the Aubry-Mather theorem gives an answer to the question of what happens to these tori when they break
down, in large perturbation of integrable maps. In higher dimension, Mather’s theory of minimal measure also
provides an answer to that question (see Chapter AMG). In this section, we look for properties that invariant
tori may have whether they arise from KAM or not. We will see that certain attributes of KAM tori (eg. graphs
with recurrent dynamics) imply their other attributes (eg. Lagrangian), as well as other properties not usually
stated by the KAM theorems (minimality of orbits).

Recurrent Invariant Toric Graphs are Lagrangian

Theorem 36.1 (Hermann (1990)) Let T be an invariant torus for a symplectic twist map [ of T*T"
and suppose f}T s conjugated by a diffeomorphism h to a an irrational translation R on T". Then
T s Lagrangian.

Proof. Since the 2-form w| - 18 invariant under f { o and since R = h=tof | r © h, the 2-form h*w|, is

invariant under R. Since R is recurrent, h*w|T = ZZ ; Ok jdxy A dx; must have constant coefficients ay.
Integrating h*w|T over the ,x; subtorus yields on one hand ay;, on the other hand 0 by Stokes’ theorem

since h*w’T = dh*)\‘T is exact. Hence h*w’T =0= w’T and the torus T is Lagrangian. O

Orbits on Lagrangian Invariant Tori as Minimizers

The following theorem is attributed to Herman by MacKay & al. (1989), whose proof we reproduce here.

Theorem 36.2 Let T be torus, C* graph over the zero section of T*T" which is invariant for a

symplectic twist map f which satisfies the convexity condition (29.1) :
(0125k(q, Q).v,v) < —a|v||>, Vq,Q,veR"ke{l,...,N}.
Then any orbit on T is minimizing.

Proof. Since T is Lagrangian, it is the graph of the differential of some function plus a constant 1-form:
T = dg(T™) + 3 (see SGexolagraph). Let ¢)(q) = 7 f(q,dg(q) + ) and
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R(q,Q) =5(¢,Q) + 9(a) —9(Q) + (g — Q).

We now show that R is constant on 7', where it attains its minimum. Following Mather, we first note that:

01R(q, Q) = 915(¢,Q) +dg(q) + B =0 p=dg(q) + < Q =1(q)
0> R(q,Q) = 025(¢.Q) —dg(Q) - =0 P =dg(Q) — 3= Q =(q)
Hence R(q,1(q)) = Ry is constant ,and D R(q, Q) is non zero if Q # 1(q).In Lemma STMPlemconvquad,

we proved that, when (29.1) holds, the generating function satisfies the following quadratic growth:

(36.1) 5(¢,Q)>a—Gllg—Qll+~lg—Q|>.

where - is given by a/2 in the convexity condition. Since d12 R = 9125, the same kind of quadratic estimate

holds for R which is thus bounded below. Since R has all its critical points on 7, it must attain its minimum

there. It is now easy to see that the g coordinates q,,, . .., g, of any orbit segment on 7" must minimize the
action. Let r,,, . . ., 7, another sequence of points of T" with g,, = r,,, q;, = 7. Then:
k—1
W(re,....ri) =Y R(rj,rj1) + 9(qy) — 9(a,) + Blax — q,)
j=n

> (k —n)Ho + g(ak) — 9(an) + Bla — a,) = W(a,-- -, ax)

Remark 36.3 Arnaud (1989) (see also Hermann (1990)) has interesting examples which show that the condition
that the graph be Lagrangian is essential in Theorem 36.2 . Consider the Hamiltonians on 71T is given by:

1 1
Ho(q1,02,p1,p2) = 5(p1 = £ cos(2mga))? + §p§-

The torus {(q1, g2, cos(2mwgz),0)} is made of fixed points for the corresponding Hamiltonian system, but
it is not Lagrangian (exercise). A further perturbation G- s(q,p) = H.(q,p) + 0sin(27¢2),0 < 6 < ¢ of
these Hamiltonians also provide counterexamples to the strict generalization of the Aubry-Mather theorem to
higher dimensions: such systems have no minimizers of rotation vector 0. All the fixed points for the time 1

map have non trivial elliptic part.

Graph Theorem

Theorem 36.4 (Birkhoff) Let f be a twist map of the cylinder A. Then:

(1) (Graph Theorem) Any invariant circle which is homotopic to the circle Cy = {y = 0} is a
(Lipschitz) graph over Cy.

(2) If two invariant circles C— and C1 homotopic to {y = 0} bound a region without other invariant

circles, for any e, there are (uncountably many) orbits going from e-close to Cy to e-close to C.

This theorem was proved as two independent theorems by Birkhoff (1920).
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Proof. For both (1) and (2), we can assume the existence of an invariant circle, say C . Take any circle
C' which is a graph over Cy and which lies under C; . The image f(C) of this circle may not be a graph
anymore, but one can make a pseudo-graph U F(C') by trimming it: take all the points of F'(C') that can be
“seen” vertically from above. This set forms the graph of a function which is continuous except for at most
countably many jump discontinuities. Because of the positive twist condition, these jumps must always be
downward as z increases: if C' is given the rightward orientation, a vector tangent to C' must avoid the cone
O;F, by the ratchet phenomenon. Make a circle out of this graph by adjoining vertical segments at the jumps.
This is U F(C'). We call such a curve a right pseudograph: a curve made of the graph of a function y = h(z)
which is continuous except for downward jump discontinuities (the limit to the right /(z ™) and the left h(z ™)
exist at each point and h(x~) > h(z ™)), and by adjoining to this graph vertical segments to close the jumps.

We can apply F' to a pseudograph C' and trim it as we did for a graph. Because of the positive twist
condition, the horizontal part of U F'(C') is made of images under F' of horizontal parts of C'. Given a (right
pseudo) graph C, we obtain a sequence of curves C,, = (UF)"C.

Lemma 36.5 C., = limsupC, is an f-invariant graph, where limsup is taken in the sense of

functions y = h(x) with the obvious allowance for vertical segments.

Proof. After one iteration of U o F on a (right pseudo) graph C', we get a pseudograph with a downward
modulus of continuity: the ratchet phenomenon and the vertical cuts implies that, for any pair of points z and
z" inthe lift of U o F(C'), 2’ — z is in a cone V of vectors (z,y) withy > dz ifz < Oandy < dz if 2 > 0

(see Figure 36. 1). This implies that C',, also has this modulus of continuity, and hence is a pseudograph.

Fig. 36. 1. The cone defining the modulus of continuity at a point z of U o F/(C).

There is a partial order on circles homotopic to {y = 0}: we say that C' < C” if C" is in the closure of the
upper component of A\ C, which we denote by A, (C). Clearly F' and U preserve this order,and C' < U(C)
for any circle C' homotopic to {y = 0}. This implies that F"(C) < UF"(C) =< C for all n, and hence
F(Cx) R UF(Cx) X Cx.By area preservation F(C) = UF(Cs) = Co.

If C, were not a graph, its vertical segments would be mapped by F'inside 4A_(C) = A_(UF(Cx)),
and A_(Cw ) would contain A_ (F(Cx)) as a proper subset. This contradicts the fact that f has zero flux.
Hence C, is an f-invariant graph. ad

We now finish the proof of Birkhoff’s theorems. Suppose that f admits an invariant circle Cy homotopic

to the boundaries. We show that it is a (Lipschitz) graph. The region below () is invariant. Let C,;,,, be the
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supremum of the invariant graphsin this region (under the partial order <). By continuity, C), . is an invariant
circle and by Proposition 12.3, it is a Lipschitz graph. If C},,,. # Cp, then there exist a (not invariant) graph
C with C 0 < C < Cy. Applying the trimming iteration process to C', we get an invariant (Lipschtitz) graph
Coo With Cq < C < Cy. This contradicts the maximality of ... Hence Cy = )4, is a Lipschitz
graph.

If f does not admit any other invariant circle homotopic to the boundaries than the boundaries themselves,
the iteration process performed on any (right) pseudograph must converge to the upper boundary: we have
C < UF(C).Since Cy, C closure(Uf™(Cy)), on any graph e close to the lower boundary, there is a point
whose w-limit set is in the upper boundary. We could have defined a trimming L of curves homotopic to the
boundaries by taking their lower envelope (the points seen from below) instead of U. Then L(C) is a left
pseudograph and L preserves the order of circles and L(C') < C for any curve C homotopic to the boundaries.
Using lim inf instead of lim sup in the argument above, we get an iteration process L o F' which converges
to an invariant graph, which must be the lower boundary this time. And on any graph e close to the upper

boundary, there is a point whose w-limit set is in the lower boundary. O

Remark 36.6 Performing both the U o F' and L o F' trimming processes on the same curve C' yields points that
come arbitrarily close to both boundaries in forward time. This fact was proven by Mather (1993) variationally
and Hall (1989) topologically. See also LeCalvez (1990) . The results of Mather and Hall are actually sharper
as they find orbits whose «-limit set is in one boundary, the w- limit set in the same or the other boundary (???
check this!). Moreover they find orbits “shadowing” any prescribed sequence of Aubry-Mather sets in a region
of instability. It would be interesting to find a new proof of these results based on the trimming technique
used above. It would be interesting to generalize the trimming process to Lagrangian pseudographs in higher

dimensions.

*. AUBRY-MATHER THEOREM VIA TRIMMING

The above proof of Birkhoft’s theorems appears as an aside in Katznelson-Ornstein’s paper. They also recover
the Aubry-Mather theorem with their trimming method. For this they define, abstractly, a new type of trimming
operator, that they call proper trimming: one which is such that the area below a curve is preserved under
trimming. The main difficulty is to show the existence of such an operator. Once the existence is established, one
takes limits of iterations under the map and the trimming operator. The limit is a pseudograph whose horizontal
parts are forward invariant under f. The Aubry-Mather sets are the intersection of all the forward images of
these horizontal parts. Finally, they show the existence of Aubry-Mather sets of all rotation numbers by applying
this trimming procedure simultaneously to all the horizontal circles in the annulus. Fathi (???am)offers some
relatively distant analog to this in higher dimension, by considering a certain flow on graphs of differentials

on cotangent bundles, and recovering the generalized Aubry-Mather sets in the limit.
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*. Generalizations of Birkhoff’s Graph Theorem to Higher Dimensions

This section surveys (in an all too brief manner) the important work of Bialy, Polterovitch and, indirectly Her-
man, on invariant Lagrangian tori. It will require from the reader knowledge of material dispersed throughout
the book, and more. Bialy & Polterovitch (1992) prove the following generalization to Birkhoff’s Graph

Theorem. We explain the terminology in the sequel.

Theorem 36.7 Let F' be the time one map of an optical Hamiltonian system of T*T™, and let L be

a smooth invariant Lagrangian torus for F which satisfies the following conditions:
1) L is homologous to the zero section of T*T".

2) F{L 1s either chain recurrent or preserves a measure which is positive on open sets. Then L is a

smooth graph (i.e. a section) over the 0-section.

Optical (see Chapter 6) means that the Hamiltonian / is time periodic and convex in the fiber: H,), is
positive definite. Homologous to the zero section means that both the invariant torus and the 0-section, seen
as homology cycles (which they are because they have empty boundaries) bound a chain of degree n + 1,
presumably some smooth manifold of dimension n + 1 in our case. As for Condition 2), it suffices here to say
that either chain recurrence or existence of an invariant Borel measures are satisfied when the invariant torus
is of the type exhibited by the KAM theorem, where the map F’ ,, 1s conjugated to an irrational translation.
In their paper, the authors use a more general condition than 2), which we show at the end of this section is
implied by it: 2’) the suspension of F ‘ ;, admits no transversal codimension 1 cocycle homologous to

ZEro.

This theorem is a culmination of efforts by these authors, as well as Hermann (1990) who gives a perturbative
version of this result as some important a priori Lipschitz estimates for invariant Lagrangian tori. We now
give a very rough idea of the proof of Theorem 36.7. First reduce the theorem to the case of an autonomous
Hamiltonian on 7T™ " by viewing time as an extra 1 dimension, with the energy as its conjugate momentum
(extended phase space). Assume by contradiction that the invariant torus L is not a graph. Consider the set
S(L) of critical points of the projection 7|, . Generically, S(L) consists of an 7 — 1 dimension submanifold
of L whose boundary is of dimension no more than n — 3. Assume we are in the generic case. Then S(L) can
be cooriented by the flow: the Hamiltonian vector field is transverse to it. This makes S(L) a cocycle, i.e. a
representent of a cohomology class. It turns out that this cohomology class is dual to the Maslov class of the
torus L. The Maslov class of L is the pull-back of the generator of H;(A(n)) by the Gauss map, where A(n) is
the (Grassmanian) space of all Lagrangian planes in IR2n. Prosaically, this means the following: the oriented
intersection of S(L) with any closed curve on L counts how many “turns” the Lagrangian tangent
spaces of L makes along the curve. We explain that a little. The number of turns can be made quite precise
because /A(n) has one “hole” around which Lagrangian spaces can turn (H;(A(n)) = Z). S(L) is the set of
points on L where the Lagrangian tangent space becomes vertical in some direction. The tangent space, seen
as a graph over the vertical fiber, is given by a bilinear form which is degenerate at points of S(L) and, thanks
to the optical condition, decreases index ( i.e. the dimension of the positive definite subspace increases) when

following the flow at those points.
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The authors refer to Viterbo (1989) who proves that tori homologous to the zero section have Maslov class
zero. Condition 2”) now concludes: since it is homologous to zero, the cocycle S(L) must be empty, i.e. there
are no singularity in the projection 7r| ;, and the torus is a graph. The non generic case follows by making a
limit argument using uniform Lipschitz estimates for invariant tori proven by Hermann (1990).

Finally, let us show how the fact that F’ ] ;18 measure preserving implies Condition 2°). Assume F' is the time
1 map of an autonomous Hamiltonian system on 7*T", L is an invariant torus and {2 is the volume form
on L preserved by the Hamiltonian vector field X . The Homotopy Formula SGformhomotopy Ly, 2 =
dix, 2 + ix,d(? implies that dix, 2 = 0. Assume Xy is transversal to S, a codimension 1 cocycle
homologous to zero and let C be an n-dimensional chain that S bounds. Transversality implies |, slixy 2 #0.
On the other hand, Stokes’ Theorem yields f $lixy 2 = f c dix, {2 = 0. This contradiction implies that
S=40. g

Remark 36.8 As noted by the authors, it is not clear that Theorem 36.7 is optimal: Condition 2) maybe
unnecessary, as is the case in dimension 2. One could imagine a new proof of this theorem using higher

dimensional trimming on Lagrangian pseudographs, which would not need this hypothesis...

37. (Un)Stable Manifolds and Heteroclinic orbits

(Un)stable Manifolds
Consider two hyperbolic fixed point z* = (q*, p*), 2** = (g**, p**) for a symplectic twist map F' of T*T".

We remind the reader that the stable and unstable manifolds at any fixed point z* are defined as:
Wi(z") ={z e T"T" | F"(2) = 2"},  W"(z")={z€T"T" | F7"(z) = 2"}

Moreover the tangent space to YW* at z* is given by the vector subspace E*(z*) of eigenvectors of eigenvalue
of modulus less than 1, with a similar fact for YW* and E™. In our case, the differential D F' at the points z*
and z** has as many eigenvalues of modulus less than 1 as it has of modulus greater than 1. Hence the stable

and unstable manifolds at these points have both dimension n. The following appears in Tabacman (1993):

Proposition 37.1 The (un)stable manifolds of a hyperbolic fized point for a symplectic twist map are
Lagrangian. Close to the hyperbolic fixed point, they are graphs of the differentials of functions.

Proof. Consider a point z on the stable manifold of the hyperbolic fixed point z*, and two vectors v, w

tangent to that manifold at z. Then:
wz (v, W) = wpr ;) (DF*(v), DF*(w)) — w}(0,0) = 0,as k — oc.

which, since it has dimension n in 7*T", proves that the stable manifold is Lagrangian. The same argument,
using "%, applies to show that the unstable manifold is Lagrangian. We leave the proof of the second
statement to the reader (Exercise 37.2). a

In Exercise INVexoexactstabw, the reader will show a generalization of this fact that makes it applicable

to exact symplectic maps (not necessarily twist) of general cotangent bundles.
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Variational Approach to Heteroclinic Orbits

As a consequence of Proposition 37.1, we obtain a variational approach to heteroclinic orbits. Let z* =
(g*, p*) be a hyperbolic fixed point. Let $%, $° defined on a neighborhood U of g* be the functions whose
differentials define the (un)stable manifolds of z*. We can add appropriate constants to these functions
and get $°(g*) = P“(q*) = 0. In the proof of Theorem 36.2, we showed that the function R(q, Q) =
S(q,Q) + g(q) — 9(Q) + B(g — Q) was constant on the Lagrangian manifold Graph(dg + 3). Applying
this to g = @° or &*, 3 = 0, we obtain

S(g,Q) = ?°(Q) — P°(q) + constant,

where F'(q,?°(q)) = (Q,2°(Q)) (this makes sense in a subset of U). Applying the equation to (g*, g*)
shows that the constant is S(g*, ¢*). Hence

S(q,Q) - S(q",q") = ¥°(Q) — ¥°(q)

for a point (g, Q) on the local stable manifold of z*. We now sum over the orbit (q;., g, ;) of the point

(g, Q) = (g9, q;) to get:

N-—1 N-—1
> 18(qr @ria) — (Qrir) — P*(qp)] = P*(qn) — °(q0)
k=0 k:O

As N — 00,9°(qy) — P(g*) = 0 and thus the sum converges to —P(q):

oo

(37.1) > [S(gk ar41) — S(a*, @) = ~2*(qq).

k=0
Applying the same manipulations to the unstable manifold, using the fact that the generating function for
F~1is —5(Q, q), this leads to

Proposition 37.2 Let z* = (¢*,p*), 2** = (¢**, p**) be two hyperbolzc fized points for the symplectic
twist map F. Let U* and U** be meighborhoods of q* and q** on which the differentials of the
functions @* and D° respectively give the unstable manifold of z* and the stable manifold of z**

Then critical points of the function

N-1
W(qo;---.qn) )+ Z S(ak: qry1) — 2°(an); q €U, qy U™
k=0

are segments of heteroclinic orbits.

Proof. Left to the reader.

With this set-up, Tabacman (1995) shows that, in the 2 dimensional case, any two local minima (i.e. fixed
points) & and 7 of ¢(x) = S(x,x) such that ¢(§) = ¢(n) < ¢(x) for all z € (£, n), are joined by some
trajectory.

Here is a sketch of a numerical algorithm also proposed (and used) by E. Tabacman to find heteroclinic
orbits between two given hyperbolic fixed points z*, z**

(1) Find a basis for the unstable plane £ of D F at z*, and display the basis vectors as columns of a 2n x n

i A
matrix |
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(2) The matrix M = BA~! is symmetric and E" is the graph of the differential of the quadratic form
q — q' M q. This function is an approximation to #“ (see SGexolagsym.)

(3) Perform similar steps to approximate ¢° at z**.

(4) Pick N (large enough) and use your favorite numerical method to search for critical points of the function
W defined above, with points g, g suitably close to z* and z** respectively.

(5) For more precision, make g, and g 5 closer to z* and z** (resp.) and increase N.

Splitting of Separatrices and Poincaré-Melnikov Function In Hamiltonian systems, the
Poincaré—Melnikov function (actually an integral), measures how much the intersecting stable and unsta-
ble manifolds of two hyperbolic fixed points split. This kind of function has a long and rich history: Poincaré
(1899) introduced it as a way to prove non-integrability in Hamiltonian systems. It has then been used to prove
the existence of Chaos (transverse intersections of stable and unstable manifolds often lead to “horseshoe”
subsystems), and to estimate the rate of diffusion of orbits in the momentum direction. The discrete, two
dimensional case was considered by Easton (1984)???, Gambaudo (1985), Glasser & al. (1989), Delshams &
Ramirez-Ros (1996). Here, following Lomeli (1997), we give a formula for a Poincaré—Melnikov function for
a higher dimensions symplectic twist map in terms of its generating function. A more general treatment, valid
in general cotangent bundles, and which does not assume that the separatrix is a graph over the zero section,
is given in Delshams & Ramirez-Ros (1997).

Theorem 37.3 Let Fy be an symplectic twist map of T*T" with hyperbolic fized points z* =
(g*.p*),z** = (g™, p*™) such that W*(z*) = W*(2**) = W is the graph p = ¥(q) of a func-
tion ¢ over some open set. Let Sy be the generating function of Fy. Consider a perturbation F.
of Fy with generating function S. = S + eP such that P(q*,q*,0) = P(g**,q¢**,0) = 0 and

% q:q*P(q, qg,e)=0= % q:q**P(q, g,¢). Then the function L : W — R:
(37.2) L(z) = Z P(qy,.qp11,0) where q;, = 70 F*(g,v(q))
kez

is well defined and differentiable. If L is not constant then, for e small enough, the (un)stable
mamnifolds of the perturbed fized points of F. split. Their intersection is transverse at nondegenerate

critical points of L.

Proof. Work in the covering space IR2n of T*T". Let @ : U C IR™ — IR and 1) = d® be such that
Graph(1)) = W.Change coordinates so that )V lies in the zero section: (g, p’) = (g, p—(q).If Fy(q,p) =
(Q, P), then, in the coordinates (q,p’),wehave g = q, p' = p — ¥(q),Q' = Q,P' = P — (Q). Thus

the generating function becomes:

Snew(qa Q) = Sold<qa Q) + QS(q) - @(Q)

Note that P remains the same under this change of coordinates, since we only added terms which are in-
dependent of ¢. For ¢ small enough, the (un)stable manifolds W, W? of the perturbed fixed points 2}, zX*
(respectively) will be graphs of the differentials ¢2° = d¢® for some functions @7° of the base variable q.

Clearly, the manifolds W"* split for € small enough whenever the following Poincaré—Melnikov function:
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(() u S
Mlg)= 5| (22(q) - PX(e))
€ =0
is not constantly zero, and their intersection is transverse if the DM is invertible at the zeros. We will now
show that:

where L(q) is the function defined in (37.2) , expressed in our new coordinates. Formula (37.1) gives us an

expression of $2°:

(q) = [S-(gi(e). aiia(2) = Sc(a™.q™)] ., P(q) == [S-(qi(e). g} () — S=(a". q")]
k<0 k>0
where g () (resp g} (<)) is the g coordinate of F*(g,1"(q)) (resp. of F*(g,1(q))). We can change order

of differentiation:

0

M(q) = e

0 vt vty = OO
Ezoa(ws(q)_wi(q))_ aq 65

. (Vi (q) —vi(a)),

and compute one of these terms:

9 w

m

9
q Oe|._
9
dq

QJ|Q3

Z [Ss(q}é(E), Q%H(E)) - Ss(q**y q**)]
£=0f<0

0 0
015(q5(0), g5+ (0 ))%qz(g)+a2S(Qkan+1)$qz+l(5)+P(Qkan+1)

o~

|
‘ﬂ

(=]

<

I
e

(qkaqk+1)’
<0

~
A

where in the last line we took advantage of 01.5(qy. g, 1) = 0: these are the p coordinates of an orbit on the
zero section in our new coordinate. In the line before the last, the terms involving S, (g**, ¢**) disappeared
because of our assumption on P. The same computation shows that -2- 5q 2 o ¥ig) = Z k>0 P(@ Qyr)-
The proof that ‘3—5 = M(q) follows. O

Remark 37.4 We have only touched the surface of a vast subject here. Once a Melnikov function is found,
one has to be able to show that it is non zero on specific examples. This is usually hard, even in dimension
2. Explicit computations often utilizes the fact that, in good situations, the complexified Melnikov function
(think of g as complex in the above) is an elliptic functions. As a result of such computations, one often finds
(eg. for standard like maps) that the angle of splitting of the separatrices are exponentially small in the
perturbation parameter £, making numerical methods inapplicable. We let the reader consult Delshams &
Ramirez-Ros (1996b), Delshams & Ramirez-Ros (1998), Glasser & al. (1989), Gelfriech & al. (1994).

Exercise 37.5 a) Prove that the local (un)stable manifold of a hyperbolic fixed point z* for a symplectic
twist map F' is a graph over the zero section (Hint. use the formula for the differential of F given in 26.5,
and the twist condition det (012.5) # 0 to show that the (un)stable subspace of DF.+ cannot have a vertical
vector. To do this, expend w,+(DFw,w) assuming w = (0, w) and show that necessarily w = 0.)

b) Deduce from this that the (un)stable manifolds are graphs of differentials of functions %, ®° defined on
a neighborhood of 7(2*) in the zero section.
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Exercise 37.6 Let F is an exact symplectic map (not necessarily twist) of the cotangent bundle 7 M of
some manifold: F* —\ = dS for some function S : M — IR (X is the canonical 1 form on 7 M). In Appendix
1 or SG, it is shown that any Hamiltonian map is exact symplectic, and any composition of exact symplectic
map is exact symplectic.

a) Show that the (un)stable manifolds W** of a fixed point are exact Lagrangian (immersed) submanifolds,
i.e. iWS’”| = dL for some functions L** : W** — R

b) Show that if and W is an exact Lagrangian manifold invariant under the exact symplectic map F', then:

S(z) + constant = L(F(z)) — L(z), VpeW

c¢) Conclude that L*(z") = Ek<0 S(F*(z") and L*(2°) = — Y k0 S(F*(z*).
For more on this approach, see Delshams & Ramirez-Ros (1997).7

*. INSTABILITY, TRANSPORT AND DIFFUSION

Part (2) of Birkhoff’s Theorem 36.4 is responsible for the name region of instability for a region located
between two invariant circles, and which does not contain any other invariant circle. This is better understood
in the light of the twist maps that appear as normal forms around elliptic fixed points (see Section 28.0): In
this example, the lower boundary of the annulus corresponds to the fixed point, and the drifting from the lower
boundary to the upper one reflects instability of the fixed point. Mather (1993) and Hall (1989) show that the
dynamics in the regions of instability can be quite complicated: given any (infinite) sequence of Aubry-Mather
sets in such a region, they find an orbit that shadows it, 7.e. stays at a prescribed distance from each one for a
prescribed amount of time (the transition time is not controlled). In particular, for twist maps of the cylinder
without any invariant circles, there exist orbits that are unbounded on the cylinder. To find these orbits, it
suffices to take an orbit that shadows an unbounded sequence of Aubry-Mather sets. Note that Slijepcevic
(1999a) has recently given a proof of these results using the gradient flow of the action methods of GCchapter.

Another approach to instability uses partial barriers: invariant sets made of stable and unstable manifolds
of hyperbolic periodic orbits or Cantori. The theory of transport seeks to study the rate at which points cross
these barriers. This theory was initiated by MacKay, Meiss & Percival (1984). The survey Meiss (1992) is
beautifully written and encompasses the theory of twist maps of the annulus and transport theory. For other
developments, see Rom-Kedar & Wiggins (1990) and Wiggins (1990). MacKay suggested that (the projection
in the annulus of) ghost circles could be used as partial barriers.

Mather has announced a striking result for Hamiltonian systems on 7*T?: For a C” (r > 2) generic
Riemannian metric g on T2 and C” generic potential V periodic in time, the classical Hamiltonian system
H(g,p,t) = % Hp||z + V(q,t) possesses an unbounded orbit. Mather’s proof brings together beautifully
the constrained variational methods developed in Mather (1993) , the theory of minimal measures of Mather
(1991b) as well as hyperbolic techniques. Delshams, de 1a Llave & Seara (1998)have given recently an alternate
proof to this result, using methods of geometric perturbation. Finally, de la Llave just (fall 1999) announced
a generalization of this theorem to cotangents bundles of arbitrary compact manifolds. His method uses a
generalizations of Fenichel’s theory of perturbation of normally hyperbolic sets. Interestingly, the orbits found
start at high energy levels, where the system is close to integrable, marking a clear distinction with the two
dimensional case where invariant circles would block the escape of orbits. In higher dimensions, KAM tori
do not topologically obstruct the passage to higher energy levels.

These results offer a very significant contribution to the problem of diffusion first encountered by Arnold.

(7727 complete this)
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HAMILTONIAN SYSTEMS VS. TWIST MAPS
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The last section (elliptic f.p.) also appears in SG. Decide where to put it.

In this chapter, we explore the relationship between Hamiltonian systems and symplectic twist maps on
cotangent bundles. In the first part of this chapter, we show how to write Hamiltonian systems as compositions
of symplectic twist maps. This is instrumental in setting up a simple variational approach to these systems,
which is finite dimensional when one searches for periodic orbits. We start in Section 38 with the geodesic
flow, which serves as a reference model for Hamiltonian systems: it plays a role similar to that of the integrable
map in the twist map theory. In Section 39, we expend our approach to general Hamiltonian or Lagrangian
systems satisfying the Legendre condition (which we see as an analog to the twist condition). In Section 3,
we show that, whether or not the Legendre condition is satisfied, the time 1 map of a Hamiltonian system
may be decomposed into finitely many symplectic twist maps . This method generalises the classical method
of broken geodesics of Riemannian geometry. Our main contribution is to make such a method available for
Hamiltonian systems that do not satisfy the Legendre condition.

In Section 41, we see how symplectic twist maps also arise from Hamiltonian systems as Poincaré section
maps around elliptic periodic orbits. From an opposite perspective, we show in Section 42 that in many cases,
a symplectic twist map may be written as the time 1 of a (time dependant ) Hamiltonian system. Most of this

last section is courtesy of M. Bialy and L. Polterovitch.

38. Case Study: The Geodesic Flow

A. A Few Facts About Riemannian Geometry
Let (M, g) be a compact Riemannian manifold. This means that the tangent fibers T,/ are endowed with
symmetric, positive definite bilinear forms:

(v,) = g(g)(v,v") forv,v" € TyM

varying smoothly with the base point g. We will denote the norminduced by this metric by ||v|| := /g(q) (v, v).

A curve g(t) in M is a geodesic if and only if it is an extremal of the action or energy functional:

t
2 1 )
Az = [ 5 lalP ar
t1
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between any two of its points g(¢;) and g(¢>) among all absolutely continuous curves 3 : [t1,t2] — M with
same endpoints. Geodesics are usually thought of as length extremals, that is critical points of the functional
[ 3 ||| dt. But action extremals are length extremals and vice versa (with the difference that action extremals
come with a specified parametrization). One usually chooses to compute with the action, since it yields simpler
calculations. For more detail on this, as well as a the more abstract definition of geodesic given in terms of a
connection see €.g. Milnor (1969) .

The variational problem of finding critical points of A has the Lagrangian

1 1., .2
Lo(a.) = Sa(v.v) = & lalF.

Following the procedure of Section ??? of Chapter SG, we use the Legendre transform to compute the

corresponding Hamiltonian function. In local coordinates q in M, we can write

9q)(v,v) = <A(7q;v, v),

where (, ) denotes the dot product in IR", and A(_q; is a symmetric, positive definite matrix varying smoothly

with the base point g. With this notation, we have

JLg .
O—v(q’ v) = A

9Ly

1
)Y T2

_ —1
=4y

. 2 . . . . . .
Inparticular, % is nondegenerate. Hence the Legendre condition is satisfied and the Legendre transformation

is, in coordinates:
L:(q.v) = (g.p) = (q, A ,v)

which transforms L into a Hamiltonian H:

Ho(a,p) = v~ Lo(a.0) = (b, Agp) — (A} Ap Ap) = 3 (A(@p-D)
This Hamiltonian is a metric on the cotangent bundle:
Ho(q,p) = %<A<q)p,p> = %gff,) (. p)-
We will also denote the norm associated to this metric by ||p|| = g?z) (p,p). Note that the Legendre

transformation is in this case an isometry between the metrics g and ¢7: in particular, if (g, p) = £(q,v),
then ||p|| = ||v||. Hence the Hamiltonian is half of the speed and we retrieve, from conservation of energy
in Hamiltonian systems, the fact well known by geometers that extremals of the action are parametrized at
constant speed.

The geodesic flow is the Hamiltonian flow hf generated by Hy on T*M. It is not hard to see that
the trajectories of the geodesic flow restricted to an energy level project to the same curves on M as the
trajectories in any other energy level: the velocities are are just multiplied by a scalar (See Exercise 38.1).
For this reason, one often restricts the geodesic flow to the unit cotangent bundle Ty M = {(q,p) € T*M |
|p|| = 1}. Traditionally, geometers use the term geodesic flow to denote the conjugate £~ 1h} L on TM of
this Hamiltonian flow, as restricted to the unit tangent bundle. Remember that projections of trajectories of a
Hamiltonian flow associated to a Lagrangian satisfying the Legendre condition are extremals of the action of

the Lagrangian, and vice versa. (See Chapter SG, Section ???). In the present case, if (g(¢), p(t)) a trajectory
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of the geodesic flow, then q(t) is a geodesic. Conversely, if g(t) is a geodesic, it is the projection on M of the
solution (g(t), p(t)) of the geodesic flow with initial condition (g4, p,) = (g(0), A~1g(0)).

We now want to establish a fundamental result of Riemmannian geometry, which we will rephrase in the
next subsection by saying that the time ¢ of the geodesic flow is a symplectic twist map . The exponential map
is defined by:

ey, (tv) = q(t),

where q(t) is the geodesic such that ¢(0) = v. Note that any geodesic can be written in this exponential
notation. In terms of the geodesic flow, exp, (tv) = mwohfo L(q,,v), where w : T*M +— M is the canonical

projection.

Theorem 38.1 The map Exp: TM — M x M

(38.1) (q,v) — (q,Q) & (g, expy(v))

defines a diffeomorphism between a neighborhood of the O—section in T M and some neighborhood of

the diagonal in M x M. Moreover, for (q,v) in that neighborhood:

Dis(g, expq(v)) = ||v||

One way to paraphrase this theorem is by saying that, any two closeby points are joined by a unique, short

enough, geodesic segment.

Proof. By definition, expq(0) = g and Lexp,(sv) =vats =0,

DEzp| g0 = (Iod E) !
whose determinant is 1. Hence, Exp is a local diffeomorphism around each point of a compact neighborhood
of the 0-section. In particular we can assume that there is an e such that Fzp is a diffeomorphism of an e ball
in TM around (q,0) and a ball in M x M around (q, q), where e is independant of q.

We now show that Exp is an embedding when restricted to U, = {(q,v) € TM | ||v|| < €}, where € is
as above. It is enough to check the injectivity. Let two elements in U, have the same image under Fxp. Since
the first factor of Exp gives the base point, this can only occur if they are in the same fiber of U.. But, by our
choice of U, this implies these elements are the same.

Finally, we show that Dis(q, expq(v)) = ||v|| whenever ||v]| < e. We remind the reader that the distance
Dis(g, Q) between two points g, and @ in a compact Riemannian manifold is given by the length of the
shortest path between g and Q). As a length minimizer, the shortest path is also an action minimizer, and hence
a geodesic. Since Exp is an embedding of U, in M x M, expis 1to1on U, NTyM and the unique geodesic
that joins q and expy(v) in exp(U. N T, M) is the curve t — g(t) = expq(tv). The length of this curve is
fol llg| dt = fol |lv|| dt = ||v|| (see Exercise 38.1 c)). The only way our formula may fail is if there were a
shorter geodesic joining g and expg(v) not in exp(U, N Ty M)). But this is impossible since this geodesic

would be of the form exp, (tw), t € [0, 1] with length [|w]|| > e.
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Exercise 38.1 a) Check that, in local coordinates, Hamilton’s equations for the geodesic flow write:

i= AP

38.2 DA
(38.2) p:_< a@p’p>
q

b) Verify that hif(q,p) = h&(q,sp). (Hint. if (q(t),p(t)) is a trajectory of the geodesic flow, then
(g(st), sp(st)) is also a trajectory).
c) Show that if ¢(t) = expy, (tv), [|a(t)|| = ||v]| for all t.

Exercise 38.2 Show that the completely integrable twist map (x,y) — (z + y,y) is the time 1 map of the
geodesic flow on the “flat” circle, i.e. the circle given the euclidean metric g¢)(v,v) = v°.

B. The Geodesic Flow As A Twist Map

Theorem 38.1 is the key to the following:

Proposition 38.2 The time 1 map h{ of the geodesic flow with Hamiltonian Ho(q,p) = %||p||2 is
a symplectic twist map on U. = {(q,p) € T*M | |||p|| < €}, for € small enough. More generally,
given any R > 0, there is an to > 0 (or given any to there is an R) such that hi,t € [—to,to], is a

symplectic twist map on the set Ur = {(q,p) | | ||p|| < R}. The generating function of hf is given
by S(g,Q) = LDis*(q, Q).

Proof. Since h} is a Hamiltonian map, it is exact symplectic. Define Exp# = Exp o L. By Theorem
38.1, Exp™ is a diffeomorphism between U, = {(q,p) | ||p|| = ¢} and a neighborhood of the diagonal in
M x M.But Ezp*(q,p) = (q,Q(q,p)), where Q = 7 o h}(q,p). Hence h} is a symplectic twist map
on Ue, and 41 = Exp*. The more general statement derives from the fact that Exp? (q, tp) = (q, q(t)),
where hi(q,p) = (q(t), p(t)).

We now show that %Dis2 (g, Q) is the generating function of h} when it is a symplectic twist map on a

domain U (the proof for A, is identical). Since A} is a Hamiltonian map,
(hy) pdq — pdg = dS, with S(q,p) = /pdq — Hodt
v

where ~ is the curve hf(q,p), t € [0, 1] (see Theorem ??? in Chapter SG). We now need to show that S,
expressed as a function of g, Q is the one advertised. In this particular case, since ¢ = A(4)p (see Exercise

38.1)and Ho = 3(A(gp,p) = % |||, the integral simplifies:

! 1 i
[ pda—todi= [ 5 ap) - 5 lp)Pd= [ 5 lp)*a
o 0 0

But the integrand is H,, which is constant along ~. Hence, using Theorem 38.1, and the fact that £ is an
isometry, we get:

1 1. 1.
S(qap> = 5 ||p||2 = 5 ”sz = EDISZ(an(qap>)7

where (q,v) = £ (g, p). This makes S the advertised differentiable function of g and Q whenever (q, p) —
(g, Q) is a diffeomorphism. O
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Remark 38.3 As a simple example of what makes h{, cease to be a twist map when the domain U is extended

too far, take M to be the unit circle with the arclength metric. In a chart 6 € (—e¢, 27 — €), we have:

. . 0 when 0<m
Dis(0,6) = {27r -0 when 0>
As aresult, the left derivative of %Dis2 (0, 8) is m, whereas the right derivative is —: the function Dis is not

differentiable at this point.
The following will be instrumental in the proof of Theorem 31.1. ???Put it there instead???

Corollary 38.4 Let h§(q,p) = (Q,, Ps) be the time s of the geodesic flow, then:

P
(38.3) 01 Dis(q, Q) = —sign(s).i and 09Dis(q, Q,) = sign(s). B,

pl|

Proof. From Proposition 38.2, we get:

1., . . .
—-pP= a1 §D152(q7 Ql) = DlS(q, Ql)alDls(qa Ql) = Hp” alDlS(qa Ql)

which proves 91 Dis(q, Q) = —ﬁ. Using Q, = 7 o h}(q, sp), one may replace p by sp in the previous
computation to prove the first equality. For the second equality, the fact that Dis(q, Q,) = Dis(Qy, ), that
q = 7o h{(Q,,—sPs) (see Exercise 38.2) and the first equality, enables us to write:

P,
P

& Dis(g, Q) = 01Dis(Q,, q) = sign(s)

C. The Method of Broken Geodesics

We now draw the correspondence between the variational methods provided by symplectic twist maps and
the classical method of broken geodesics, originally due to Birkhoff (???: check Milnor). As before, let 1} be
the time 1 map(”) of the geodesic flow with Hamiltonian Hy . Fix some neighborhood U of the zero section
in 7* M. Proposition 38.2implies that if we decompose h} = (hoﬁ )™V, then for N big enough each hoﬁ isa
symplectic twist map in U. As a result, periodic orbits of period 1 for the geodesic flow H, i.e. fixed points
of h{ are given by the critical points of:

N

W(q) = ZS(qkaqurl)a with gy =4y,
k=1

where g belong to set Xy (U) of sequences in M such that (g, q;,,) € ¢(U), where ¢ = 1/1’ 1 We now
Yo

1
show that 1V is the action of a broken geodesic. Since h{’ is a symplectic twist map, the twist condition

1
implies that, given (qy, q; 1) in ¢)(U), there is a unique (py,, Py) such that A (qy. py) = (@141, P).ie.,

there is exactly one trajectory cy: [%, %] — T*M of the geodesic flow that joins (g, p;) to (g, 41, Pr).

The projection 7(ci) on M is a geodesic, parametrized at constant speed equal to the norm of p;,. As we

" The following discussion remains valid if we replace 1 by any time 7.
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have seen in the proof of Proposition 38.3, S(q,,, ;. ;) is the action of ¢: S(qy, @i 1) = ka pdq — Hdt.
Hence W, the sum of these actions, is the action of the curve C' obtained by the concatenation of the c;’s. C'
is “broken”, i.e. has a corner at the point g, whenever Pj,_; # p,: via the Legendre transformation, Pj,_;
and p,, correspond to the left derivative and right derivative of the curve C' at g, .

If q is a critical point of W, P, = p;, ,, and thus the left and right derivatives coincide: in this case C' is
a closed, smooth geodesic.

In conclusion, the function W (q) can be interpreted as the restriction of the action functional A(c) to a
finite dimensional subspace (the space of curves C arising from elements of X i (U'), which is homeomorphic
to X (U)) in the (infinite dimensional) loop space of 7™ M . One can further justify this method by showing
that the finite dimensional space X (U) is a deformation retract®) of a subset of the loop space and that it
contains all the critical loops of that subset. This was Morse’s way to study the topology of the loop space
(see Milnor (1969) , 16). Conversely, and this is the point of view in this book (and more generally that of
symplectic topology), knowing the topology of certain subsets of the loop space, one can gain information
about the dynamics of the geodesic flow or, as we will see, of many Hamiltonian systems. (Part of this in the
Intro??7?)

39. Decomposition Of Hamiltonian Maps Into Twist Maps
A. Legendre Condition vs. Twist Condition

In this subsection, we generalize Theorem 38.2 by proving that Hamiltonian maps satisfying the Legendre
condition are symplectic twist maps , provided appropriate restrictions on the domain of the map. We then
reformulate this result in the Lagrangian setting, giving a generalization of the fundamental Theorem 38.1.In
the next subsection, we focus on T*T", where, given further conditions on the Hamiltonian, we extend the
domain of these symplectic twist maps to the whole space.

Remember that Hamiltonian maps, which are time ¢ maps of Hamiltonian systems, are exact symplectic
(Theorem SGhamexactsymp) and, through the flow, isotopic to Id. Therefore, to show that a certain Hamil-
tonian map is a symplectic twist map, we need only check the twist condition. Clearly, not all Hamiltonian
maps satisfy it. Take F'(q, p) = (g + m, p) on the cotangent bundle of the torus, for example: it is the time
one of H(q,p) = m.p, and it is definitely not twist. Here is a heuristic argument, which appeared in Moser
(1986) in the context of twist maps, to guide us in our search of the twist condition for Hamiltonian maps.
The Taylor series with respect to € of the time e map of a Hamiltonian system with Hamiltonian H is:

q(e) = q(0) + e.H, + o(€?)

p(e) = p(0) — e.Hy + o(€?)
Thus, up to order €2, dg(€)/0p(0) = €.Hp,. This shows that whenever Hy, is nondegenerate, the time €
map s a symplectic twist map in some neighborhood of g(0), p(0). The problem is to extend this argument
to given regions of the cotangent bundle: the term o(¢?) might get large as the initial condition varies.
‘We now present a rigorous version of this argument, valid on compact sets of cotangent bundles of arbitrary
compact manifolds. We say that a Hamiltonian H : 7" M x IR — IR satisfies the global Legendre condition
if the map:

8 This retraction can be obtained by a piecewise curve shortening method.
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(39.1) p— Hp(q,p.1)

is adiffeomorphism from 77 M +— T, M for each g and t. We will say that H satisfies the Legendre embedding
condition if the map p — H,, is an embedding (i.e. a 1-1, local diffeomorphism). Note that, although we
have written it in a chart of conjugate coordinates in 7™ M, this condition is coordinate independant (prove
this!).

Examples 39.1 We give two classes of examples. In the first one, the Hamiltonian is not assumed to be
convex.

Let H(q,p) = %(A(qyt)p, p)+V(q,t)anddet A, # 0,then H satisfies (39.1). This is simply because
p — Hp = A(q1)p is linear and nonsingular. Note that no convexity is assumed here, only nondegeneracy of
H,,, (and its independance of p).

Less trivially, if H,,(q, p,t) is definite positive, and its smallest eigenvalue is uniformly bounded below
by a strictly positive constant, then H statisfies the global Legendre condition. This is a direct consequence
of Lemma STMdiffeo.

If we remove the lower bound on the smallest eigenvalue, one can show (see Exercise 39.1) that the map
p — Hyp is not necessarily a diffeomorphism any more, but remains an embedding and thus /1 satisfies the
Legendre embedding condition.

Such an embedding condition, and a version of Theorem 39.2, are also satisfied if Hy, is positive on a

compact set U invariant under the flow (see Exercise 39.2).

Theorem 39.2 Let M be a compact, smooth manifold and H : T*M x IR be a smooth Hamiltonian
function which satisfies either the global Legendre condition (39.1) or the Legendre embedding con-
dition. Then, given any compact neighborhood U in T* M and starting time a, there exists ¢g > 0
(depending on U ) such that, for all € < € the time € map of the Hamiltonian flow of H is a symplectic

twist map on U.

Proof of Theorem 39.1 Choose a Riemannian metric g on M . Define the compact ball bundles:
U(K) ={(g.p) e T"M | | p|| < K}.

The nested union of these sets covers 7 M . Hence any compact set U is contained in a U (K) for some K
large enough, and we may restrict the proof of the theorem to the case U = U(K). Since the Hamiltonian
vector field of H is uniformly Lipschitz on compact sets, there is a time 7" such that the Hamiltonian flow
hatt(z) of H is defined on the interval ¢ € [0, T] whenever z € U(K).

In the rest of the section, we fiz a and abreviate h%Tt by ht (the time t of the flow with starting time
a.

By continuity of the flow, h[%T!(U/(K)) is a compact set. We now show that we can work in appropriately
chosen charts of 7 M. Since M is compact, we can find a real » > 0 such that 7% M is trivial above each
ball of radius 2 in M. (Indeed, there exist such a ball around each point. If one had a sequence of points
whose corresponding maximum such 7 converged to zero, a limit point of this sequence would not have a

trivializing neighborhood, a contradiction). Take a finite covering { B;} of M by balls of radius r, and let B;



116 CHAP 7 or HAM: HAMILTONIANS VS. TWIST MAPS (March 14 1999)

be the ball of radius 27 with same center as B;. Choose ¢3 < 7' such that w o hl%)(7=1(B;)) C Bi. Such
an ez exists since there are finitely many B;’s and since the flow is continuous. From now on, we may work
in any of the charts 7—!(B;) ~ B; x IR", and know that for the time interval [0, ¢3], we will remain in the
charts 7~ 1(B]) ~ B} x IR™. We let (g, p) denote the conjugate coordinates in these charts.

Let € < e3 and write h°(q,p) = (g(¢), p(e)). Consider the map ¥ : (g,p) — (g,q(¢)). We need to
show that ¢y, is an embedding of U(K) in M x M. By compactness, it suffices to show that ¢y is a local
diffeomorphism which is 1-1 on U (K'). Write the second order Taylor formula for g(€) with respect to € (this

is a smooth function since the flow is smooth):

q(e) = g+ eHy(q,p,a) + €R(q, p, €).

The smoothness of the Hamiltonian flow garantees that R is smooth in all its variables. Indeed, its precise

expression is (see Lang (1983) ,p. 116):

1 te
Rlap = [ (-2 8Py
A ot

and the integrand is smooth since the flow is. The differential of 1), with respect to (g, p) is of the form:

potan) = ("1 §). A=)+ R a0
Since det Hp, # 0 by the Legendre condition and since I?, is continuous and hence bounded on the compact
set U(K) X [0, €3], there exists €5 in (0, €3] such that det D1y = det A # 0onU(K) x (0, €3] (we have used
the fact that there are finitely many of our charts B; covering U (K)). Hence 1y is a local diffeomorphism
for all € € (0, e2]. We now show that, by maybe shrinking further the interval of ¢, 1, is one to one on
U(K). Suppose not and ;< (q, p) = pe(q’,p’) for some (q,p),(q’',p’) € U(K). The definition of 1.
immediately implies that ¢ = ¢’. Also, since 'y, is a local diffeomorphism on U(K), we can assume that

lp —p’|| > ¢ for some 6 > 0. Using Taylor’s formula, we have:
q(ﬁ) - q/(E) = G(Hp(‘Lpa a) - Hp(qapla a)) + EZ(R(q,p, 6) - R(qap/a 6))

Define the compact set P(K) := {(¢,p,q,p/) € U(K) x U(K) | ||p—p/|| > 0}. Since p — Hp is
a diffeomorphism, the continuous function || H,(q, p,a) — Hp(q,p’, a)| is bounded below by some K; >
0 on P(K). The continuous function (g, p,e) — ||R(q,p,€) — R(q,p’,¢€)| is bounded, say by K5, on
P(K) x [0, €3] and hence

la(e) — g ()l = (K1 — € K2) >0

whenever € € (0,¢;] and €; is small enough. Now choosing ¢ = min{ey, e} finishes the proof of the
theorem. O

The following proposition, which is a reformulation of Theorem 39.2 in Lagrangian terms, is a generaliza-
tion of the fundamental Theorem 38.1. It garantees the existence and uniqueness of Euler-Lagrange solutions
between any two closeby points. A time that the solution is traversed has to be specified within a compact
interval. In Chapter MIN, we will encounter Tonelli’s theorem which implies, for fiber convex Lagrangian

systems, that these solutions can also be assumed to be action minimizers.
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Proposition 39.3 Let M be a compact manifold and L : TM x IR — IR be a Lagrangian function
satisfying the global Legendre condition: v — Ly(q,v,t) is a diffeomorphism. Then, for all starting
time a and bound on the velocity K there exists an interval of time [a,a + €g] such that, for all
€ < €, there exists a neighborhood O of the diagonal in M x M such that whenever (q,Q) C O,
there exists a unique solution q(t) of the Fuler-Lagrange equations such that ¢ = q(a), Q = q(a+¢€)
and [|g(a)|| < K.

Remark 39.4 Note that, in the case of the geodesic flow, the curves joining the same points g, Q in differ-
ent time intervals in this proposition are geometrically all the same geodesic, traversed at different speeds.
The dependence on the time interval chosen and the speed chosen of the geometric solutions of the Euler-
Lagrange equations is one of the main difference, and source of confusion, when trying to generalise notions

of Riemannian geometry to Lagrangian mechanics.

Proof. The Legendre condition enables us to define the Legendre transform £ : (q,v) — (q,p = L, ) and
the Hamiltonian function H(q,p,t) = pg — L(q, q,t), where it is understood that ¢ = g o L~1(q, p) (see
Section hamsys ??? in SG). H satisfies the global Legendre condition and £~ (g, p) = (g, Hp) (see Remark
777), In particular Theorem 39.3applies to the Hamiltonian H. Let

U=V(K)={(g,p) | Hp(g p,a)l < K}.

This set is compact since it corresponds, under the Legendre transformation, to
LHV(K)) ={(a.9) | la(a)]| < K}

in the tangent bundle. Theorem 39.3 tells us that, for all ¢ € (0, ¢o] with ¢y small enough, the map h€ is a
symplectic twist map on V (K). Define
O = ¢pe(V(K)).

We now show, maybe by decreasing ¢, that O is a neighborhood of the diagonal in M x M. Let V4 (K) =
7 Y(g) N V(K) and write h'(q,p) = (q(t), p(t)) where, as before, h* denotes h2"*. The curve g(t) is a
solution of the Euler-Lagrange equation satisfying ¢ = g(a) and if (g, p) € V4(K), then ||g(a)|| = || Hp|| <

K. As in the proof of Theorem 39.2, we write the Taylor approximation of the solution:

7o h(q,p) = q(e) = g+ eH, + €2R(q, p,¢).

At first order in e, the image of V(K') under 7 o h€ is {q + eH,(q,p) | (g,p) € Vg(K)}, which is a solid
ball centered at g. When adding the second order term €2 R, g will still be in 7 o h¢(V,(K)), provided that
e is small enough. By compactness ¢ can be chosen to work for all g. Thus (g, q) € h¢(V(K)) = O for all
q € M, as claimed.

The rest of the proof is a pure translation of the statements of Theorem 39.2: by construction, if (g, Q) € O,
then (q, Q) = (g, q(€)) where g(t) = o h'(q, p) and (g, p) € V(K).Hence q(t) is a solution to the Euler-
Lagrange equation starting at q at time a, landing on Q at time a+¢. Moreover, since (g, p) € V(K), ||g(a)| =
|Hp(g,p,a)|| < K. Finally, this solution is unique. Otherwise, by the uniqueness of solutions of O.D.E.s,
there would be p # p’ such that = o h*(q, p) = 7 o h(q, p’), a contradiction to the twist condition. O
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Exercise 39.1 Show that a C! map f : R™ — IR™ which satisfies (Df, - v,v) > 0 for all v and = in IR™ is
an embedding, i.e. it is injective with continuous and differentiable inverse. Deduce that a Hamiltonian such
that Hpyp is positive definite satisfies the Legendre embedding condition.

Exercise 39.2 Let U be a compact region which is invariant under the flow of a Hamiltonian H. Assume
also that Hp, is positive definite on U. Show that the time ¢ map is a symplectic twist map for all £ > 0
sufficiently small. (Hint. First prove, as in the previous exercise, that p — H) is an embedding of T, M N U
for each gq. Then adapt the proof of Theorem 39.2).

B. The Case of the Torus

When the configuration manifold is T", there is hope to show that the time ¢ maps of a Hamiltonian system
is a symplectic twist map on the whole cotangent bundle. We present here some condition under which this is

true. No doubt one could find other, even weaker conditions as well.

Assumption 1 (Uniform opticity)

H(q,p,t) = H(z) is a twice differentiable function on 7*T" x IR and satisfies the following:

(1) sup HV2Ht H <K

@) Clv|° < (Hpp(z, t)v,v) < C! ||v||? for some positive C' independant of (2, ¢) and v # 0.
Sometimes Hamiltonian systems such that H,, is definite positive are called optical. This is why we refer

to Assumption 1 as one of uniform opticity.

Assumption 2 (Assymptotic quadraticity)

H(q,p,t)is a C? function on T*T" satisfying the following:

(1) det Hpp # 0.

(2) For [|jp|| > K1, H(g,p,t)=(Ap,p) +c.p, A'= A det A#0.

Here A denotes a constant matrix, and c a constant in IR™. We stress that A (and hence H,p) is not necessarily

positive definite.

Theorem 39.5 Let he be the time € of a Hamiltonian flow for a Hamiltonian function satisfying any
of the Assumptions 1 or 2. Then, for small enough €, h¢ is a symplectic twist map of T*T™ ( or on

U, respectively).

Remark 39.6 Proposition 39.5 holds for 1! "¢ whenever it does for h€: hi "€ is the time € of the Hamiltonian
G(z,s) = H(z,t + s), which satisfies all the assumptions H does.

Proof. We prove the proposition with Assumption 1, and indicate how to adapt the proof to the other
assumption. We can work in the covering space IR2n of T*T", to which the flow lifts. The differential of i
at a point z = (g, p) is solution of the linear variational equation ©)

% Tn general, if ¢¢ is solution of the O.D.E. 2 = X;(z) then D¢ is solution of U(t) = DX, (¢'2)U(t), U(0) =

Id. Heuristically, this can be seen by differentiating %qﬁt(z) = X;(¢*(z)) with respect to z (see e.g. Hirsh
& Smale (1974)).
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(39.2) U(t)=JVEH(R' (z))U(t), U(0)=1d, J= ([Od _5d>

We first prove that U (¢) is not too far from Id:
Lemma 39.7 Consider the linear equation:

U(t) = A)U(t), Ulte) = U

where U and A are n x n matrices and || A(t)|| < K,Vt. Then :
U () — Usll < K ||Ua|| |t — t0|eK‘t*t0\.

Proof. LetV(t) =U(t) — Uy, so that V(t5) = 0. We have:

V(t) = A(t) (U(t) — Uy) + A(H)Uy
AV (t) + A(t)Uy

and hence:

V@Ol = V() = V(t)l S/t K|V (s)llds + [t = tol K [|Us|

For all |t — to| < €, we can apply Gronwall’s inequality (see Hirsh & Smale (1974)) to get:

VO < ek [[Ul 1!

and we get the result by setting € = |t — ¢|. O

We now proceed with the proof of Proposition 39.5. By Lemma 39.7 we can write:

Ue) — Id = / JV2H(h%(2)).(Id + O (s))ds

where ||O1(s)|| < 2K s, for ¢, and hence s, small enough.
Let (g(t),p(t)) = h'(q,p) = h'(z). The matrix b.(z) = dq(e)/0p, is the upper right n X n matrix of
U (e). It is given by:

(39.3) b(z) = /0 " Hy (h*(2))ds + /0 "0y (s)ds

where | [; O2(s)ds| < K?¢*. From this, and the fact that

(39.4) Clol* < (Hpp(2)v, ) < C™ o]?,

we deduce that:

(39.5) (eC — K22 |[v||” < (be(2)v,v) < (C™1 + K2€%) 0|

so that in particular b.(z) is nondegenerate for small enough e. Since b.(z) is periodic in z, the set of

nonsingular matrices {b.(z)},cman is included in a compact set and thus:
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(39.6) sup b1 (2)]| < K,
zeR2n

for some positive K’. We can now apply Proposition 26.4to show that /€ is a symplectic twist map with a

generating function .S defined on all of IR2n.

Remark 39.8 The above proof shows that h¢ satisfies a certain convexity condition which can be useful in

finding minimal orbits (see Chapter MIN):

9 ~1
(39.7) (b7 v, v) = <(£(e)> 'U,v> >a|vl®, VYvelR™
where a is a positive constant. To see that it is the case, note that, denoting by

m = inf ||b;1(z)H

= m
lv]|=1, z€R2n

and M the corresponding sup, (39.5) implies:

m(eC — K2 |v||” < (b, (z)v,v) < M(eC™ + K2¢%) ||v]|”.

We now adapt the above proof to Assumption 2. Note that under this assumption, we can still derive
(39.3) : the boundary condition (2) implies that V2H is bounded. Since H is C?, and Hp, = A outside a
compact set, Hpp(h°z) is uniformly close to Hpp(z) for small s, and thus the first matrix integral in (39.3)
is non singular for z and small s. Thus b.(z) is also nonsingular for small e. Since b.(z) = €A outside of
the compact set ||p|| < K7, the set of matrices {b.(z) | |z € IR"} is compact and hence (39.5) holds, which

proves the proposition in this case. d

C. Decomposition Of Hamiltonian Maps Into Twist Maps

When, as is the case in Theorems 39.2and 39.5, the time € maps of a Hamiltonian system are all symplectic twist
maps , one can readily decompose the time 1 map into such twist maps. Take a time dependent Hamiltonian,

for example. Its time 1 map A can be written:

and, for N large enough, each hv isa symplectic twist map . It is only slightly more complicated when H is

time dependent. In this case we can write:

1 1 N_1 Bt1 1
(39.8) ht=hnx_10o(hy¥,)o...h,) o...hf
N N N
Et1
and each h " is an symplectic twist map by assumption on our Hamiltonian. as the next Proposition shows.
N

What may be more surprising, and gives strength to this method, is that there is a large class of Hamiltonian
systems which, even though their time e is not twist, can be decomposed into a product of symplectic twist
maps. This is a generalization of an idea that LeCalvez (astérisque) applied in his variational proof of the
Poincaré-Birkhoff Theorem.

This will work with either of the following, very broad, assumptions:
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Assumption 3.

H is a C? function on T* M x [0, 1], and the domain U is a compact neighborhood in 7* M.

Assumption 4.

H(z,t) = Hy(z) is a function on 7*T" x IR satisfying sup | V2 H|| < K.

Proposition 39.9 (Decomposition) Let H(z,t) be a Hamiltonian function satisfying Asssumptions 3 or
4, or the hypothesis of either Theorem 39.2o0r Theorem 39.5. Then the time 1 h' of its corresponding

Hamiltonian system can be decomposed into a finite product of symplectic twist maps:

hW=F,yo...0F.

Proof. We have given the trivial proof above for Hamiltonians that satisfies the hypothesis of Theorems
39.2and 39.5. We now prove the proposition when H satisfies Assumption 3. Pick a ball bundle U (K) =
{(g,p) | ||p|]| < K} with K large enough so that U C U(K).Let G be the time s of the geodesic flow, where
s 1is chosen so that G is an symplectic twist map on U (K). That such an s exists is proven in Proposition 38.2
. We can write:
P=Go (G lohk)oGo...o0 (G%h?) 6...0Go (G*lohﬁ)

N

N

(39.9)

=I5y o...0F].

One can check that, at each successive step of the decomposition, the points remain in U (K). Our new G is
an symplectic twist map , by assumption, and G~ o h% is an symplectic twist map by openess of the set of
twist maps on a compact neighborhood (see Exercise SNTMstmopen).

Suppose now that H satisfies Assumption 4. Let G(q, p) = (q + p, p), our favorite symplectic twist map
(see, eg. Example STMstandardexample) on T*T" . Decompose h! as in Equation (39.9) . We now show that
G 1o hl ¥ isalsoa symplectic twist map. Lemma 39.4 implies that i{ " satisfies || Dh; ™ — Id|| < eKe*°.

Hence

B

1
<(C—e

DG-'.Dh'¥ — DG
e N

k11

for some positive constant C'. Thus G~! o b, is twist for N large enough, since the sufficient conditions
N

det 9Q/0p # 0 and ||(0Q/dp) || < oo are both open with respect to the C* norm.

40. SUSPENSION OF SYMPLECTIC TWIST MAPS BY HAMILTONIAN FLOWS

Moser (1986) showed how to suspend a monotone twist map of the annulus into a time 1 map of a (time de-
pendant) Hamiltonian system satisfying the fiber convexity H,, > 0.In subsection A we present a suspension
theorem for higher dimensional symplectic twist maps announced by M. Bialy and L. Polterovitch, which
implies Moser’s theorem in two dimensions. These authors kindly agreed to let their complete proof appear

for the first time in this book. In subsection B, we give the proof, due to the author, of a suspension theorem
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where we let go of a symmetry condition assumed by Bialy and Polterovitch. The price we pay is the loss of

the fiber convexity of the suspending Hamiltonian.

A. SUSPENSION WITH FIBER CONVEXITY

Theorem 40.1 (Bialy and Polterovitch) Let F' be a symplectic twist map with generating function S
satisfying:

(40.1) 0125(q, Q) is symmetric and negative nondegenerate.

Then there exists a smooth Hamiltonian function H(q,p,t) on T*T" x [0,1] convex in the fiber
(i.e. Hpp is positive definite) such that F' is the time 1 map of the Hamiltonian flow generated by

H. The Hamiltonian function H can also be made periodic in the time t.

Proof. Following Moser, we will construct a Lagrangian function L(q,v,t) on IR2n x [0, 1] with the
following properties:

(40.2) (a) The corresponding solutions of the Euler-Lagrange equations connecting the points g and @ in the
covering space IR" in t;he1 time interval [0, 1] are straight lines ¢ + ¢(Q — q);

(@02) () 5(2.Q) = [ Lla+t@=a).Q-a.0)i

(40.2) (c) L is strictly convex with respect to v : g% is positive definite.

(40.2) (d) L(q + m,v,t) = L(q, v, t) for all m in Z".

If such a function L is constructed, its Legendre transform H satisfies the conclusion of Theorem 40.1:
(40.2) (a) and (b) imply that F' is the time 1 map of the Hamiltonian I, (40.2) (c) implies that [, is convex
(see Exercise 47.2) and (40.2) (d) that the Euler-Lagrange flow of L takes place on 7T'T" and hence the
Hamiltonian flow of H is defined on 7*T™".

Note that if (40.2) (c) is satisfied then (40.2) (a) is equivalent to the following equation:

82 0*’L  OF
(402)(a) +8v07‘ aq =
9%S .
Lemma 40.2 Set R;j(q,v,t) = —W(q —tv,q + (1 — t)v). Then the following holds:
1Y

(403) (a) Rij = Rji;

8Rij - 8Rik‘
(10.9) () 2 = G

ORU _ ORy
(10.9) (¢) G = 5

BRl 8R
(40.3) (d) =52 + 3 5 Lo =

1

for all i, 7, k.

2
The proof is straightforward and uses the fact that the matrix (’)E;_F)% is symmetric.

1
Lemma 40.3 Set L(q,v,t) = / (1-2X) Z Ri;j(g, M, t)v;vidA. Then the following holds:
0

,J
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(40.4) av / ZRM q.7v,t)d

()2
(40.4) (b) Boido; Rij

(40.4) (c) L satisfies Equation (40.2) (a’).

Proof. Rewrite L as follows:

1,1 1 s
L(q,’l],t) :/ / dSZRij(q,A’U,t)’UindA:/ dS/ d)\ZR”(q, A’U,t)’l)i’Uj
0 JA Iy 0 0 i.j
1 1 1
:/ ds/ SZRij(q,ST’U,t)’Ui’UdeZ/ Zviai(q,sv,t)ds
0 o %7 05

(40.5)

1
where «;(q,v,y) = / Z R;;(q, v, t)vjdr. We can rewrite the last integral of (40.5) as a path integral:
0 -

1
i\, ) ds = zd )
/()Xi:va(qsvt)s /Wzi:av

where v(s) = (q, sv,t). Fixin q and ¢, Equation (40.3) (b) implies that the form ), a;dv; is closed, and,
because v € IR", exact, say > . a;dv; = dA for some function A(v) on IR". Then the Fundamental Theorem
of Calculus yields:

L(q,v,t) = A(v) — A(0).

Since ), a;dv; = dA = g—ﬁdv, Equation (40.4) (a) follows. The proof of (40.4) (b) is similar. We now prove
(40.4) (c). In view of (40.4) (a), the left hand side I of (40.2) (a)’ can be written as follows:

1 1
orq; OR;;
I:E v,/ g Y , TV, 1 v-dT—f-/ g Y , TV, t)vdT

1
+/O (1— )\)Z (9(;;13 (g, Av, t)v;vdA.

2]

=a; + az — as,

where ay, is the k" integral in the above expression. Rewrite a3 using (40.3) (c) as follows:

az = / Z UlU]dT / Z

The first term is equal to a;. Therefore:

’Uﬂ)JTdT

ORy ;
/Zv] U q’Tv’t)"’_ZWl.’]Tvl dr.
L, !

Equation (40.3) implies that the bracket, and hence I, vanish. O
Given any function L(g, v, t), set

1(q,Q) = / L(q +1Q—q),Q — q.0)dt



124 CHAP 7 or HAM: HAMILTONIANS VS. TWIST MAPS (March 14 1999)

Lemma 40.4 Assume that L satisfies (40.2) (a’). Then the following holds:

L L
(40.6) (a) 50 au(q ,Q —q,0);
L
9?2L 2L

(40.6) (¢)

00:0Q;  0v0v; (@.Q —q,0).

Proof. Equation (40.6) (c) is a consequence of (40.6) (a), which we now prove. The same argument also
proves (40.6) (b). It is not hard to check that if L satisfies (40.2) (a)’ then:

d (L oL
clt{aui(q+t(Q_q)’Q_q’t)} =5, (@ +1Q-a,Q - 1)

Therefore,
oL
aql(q ,Q) =
1
[ {-5rarie-a.@-an+a-0g ( ~0.Q-an) far
La L
:/0 E{(l_ )d—(q+t(Q q),Q—q.t } q,Q q,0).

Given any two differentiable functions L(g, v, t), f(q,t), set:

af

of
g

L¢(q,v,t) = F(q,v,t) + q,t)v—i—a

(q,1).

Lemma 40.5

(40.7) () Ly(q,Q) = L(g: Q) + £(Q,1) — f(g.0);
(40.7) (b) If L satisfies (40.2) (a’) then Ly satisfies it as well, for all f.

The proof of this lemma is straightforward. We are now in position to finish the proof of Theorem 40.1.
Let L be the function defined in Lemma 40.3. From (40.6) (c) and (40.4) (b), we get:
L L 0?S
(0.Q) = —5—5-(¢:Q —q,0) =
0¢;0Q ; ey Ov; 0¢;:0Q);

+—-(20,Q),

and therefore
L(g. Q) = S(q,Q) + Alq) + b(Q)

for some differentiable functions a and b. Set

flg.t) = (1 -1t)A(g) — tb(Q).

We claim that the function L satisfies (40.2) (a)-(d). We prove these properties one by one.
1. We proved in (40.4) (c) that L satisfies (40.2) (a’), and hence (40.2) (a). Equation (40.7) (b) proves that L ¢

does as well.
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2. From (40.7) (a), we get:

L(a.Q) = L(q,Q) — b(Q) — Alq) = S(q.Q),

which proves (40.2) (b).
27 2F 2
.() f:a_:(Rij):_aS
Ov? Ov? 0qoQ
(40.1) , so is the first one.

4. Since S(g +m, Q +m) = S(q, Q), the function L is periodic in q. We need to check that % and % are

(g — tv,q + (1 — t)v). Since this last matrix is positive definite by

also periodic in q. Using the definitions and (40.6) (a) and (b), one can easily check that

. L oL
L(g,q) = %(q, q) = %(q,q) = 0.

From the definitions of the functions ¢ and b we obtain that

da S b a5

A(q) +b(q) = —S(q,9), 9 *yq(q,q), %(q) = *@(q, q)-

Because of the periodicity of S, all these functions are periodic in q. Since

of o4 o of
a—(l t)aq taq, aq— a—b,

both % and g—g are periodic. This finishes the proof of our claim, and hence that of Theorem 40.1. O

B. SUSPENSION WITHOUT CONVEXITY

If we let go of the symmetry of 5—8‘2 (but keep some form of definiteness) in Theorem 40.1, we can still
suspend the twist map F' by a Hamiltonian flow. The cost is relatively high however: we can no longer insure
that the Hamiltonian is convex in the fiber. The proof, quite different from that of Theorem 40.1, first appeared
in Golé (1994c) .

Theorem 40.6 Let F'(q,p) = (Q, P) be a symplectic twist map of T*T" whose differential b(z) =

%ﬁf) satisfies:

(40.8) sup (b7'(2)v,v) > allv|, a>0, Vo #£0ecR"
zeT*T™

Then F is the time 1 map of a (time dependant) Hamiltonian H.
Remark 40.7 Condition (40.8) tells us that F' does not twist infinitely much.

Proof. Let S(q, Q) be the generating function of F'. Since p = —9;.5(q, Q), we have that b = 9Q/0p =
— (0125(q, Q))fl. Hence equation (40.8) translates into:

(40.9) sup  (—0125(q, Q)v,v) > aljv||, a>0,Yv#0eR"
(q,Q)eR2n

The following lemma show that (40.9) implies the hypothesis of Proposition 26.4, which in turn shows that
whenever we have a function on IR2n which is suitably periodic and satisfies (40.9) , it is the generating

function for some symplectic twist map.
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Lemma 40.7 Let {A,}zca be a family of n x n real matrices satisfying:
sup [(Ayv,v)| > allv]|?, VYo #0eR™
zeA

Then :

sup ||A;1H <a t
e

We postpone the proof of this lemma to the end. We now construct a differentiable family S;, ¢ € [0, 1]
of generating functions, with S; = S, and then show how to make a Hamiltonian vector field out of it, whose

time 1 map is F'. Let

0lQ - g’ for0 < ¢
2

®1Q - al* + (1= £(1))S(q,Q) for 3 <t

where f is a smooth positive functions, f(1) = f/(1/2) = 0, f(1/2) =1 and lim; g+ f(¢) = +00. We will

ask also that 1/ f(¢), which can be extended continuously to 1/f(0) = 0, be differentiable at 0. The choice of

f has been made so that S; is differentiable with respect to ¢, for ¢ € (0, 1]. Furthermore, it is easy to verify
that:

_ ) aaf
St(an) - { ;af

sup <7812St(qa Q)’U,’U> >a ||’U||2 ’ a> O,V’U 7é 0e IRnat € (07 1]
(¢,Q)€R2n

Hence S; generates a smooth family F}, ¢ € (0, 1] of symplectic twist maps, and in fact Fi(q,p) = (g +
(af(t))ip,p), t < 1/2),so thatlim, .o+ F; = Id,in any topology that one desires (on compact sets).
Let us write

st(q,p) = St o Yr(q,p).
where ) is the change of coordinates given by the fact that Fy is twist. It is not hard to verify that ¢;(q, p) =
(g.q— (af(t))"'p), t<1/2.so0 that:

se(a,p) = 5 (af (1) 2ol

In particular, by our assumption on 1/f(t), s; can be differentiably continued for all ¢ € [0, 1], with Sy = 0.

Hence, in the q, p coordinates, we can write:
F/pdq — pdq = ds;, t€][0,1].
By Theorem 47.7, F} is a Hamiltonian isotopy. ad

Proof of Lemma 40.7

For all non zero v € IR”, we have:

A
l'lf |< g;’U,2’U>| >
ved o
But: o '
22U,V . .
inf ———"— = inf [{A,v,v)| < inf ||4A,v
S o e Aol S B A

so that inf ¢ 4 ianvH:l HA;E’U” > a.But:

: : [Azvl|
inf [|[Azv]|=  inf =1 {0} T
H’vl\’\IZI || T H ‘U€]R£lf{0} ||’U|| nfvEIR {0} ||A;1’U||
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so that, finally:

1
sup |AZY| = [ inf inf Iv] ) <a™l.
xeg H T H (IEA velR"—{0} ||va||

41.1 Return Maps In Hamiltonian Systems
A. RETURN MAPS OF HAMILTONIAN SYSTEMS ARE SYMPLECTIC

Consider a time independent Hamiltonian on IR?" "2, with its standard symplectic structure 2, = Soro dag A
dpy.. Assume that we have a periodic trajectory v for the Hamiltonian flow. It must then lie in the energy level
H = H(v(0)), since H is time independent. Take any 21 + 1 dimensional open disk 3 which is transverse
to + at v(0), and such that X intersects ~ only at v(0).

Fig. 41. 2.

Such a disk clearly always exists, if +y is not a fixed point. In fact, one can assume that, in a local Darboux
chart, ¥ is the hyperplane with equation ¢ = 0: this is because in the construction of Darboux coordinates,
one can start by choosing an arbitrary nonsingular differentiable function as one of the coordinate function
(see Arnold (1978), section 43, or Weinstein (1979) , Extension Theorem, lecture 5.)

Define ¥ = X N {H = Hy}.It is a standard fact (true for periodic orbits of any C! flow ) that the
Hamiltonian flow /! admits a Poincaré return map R, defined on X around z(, by R(z) = ht(*)(z), where
t(z) is the first return time of z to X under the flow (see Hirsh & Smale (1974), Chapter 13).

We claim that R is symplectic, with the symplectic structure induced by {2y on Y.

Since X is transverse to v, we may assume that:

) oOH
qo_aT?o#O

on X. Hence, by the Implicit Function Theorem, the equation

H(O7q1"'7qn7p07"'7pn) :HO

implies that pg is a function of (q1,...,qn,P1,...,pn). This makes the latter variables a system of local

coordinates for Y/, and since dgy = 0 on X, the restriction of {2 is in fact
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w= !20!2 = quk/\dpk.
k=1

To prove that R is symplectic, remember that, by (41.-1) , for any closed curve in 2/, or more generally

/ pdq—Hdt:/pdq—Hdt
Re c

since ¢ and Rc are on the same trajectory tube. Here Rc represent the chain in IR>"*? x IR given by
(Rc(s)), t)).
This equality implies that the function S(z) = fzzo R*(pdq — Hdt) — (pdq — Hdt) is well defined. But,

on Y, the differential of the form inside this integral is R*w — w, since both dgg and dH are zero there. Hence

for any closed 1—chain cin X,

R*w —w =d%S = 0,ie., R is symplectic. 0

B. TWISTING AROUND ELLIPTIC FIXED POINTS

We now follow Moser (1977). If 0 is an elliptic fixed point, that is D R(0) has all its eigenvalues on the unit

circle, a normal form theorem ???(find ref.) says that (generically?) the map R is, around 0 given by:

Qr = arcosPi(q. p) — pesin®y(q, p) + fu(a. p)
Py = qksin®(g, p) + prcosPi(q. p) + gk(q, p)
n
Pr(q,p) = ar + Zﬂkz(ﬁ +p7)-
1=1

where the error term f, gx, are C'! and have vanishing derivatives up to order 3 at the origin. We now show
how this map is, in “polar coordinates” a symplectic twist map of 7*T", whenever the matriz {8y} is non
singular. Let V be a punctured neighborhood of 0 such that: 0 < >°, (¢2 + p}) < e. We introduce on V' new

coordinates (ry, 0)) by:
4, = V2rpecos2rl),  pr = \/2ryesin 270y,

where 0, is determined modulo 1. One can check that V' is transformed into the “annular” set:

1\2 1
U:{(Tkaf)k)ET"xIR”|Z<2Tk_n> <
k

2 4n?

Since the symplectic form dg A dp is transformed into edr A d@, R remains symplectic in these new
coordinates, with the symplectic form dr A d@. In fact, it is exact symplectic in U. Remember that to check

this, it is enough to show that, for any closed curve :

/ rdOz/rdO.
Ry v

It is easy to see that 2erdfy, = prdqr — qrdpy, so by Stokes’ theorem:

2e/rd0:/ pdq—qdp:—2/w
v oD D

where D is a 2 manifold in V' with boundary 0D = +. Since R preserves w in V/, it must preserve the last
integral, and hence the first. To see that R satisfies the two other conditions for being a symplectic twist map,

we just write it in the new coordinates:



41. Suspension of Symplectic Twist Maps 129

O =0 + ’(/Jk(r) + o0 (6)
Ry =r + o1(€)

Y=oy +e€ Z 2Bk

+1

where ¢ 101 (¢, 0, ) and its first derivatives in , @ tend to 0 uniformally as ¢ — 0. We can rewrite this as:
R(O,7)=(0+eBr+a+o1(e),r + 01(e)) .

So for small ¢, the condition det 0@ /dr # 0 is given by the nondegeneracy of B = {3}, one uses the fact
that R is C' close to a completely integrable symplectic twist map to show that R is twist in U (the twist
condition is open.) The fact that it is homotopic to /d derives from Exercise 23.2.

Note that the set V' and therefore U are not invariant under R. However, it is still possible to show the
existence of infinitely many periodic points for R: this is the content of the Birkhoff— Lewis theorem (see
Moser (1977)) .

Remarks HAMrem and HAMgrad are 39.8 , Corollary HAMpartial is 38.4 , Proposition HAMdecom-
pone and HAMdecomptwo are (39.8) and 39.9, Theorem HAMexp is 38.1 , HAMhamstm is 39.2. Section
HAMsecgeom is 38.0, Theorem HAMthmbp is 40.1
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CHAPTER 8 or HAMP

PERIODIC ORBITS FOR HAMILTONIAN
SYSTEMS

March 14 1999

More about my recent results in the case T" (sphere linking)? Define the radius of injectivity.
Put HAMpartial here instead of in HAM? Add the proof of Theorem 33.57 Copy the precise
statement of Arnold’s conjecture.

We present here some results of existence and multiplicity of periodic orbits in Hamiltonian systems on
cotangent bundles. Our main goal is to show the power, and relative simplicity of the method of decomposition
by symplectic twist map as presented in Chapter HAM, which results into finite dimensional variational
problems. Some of the results in this chapter have recently been improved upon by other authors. However, this
was done at a high price, using hard analytic and topological method. Many of these, and other improvements
could probably be obtained through the method presented here.

Bla bla bla....

42, Periodic Orbits In The Cotangent Of The n-Torus

We present here two results of existence and multiplicity of periodic orbits for Hamiltonian systems in 7*T".
The are easy corollaries of the Theorems of existence of multiple periodic orbits for symplectic twist maps
proven in Chapter PSTM. The first one concerns a certain class of optical systems, the second one Hamiltonians

that are quadratic nondegenerate outside of a bounded set.

A. Optical Hamiltonians

Assumption 42.1 (Uniform Opticity) H(q,p,t) = H;(z) is a twice differentiable function on 7*T" x IR

(or T*M x IR, where M = IR™) and satisfies the following:

(1) sup HVZHtH <K

(2) The matrices Hpp(2,t) are positive definite and its smallest eigenvalue are uniformly bounded below by
C > 0.

Theorem 42.2 Let H(q,p,t) be a Hamiltonian function on T*T™ x IR satisfying Assumption 42.1.
Then the time 1 map h' of the associated Hamiltonian flow has at least n + 1 periodic orbits of type

m,d, for each prime m,d, and 2" when they are all non degenerate.
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Proof. We can decompose the time 1 map:

k+1

4

L
o...ohJ.

M=hk_.0...0h

N

=

k+1
and each of the maps h ¥ is the time % of the (extended) flow, starting at time % Proposition HAMde-

N
componeof Chapter 4 shows that, for NV big enough, such maps are symplectic twist maps. Moreover, we also
noted in Chapter HAM, Remark HAMremthat these maps also satisfy the convexity condition . The result
follows from Theorem STMPthesis. O

B. ASYMPTOTICALLY QUADRATIC HAMILTONIANS

We now turn to systems that are not necessarily optical, but satisfy a certain quadratic “boundary condition”

which makes them completely integrable outside a compact set:

Theorem 42.3 Let H : T*T" x IR — IR satisfy the following boundary condition:
1

Then h', the time—1 map of the Hamiltonian flow has at least n + 1 distinct m, d—orbits, and 2"
when they are all nondegenerate (i.e. generically). Furthermore, such an orbit lays entirely in the

set ||p|| < K if and only if the rotation vector m/d belongs to the ellipsoid:

E={zeR"||A z-c)| < K}.

Proof. The boundary condition (42.1) is Assumption 2 preceeding Theorem 39.5, in which it is proven
that the time ¢ of such Hamiltonians are twist maps. Hence, as remarked in Proposition HAMdecomptwo,
the time 1 map can be decomposed into symplectic twist maps. To insure that these twist maps satisfy
the conditions of Theorem STMPtquad, we go back to the proof of that proposition, and note that, instead of
G(q,p) = (g+p, p),we cantake G(q,p) = (q+ Ap+c, p),the time 1 map of Hy(gq,p) = % (Ap,p)+c.p,
obviously a symplectic twist map . Then, outside the set ||p|| < K, the maps Fay,, Fz;—1 of the decomposition

are respectively the time 1 and the time (% — 1) of the Hamiltonian flow associated to Hy, that is:
Fy(q,p) = (g + Ap+c,p)

1-N
Fa,1(q,p) = (g + T(AP +¢),p).

These maps clearly satisfy the conditions of Theorem STMPtquad, which proves the existence of the advertised
number of m, d orbits.
To localize these orbits, note that an orbit starting in ||p|| > K must stay there, and the map »! on such an

orbit is just G. The rotation number of such an orbit is thus

(Q-q)=Ap+c

from which we conclude that m/d is in the complement of £. O

Remark 42.4 There is a distinction between periodic orbits of 2! and periodic orbits of the Hamiltonian

equations: for a general time dependent Hamiltonian flow, (k)™ # h™, and hence an m, d periodic orbit
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for h! is not necessarily one for the O.D.E. (which should satisfy h!T%(z) = h'(z) + (km,0) for all
t € [kd, (k+1)d), k € Z).However,if H is periodic in time, of period 1, the equality (k)™ = h" does hold,
and in this case the two notions coincide. In particular, this holds trivially for time independant Hamiltonians.
Unfortunatly, these cases are degenerate in our setting, since Dh?(z) preserves the vector field X, which
is thus an eigenvector with eigenvalue one. So in these cases, we can only claim the cuplength estimates for
the number of periodic orbits for the Hamiltonian flow in either Theorem 42.2 or 42.3. We think that some
further argument should yield, even in the time periodic case the sum of the betti number estimate for the
number of flow periodic orbits, when the periodic orbits are nondegenerate as orbits of the flow: i.e., the

only eigenvector of eigenvalue one for Dh%(z) is in the direction of the vector field X ;.

C. BIBLIOGRAPHY...
43. Periodic Orbits In General Cotangent Spaces

We now turn to the study of Hamiltonian systems in cotangent spaces of arbitrary compact manifolds. Our

main result, which first appeared in Golé (1994) is:

Theorem 43.1 Let (M, g) be a compact Riemannian manifold. Let F' : T*M — T*M be the time I
map of a time dependent Hamiltonian H on B*M, where H is a C? function satisfying the boundary

condition:

H(q,p.t) = g(q)(p,p) for |p|| > C.

where C' is strictly smaller than the radius of injectivity ??%have to define it somewhere???. Then
F has cl(M) distinct fized points and sb(M) if they are all non degenerate. Moreover, these fixed
points lie inside the set {||p|| < C} and can all be chosen to correspond to homotopically trivial

closed orbits of the Hamiltonian flow.

THE DISCRETE VARIATIONAL SETTING

Define
B*M ={(q.p) € T"M | g(q)(p.p) = ||p|I* < C* < R},

where R is the radius of injectivity of (M, g). Let 7 denote the canonical projection 7 : B*M — M. Let
F be as in Theorem 43.1. From Proposition HAMdecomptwoin Chapter HAM, we can decompose F' into a
product of symplectic twist maps :

F=Fy,yo...0oF,

where Fyy, restrained to the boundary 9B* M of B*M is the time 1 map h} of the geodesic flow with
Hamiltonian Hy(g,p) = 1 ||p||*. Likewise, Foj_1 is h[TTN on OB*M.

Let Sy, be the generating function for the twist map F}, and ¢, = ¢, the diffeomorphism (¢, p) — (¢, Q)
induced by the twist condition on F}. We can assume that v is defined on a neighborhood U of B* M in
T*M.Let
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O={q=(q1,---,qn) € MY (k> @k41) € ¥i(U) and

(44.1)
(gan,q1) € Yan(U)}

O is an open set in M2V, containing a copy of M (the elements g such that q,, = q,, for all k).
Next, define :

2N

(4.2) W(q) = Zsk(%a Qp1);

k=0

where we have set g, ; = q;. Choosing to work in some local coordinates around q € M N weletp, =
—015k(Qy» Qpot1) and Py, = 925k(qy,, Gj41)- In other words, (g, p,) € Ty M is such that ¢« (g, py) =
(ak>qpy1) and (g1, Py) € Ty, ., M is such that Fi(ay,pr) = (@41, Pr). We let the reader check that
the following proofs can be written in coordinate free notation.

As in the case M = T", we have:
Lemma 44.1 (Critical Action Principle) The sequence q of O is a critical point of W if and only if the
sequence {(qy, Pr) fref1,... 28,1} i85 an orbit under the successive Fy’s, that is if and only if (q,,p;)

is a fized point for F.

Proof. Because the twist maps are exact symplectic and using the definitions of p,,, P}, we have:

(44.2) Pidqy1 — Prdqy, = dSk(qks qii1):
and hence
2N
dW (q) = Z(Pk—l — Pi)dgy,
k=1

which is null exactly when Pj_; = p,, ie. when Fj(qs_1,P;_1) = (4, D)) Now remember that we
assumed that g, = q;. O

Hence, to prove Theorem 43.1, we need to find enough critical points for W. As before, we will study the
gradient flow of W (where the gradient will be given in terms of the metric g) and use the boundary condition
to find an isolating block. The main difference with the previous situations on 7*T" is that we cannot put
W in the general framework of generating phases quadratic at infinity. Nonetheless, thanks to the boundary
condition we imposed on the Hamiltonian, we are able to construct an isolating block and use Floer’s theorem

of continuation to get a grasp on the topology of the invariant set, and hence on the number of critical points.

45. Proof Of Theorem 43.1
THE ISOLATING BLOCK

In this subsection we prove that the set B defined as follows:

(45.1) B={q€0]|lp.(qr, qr1)ll <C}

is an isolating block for the gradient flow of W, where O is defined in (44.1) , C is as in the hypotheses of
Theorem 43.1 and p;, = —015k(qy. g)1)- Note that when ||pk(qk, qu)H =C,
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= 1 if k is even

, _ g
(45.2) Dis(qy; gy11) = |ax|C Whefe{ak LN if ks odd

Clearly B contains the constant sequences, a set homeomorphic to M.
Proposition 45.1 B is an isolating block for the gradient flow of W.

Proof.  Suppose that the point g of U is in the boundary of B. This means that ||p, || = C for at least one k.
As noted in (45.2) , this means that Dis(qy, g5 ;) = |ax|C for some factor a;, only depending on the parity
of k. We want to show that this distance increases either in positive or negative time along the gradient flow

of W. This flow is given by:
(45.3) q;, = Ak(Pi—1 — py) = VIWi(q)

where A, = A(qy,) is the inverse of the matrix of coefficients of the metric ¢ at the point q,,. Remember that
we have put the product metric on O, induced by its inclusion in M2V (see Remark HAMgradon the definition
of the gradient of a function).

We compute the derivative of the distance along the gradient flow at a boundary point of B, using Corollary
HAMpartialand the fact that h¢* (q;. p) = (qp4 1. Pr):

d_.. . _
—Dis(qy, Qk+1)’t:0 = 01Dis(qy, @y+1) - VWi(q)

dt
+ 02Dis(q: Gir1) - VWis1(Q)

. w4
= szgn(ak)m «Ap(Pr-1 — pg)
k

(45.4)

Py

E A (P — Py
||Pk|| k+1( k k+1)

+ sign(ag)

We now need a simple linear algebra lemma to treat this equation.

Lemma 45.1 Let (, ) denote a positive definite bilinear form in R", and ||.|| its corresponding norm.
Suppose that p and p’ are in R" ,that ||p|| = C and that ||p’|| < C. Then :

p,p —p)<o.

Moreover, equality occurs if and only if p’ = p.

Proof. From the positive definiteness of the metric, we get:
(p'=p.p —p) 20,
with equality occuring if and only if p’ = p. From this, we get:
2(p.p) <(p.P)+(pp)

Finally,
(p,p')—(pp)) <0

N =

(0 -p)hp)=(p.p)—(pP,p) <

with equality occuring if and only if p’ = p. O
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Applying Lemma 45.1 to each of the right hand side terms in (45.4) , we can deduce that %Dis(q ks Qig1)
is positive when £ is pair, negative when & is odd. Indeed, because of the boundary condition in the hypothesis
of the theorem, we have || Py|| = ||p;.|| whenever ||p,|| = C: the boundary 9 B* M is invariant under F' and
all the F},’s. On the other hand g € B = ||p;|| < C'and || P;|| < C, for all [, by invariance of B* M . Finally,
ay, is positive when k is even, negative when £ is odd.

We have shown that the gradient flow exits B at all the points of 0B except perhaps at the edges of 5.
These edges are the sets of points g such that more than one p,, has norm C'. The problem at these edges occurs
p,|| = C = ||P;] and VW;(q) = 0.

It is now crucial to note that {[, ..., m} can not cover all of {0,...,2N}: this would mean that q is a

when £ is in an interval {/, ..., m} such that, for all j in this interval,

critical point corresponding to a fixed point of A} in 9B* M . But such a fixed point is forbidden by our choice
of C' orbits of our Hamiltonian on the set ||p|| = C' are geodesics, but geodesics in that energy level can not
be fixed loops since C' > 0, and they can not close up in time one either since C' is less than the injectivity
radius.

We now let £ = m in (45.4) and see that the flow must definitely escape the set B at g in either positive

or negative time, from the m*" face of B. ad

Remark 45.2 If the Hamiltonian considered is optical and we decompose its time 1 map into a product of NV
1
twist maps as in HAMdecompone, all the F},’s coincide with /" on the boundary of B* M. In that case, all

the ay’s in the above proof are positive, and B is a repeller block in this case.

END OF PROOF OF THEOREM 43.1

To finish the proof of Theorem 43.1 we use Floer’s theorem TOPOfloerthmof continuation of normally

hyperbolic invariant sets. We consider the family F)\ of time 1 maps of the Hamiltonians:
Hy,=(1—-XHy+ \H.
Corresponding to this is a family of gradient flows ¢}, solution of

d
—q = VW,y(q
i A(),

where W), is the discrete action corresponding to the decomposition in symplectic twist maps of the map F.
We take care that this decomposition has the same number of steps 2V for each \. The manifold on which
we consider these (local) flows is O, which is an open neighborhood of B in M?" . Each of the I satisfies
the hypothesis of Theorem 43.1, and thus Proposition 45.1 applies to ¢% for all A in [0, 1]: B is an isolating
block for each one of these flows. Hence the maximum invariant sets G for the flows (} in B are related by
continuation. The part of Floer’s Theorem that we need to check is that GG is a normally hyperbolic invariant

manifold for ¢f.

Lemma 45.2 Let Gy = {q € B | q;, = q;,Yk}. Then Gy is a normally hyperbolic invariant set for

¢t Go is a retract of O and it is the mazimal invariant set in B.
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Proof. The only critical points for W, in B are the points of Gy which correspond to restpoints of the
geodesic flow, i.e. the zero section. Indeed, critical points of W}, in B corresponds to periodic points of period
1 for the geodesic flow in B* M. Our definition of that sets precludes nontrivial periodic geodesics in B* M.
We now show thatthe maximum invariant set for ¢§ in B is included in G. Since ¢{ is a gradient flow, such an
invariant set is formed by critical points and connecting orbits between them. The only critical points of W)
in B are the points of GG . If there were a connecting orbit entirely in B, it would have to connect two points
in Gg, which is absurd since W, = 0 on G, whereas W, should increase along non constant orbits.

G\ is a retract of M 2N under the composition of the maps:

7=(q1,---,qon) = €1 — (21,91, 1) = a(q)
which is obviously continuous and fixes the points of G.

It remains to show that (G is normally hyperbolic. Since Gy = M is an n-dimensional manifold made of
critical points, saying that it is normally hyperbolic is equivalent to saying that kerV2Wj(q) has dimension n:
indeed, if it is the case, the only possible vectors in this kernel must be tangent to GG, and thus he differential
of the flow is nondegenerate on the normal space to 7'Gy. In the present situation, the second variation formula
of Lemma 31.2says that the 1-eigenspace of DA is isomorphic to the kernel of V2. Hence it is enough
to check that at a point (q,0) € B*M corresponding to g, 1 is an eigenvalue of multiplicity exactly n for
Dh(q;,0). Let us compute Dh}(q;,0) in local coordinates. It is the solution at time 1 of the linearized (or
variation) equation:

U = JV?Hy(q,,0)U

along the constant solution (¢(t), p(t)) = (q;,0), where .J denotes the usual symplectic matrix ( —OI é) .

An operator solution for the above equation is given by exp (tJ V2Hy(q, O)) On the other hand:

VZHy(q,,0) = (8 A((«)n) )

which we computed from Hy(q,p) = A(q)p.p, the zero terms appearing at p = 0 because they are either

quadratic or linear in p. From this,

Dhy(a,,0) = exp (JV?Ho(g,,0)) = (é A(}h)>

is easily derived. This matrix has exactly n independent eigenvectors of eigenvalue 1 ( it has in fact no other
eigenvector). Hence, from Lemma 31.2, VQW@) has exactly n vectors with eigenvalue 0, as was to be
shown. O

We now conclude the proof of Theorem 43.1. We have proved that the gradient flow (?, has an invariant
set G1 with H*(M) — H*(G;). From this we get in particular:

cl(G1) > cl(M) and sb(G1) > sb(M).

Theorem 50.2 tells us that ¢* must have at least cl(G1) rest points in the set G1, and sb(G) if all rest points
are nondegenerate. But Lemma 31 2tells us that nondegeneracy for V2W at a critical point is the same thing
as nondegeneracy of a fixed point for F' (no eigenvector of eigenvalue 1). This proves the existence of the
advertised number of fixed points of the map F'. In the following section, we will see that all these fixed points
of the time 1 map correspond to periodic orbits may be chosen to be homotopically trivial. This concludes the
proof of Theorem 43.1. O



138 CH 8 or HAMP: PERIODIC ORBITS FOR HAMILTONIAN SYSTEMS.(3/14)

FREE HOMOTOPY CLASSES

Since each F, is close (or equal) to hgk for some positive or negative ay, we have: q is in the set 1 (B:‘I‘ M)
and, since By M — 1y,(B* M) is a diffeomorphism, we can define a path ¢ (¢, Q) between ¢ and a point Q)
of ¢y, (B, M) by taking the image by 1, of the oriented line segment between ¥ (g) and ¥ (Q) in ByM.
In the case where F}, = h, this amounts to taking the unique geodesic between ¢ and Q in ¢y (B;; M) .

If we look for periodic orbits of period d and of a given homotopy type, we decompose £ into 2N d twist

maps, by decomposing F' into 2N . Analogously to (4.1), we define :

Od = {q = (qla e 7q2Nd) € MQNd |(qk7qk+1) € ¢k(U) and
(@2nas q1) € Yana(U)},

remarking that the 1/;,’s here correspond to the decomposition of F'¢ into 2Nd steps (U is as before a
neighborhood of B* M).

To each element g in O, we can associate a closed curve ¢(q), made by joining up each pair (gx, gi+1)
with the curve ¢y (qx, q,+1) uniquely defined as above. This loop ¢(q) is piecewise differentiable and it depends
continuously on @, and so do its derivatives (left and right). In the case of the decomposition of A} , taking
Fy=h}, this is exactly the construction of the broken geodesics (see Section 38.0). Now any closed curve

(10)

in M belongs to a free homotopy class m. To any d periodic point for F', we can associate a sequence

g(x) € Oy of ¢ coordinates of the orbit of this point under the successive F},’s in the decomposition of F d

Definition 45.3 Let z be a periodic point of period d for F'. Let g be the sequence in O, corresponding to .
We say that « is an (m, d) point if ¢(g(x)) is in the free homotopy class m.

This definition has the advantage to make sense for any map F' of 7% M which can be decomposed into
the product of symplectic twist maps . If F' is also the time 1 map of a Hamiltonian, it agrees with the obvious

definition:

Proposition 45.4 If z is an m,d periodic orbit, then the projection m(z(t)),t € [0,d] of the orbit of

z under the Hamiltonian flow is a closed curve in the free homotopy class m.

Proof. Left as an exercise (Hint. Use the geodesic flow to construct the homotopy between c(g(z)) and

m(2(1)))

Let
(45.5) Oma={q€0]c(q) €m}

Since ¢(q) depends continuously on g € O, Oy, 4 is a connected component of O. The reader who wants to

make sure that, in the proof of Theorem 43.1, the orbits found are homotopically trivial, can check that the

10 We remind the reader that free homotopy classes of loops differ from elements of 71 (M) in that no base
point is kept fixed under the homotopies. As a result, free homotopy classes can be seen as conjugacy
classes in 7 (M), and thus can not be endowed with a natural algebraic structure. Two elements of a free
class give the same element in H;(M). Hence free homotopy classes form a set smaller than 1 (M), bigger
than Hi(M). All these sets coincide if 71 (M) is abelian.
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proof we gave in last section works identically when one replace the space O, by its connected component
O.,1, where e is the homotopy class of the trivial curve. Another place where one uses this decomposition of

O in different homotopy components is the following:

Theorem 45.5 Let (M,g) be a Riemannian manifold of negative curvature and H be as in Theorem
1. If v denotes the (unique) closed geodesic of free homotopy class m, F has at least 2 (m,d) orbits
in B*M when length(ym) < dC' .

The proof of Theorem 45.5 (see Golé (1994), Theorem 2) has the same broad outline as that of Theorem
1. We work in Oy, 4 instead of O. The normally hyperbolic invariant set that we continue to in this setting is
given by the set G of critical sequences corresponding to the orbits under the hy*’s of the points on 7,,,. The
normal hyperbolicity of G derives this time from the hyperbolicity of the geodesic flow in negative curvature.
77?7 Add the proof in? 7?7

46. Linking Of Spheres: Toward A Generalization Of The Theorem Of
Poincaré And Birkhoff

As stated in the introduction , Arnold conjectured in 1965 a generalization of the Theorem of Poincaré-Birkhoff
for Hamiltonian maps of T" x IB™ (where IB" is the closed ball in IR™).

Arnold’s Linking of Spheres Conjecture

Generalized Arnold Conjecture Let M be a compact manifold, and 7' be a Hamiltonian map of a ball bundle
B*M in T M. Suppose that each sphere 9 B; M links with its image by " in 0B* M. Then F' has at least
cl(M) distinct fixed points, and at least sb(M ) if they are nondegenerate.

In Banyaga & Golé (?7?)(see also Golé (1994)), we proved the simple case:

Theorem 46.1 Let F' be a symplectic twist map of B* M which links spheres on the boundary 0B*M .

Then F' satisfies the generalized Arnold Conjecture.

Proof. The proof of this theorem is trivial once one understands the meaning of the linking condition. If one
looks at the Poincaré-Birkhoff situation, an easy equivalent condition to the boundary twist condition (points
on the two boundary components go in opposite directions for some lift of F) is that a vertical fiber {x = 2}
and its image by F' should have a nonzero algebraic intersection number (i.e. the number of intersections
counted with orientation). Let us take this for the moment as a working definition of the linking of spheres in

the general case:

Definition 46.2 (Boundary Twist: version 1) We say that a map F': B*M — B* M satisfies the boundary
twist condition if each fiber Ay, = 7 !(q,) intersects its image by F’ with a nonzero algebraic intersection

number



140 CH 8 or HAMP: PERIODIC ORBITS FOR HAMILTONIAN SYSTEMS.(3/14)

We will see later on (for the reader who is comfortable with a little algebraic topology) that this intersection
number condition is equivalent to linking of the boundary spheres as is usually defined in algebraic topology
(and was probably meant by Arnold). The importance of this is that the boundary twist condition is indeed a
topological condition on the action of the map on the boundary.

If F' is a symplectic twist map, a fiber A, and its image under F' may intersect at most once. Hence the
boundary twist condition means in this case that all the fibers intersect their image ezactly once. Fixed points
of F correspond to critical points of ¢ — S5(q, q). This function is well defined since, by what preceeds, the
diagonal in M x M is in the image of B* M by the embedding ¢'r. Hence F' has as many fixed points as
the function ¢ — S(q, q) has critical points on M. Morse and Lyusternick-Schnirelman’s theories give the
advertised estimates. ad

We now show that, in the case considered by Arnold, our working definition of boundary twist is indeed
equivalent to the classical one of algebraic topology. We first remind the reader of the classical definition
of linking of spheres. Let A, be a fiber of B*M as before. Then 94 is an n dimensional sphere. It make
sense to talk about its linking with its image F'(04,) in 0B *T": the latter set has dimension 2n — 1 and the
dimensions of the spheres add up to 2n — 2. The linking number F'(0A,) with 04, is given by the class
[F(0Aq)] € Hp—1 (8B*Tn\(‘)Aq) More precisely, we have:

H, 1(dB*T"™\94y) = H, 1 (5"~ x (R" — {0}))

Kunneth
~

=~ H, (8" Y@ H, 1(R" - {0})

(46.1)

Thus, taking 04, from OB*T" creates a new generator in the (n — 1)st homology, i.e. the generator b of
Hy—1(R" = {0}).

The linking number of the spheres F'(0A,) and 04, is given by the H,,_1(IR" — {0}) = IR coefficient
in the decomposition of the homology class [F'(94)] in the direct sum in (46.1) . If the linking number is

nonzero, we say that the spheres 04, and its image by F' /ink.

Definition (Boundary Twist: Version 2) We will say that the map F’ satisfies the boundary twist condition
if forall g € T" these spheres link in OB*T" .

Lemma 46.3 If F is the lift of a diffeomorphism of B*T™ = T™ x B", the two definitions of the
boundary twist condition are equivalent. More precisely, the algebraic intersection number #(Aq N

F(Ay)) and the linking number of the spheres 0Aq and F(0Aq) are equal.

Proof. We complete (46.1) into the following commutative diagram:

Hn_1(0B*T"\04,) = H,_1(IR" — {0}) & H,_1(5")
i | 4

anl(B*Tn\Aq) = anl ((IR” - {O} X Bn))

where ¢, j are inclusion maps. It is clear that j.b generates

Hp1 (IR" —{0}) x B") = Hp—1 (IR" — {0}) x R").
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The last group measures the (usual) linking number of a sphere with the fiber A, in B *T" = IR*". But it is

well known that such a number is the intersection number of any ball bounded by the sphere with the fiber
Ay, counted with orientation.

O

??7more about my recent results in the case T"???

Theorem HAMPthmfp is 43.1, Theorem HAMPthmhyp is 45.5
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CHAPTER 9 or AMG

*GENERALIZATIONS OF THE AUBRY-MATHER
THEOREM

January 16, 2000

Complete

There are, strictly speaking, no full generalizations of the Aubry-Mather Theorem in higher dimensions:
we will see in this chapter examples of fiber convex Lagrangian systems whose set of minimizers achieves
only very few rotation directions. However some attempts of generalizations in higher dimensions are quite
successful in what they try to achieve. In Section 47, we survey some results by de la Llave and his collaborators.
Their setting is explicitly non dynamical but generalizes naturally the Frenkel-Kontorova model to functions
on lattices of any dimension. They are entirely successful in proving an Aubry-Mather type theorem in this
setting, as well as in some PDE cases. In Section 48, we review the work MacKay & Meiss (1992) who
construct higher dimensional analogs of Aubry-Mather sets in symplectic twist maps that are close to the anti-
integrable limit: one where the potential term in the generating function of a standard type map dominates.
In Section 49, we survey the work of Mather on minimal measures in convex Lagrangian systems. This is
the closest to a generalization of the Aubry-Mather theory as one can get in the setting of general convex
Lagrangian systems (as well as symplectic twist maps ). We start in Subsection A with an introduction to such
minimizers and their relation to hyperbolic orbits. In Subsection B we give a quick review of some notions of
ergodic theory that are needed in Subsection C, where we introduce minimal measures in Lagrangian systems.
Subsection D explores, through examples, the intrinsic limitations of this theory. Section 50 shows that some

of these limitations can be alleviated if one considers systems on cotangent bundles of hyperbolic manifolds.

47.* Aubry-Mather Theory for Functions on Lattices and PDE’s.
A*. Functions on Lattices

Remember from Chapter 1 that the Frenkel-Kontorova model describes configurations of interacting particles
in a periodic potential. For simplicity, these configurations are assumed to be one dimensional, and the
interactions only involve nearest neighbors. The resulting energy function is the familiar:

W(z) = %;m ~o)? = Vi
where the potential function V' has period 1. W coincides with the energy function for the standard map with
generating function S(z, X) = (X —x)? — V(). The variational equation VIV = 0 for this energy function

is
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(—A:c)k - V’(l‘k) =0

where A(x), = 2y, — 21 — 41 is the discretized Laplacian. Note that the configuration x can be seen as
a function Z — IR which to the integer £ makes correspond the real zj,. One obtains (see Koch & al. (1994) ,
Candel & de 1a Llave (1997) , de la Llave (1999)) a natural generalization of this model, relevant to Statistical
Mechanics, by asking that « : Z? — TR be a function on a lattice of dimension d. We assume nearest neighbor

interaction here. The energy becomes:

W(z) = 1 Z (zp — )% — Z V(zk).

2
{(kg)€Z?| |k—jl=1} kez?

Again V is of period 1 and the corresponding variational equation is still of the form:
(47.1) (—Az), — V'(zk) =0

where (Ax), = ;=1 ; — 2dzy is the d-dimensional discrete Laplacian. In fact, the theory in Candel
& de la Llave (1997) applies to substantially more general settings, where & can belong to a set A on which
a certain type of groups acts in a mildly prescribed way, and where the interactions involves not just nearest
neighbors, but all possible pairs of particles (with some decay condition at infinity).

Remember that the solutions « : Z — IR found by Aubry and Mather for the Frenkel-Kontorova model are
such that |z, — kw| < co. One way to express this is by saying that the graph of « : Z — TR is at bounded
distance from a line of slope w in IR x IR.. Likewise, the following generalization of the Aubry-Mather Theorem

finds configurations whose graphs are at bounded distances from planes of “slopes” w € R%:

Theorem 47.1 (de la Llave et. al.) For every w € IR,d, there exists a solution of (47.1) such that

sup |z —w - k| < oo.
kezd

The method of proof is very similar to the proof of the Aubry-Mather Theorem presented in GCchapter.
One considers the analog of CO sequences, called Birkhoff configurations by these authors. In complete

analogy to the CO sequences, they satisfy:
Tprj+ 1> a2k, VE€ZY or mpyy + 1< ay, Yk e Z
The analog to the set of CO sequences of rotation number w, which we denoted by C'O,, in GCchapter is:
B, ={x | « is Birkhoff and sup |z; — k- w| < 00}
kez?

In a way analogous to the proof of Theorem 15.1, one shows that the gradient flow of W (that these authors,
justifiably, call the heat flow) preserves order among configurations and is suitably periodic, so that the set
B,, is invariant under the flow. The same argument as in the proof of Theorem 15.1 is then used to show that
W must have a critical point inside B,,. So, as in the classical Aubry-Mather Theorem, one not only finds

solutions that have asymptotic slope w, but these solutions have strong order properties, expressed here in

terms of nonintersection: they are Birkhoff.
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B*. PDE’s

As Equation (47.1) suggests, the above theory smells of discretized PDE’s. It is therefore not too surprising
that the same kind of methods can be applied to certain PDE problems. The main ingredients necessary are
some translation invariance and a heat flow that satisfies a comparison principle u > v = ¢'u > ¢'v,
which occurs in parabolic PDE’s. The method can be applied (see de la Llave (1999)) to the following PDE
situations, to obtain solutions whose graphs are at bounded distance from planes with prescribed slopes, and

have nonintersection properties:
(47.2) Au+ V' (x,u) =0

where V(z + e,u+¢) =V(z,u)Vz e R, uecR,ec Z* (€ Z.

k
(47.3) S L+ V(2,u) =0
i=1
where L; are Z* periodic vector fields satisfying Hormander’s hypoellipticity conditions and V" is as in the

previous case.

(47.4) (=2A)Y2u + V' (z,u) =0

with V' as above. de la Llave (1999) also looks at the following PDE:

Ou = ug — Uggy = —V(u) + f(z,t)
(47.5)
u(z+1,t) =u(z,t+T) = u(x,t)

where the function f also has the periodicity:
(47.6) flz+1,t) = f(z,t +T) = f(z,1).

We say that the real number 7' is of constant type if its continued fraction expansion is bounded. For instance,

noble numbers are of constant type.

Theorem 47.2 (de la Llave) Let 1' be a number of constant type, let f € L? satisfy (47.6) and let
V:IR — IR satisfy

(i) 0 < a < V' < B where o is any positive number and 8 only depends onT (in an explicit manner)
(ii) V" (2)] < K

Then there exists a weak solution v € L? to Equation (47.5) . Moreover, if f € H" and V € C"2
has small enough C"™*2 norm, then there is a solution uw € H" of (47.5) which is unique in a ball in

H" around the origin.

The method of proof is different from that of the above PDE’s, but still involves a variational approach.
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48.* Monotone Recurrence Relations

Angenent (1990) proposes a generalization of twist maps of the annulus to maps of $* x IR™Y which are defined

by solving a recurrence relation:
(491) A(Ik—la cee amk-i-m) =0

which generalizes 025 (g1, xx) + 01.5(xk, xx+1) = 0 in twist maps, where k = [ = 1. The function A is
required to satisfy the conditions:

a) monotonicity A(x_y,...,T4y) is a non decreasing function of all the xj, except possibly for £ = 0.
Moreover, it is strictly increasing in the variables x_; and z,,.

b) periodicity A(Tp_qy. .., Thom) = A(Tp—y + 1, ..., Tprm + 1)

¢) coerciveness limy, 100 A(T_py. .. Ty) =limg, 100 A(T_fy. .., 2y) = £00

Under these conditions, Angenent calls (49.1) a monotone recurrence relation. Conditions a) and c)
imply that one can solve for x,, in terms of a given (xk_y,...,Zk1m—1). Hence this defines a map
Fa:(zr—ty o Zhtm—1) — (Thi41, -+ Thprm) from IR™™ to itself. Condition b) implies that this maps
descends to amap on $' x IR"" "1, Hence the NV above is N = [ +m — 1.

The notion of CO configurations, rotation number and partial order on sequences etc... of Chapter AM
and GCchapter are still entirely valid here, since the variables zj, are 1 dimensional (Angenent also calls CO
sequences Birkhoff). Aninteresting notion that Angenent (1990) introduces, inspired by PDE methods, is that of
sub— or supersolution of the monotone recurrence relation (49.1) : x is a subsolution if A(xy ;. ..., 2p ,,) <
0, Yk € Z and a supersolution if A(x),_;,... 2, .) >0, Vk € Z.

Theorem 49.1 (Angenent) Let x, © be sub— and supersolutions respectively, which are ordered: x < .

Then there is at least one solution of (49.1) , say x, for which x < x < T holds.

Using this theorem (whose proof is simple), Angenent (1990) is able to generalize a theorem of Hall (1984),
itself a generalization of the Aubry-Mather theorem: if a twist map of the annulus, which is not necessarily
area preserving, has a (m, n)-periodic orbit, then it must have a CO (m, n)-periodic orbit. If the map is also
area preserving, this implies, taking limits, the existence of CO orbits of all rotation numbers. Analogously,
Angenent proves that if there is an orbit of F'4 with rotation number w € IR, then F A must also have a CO
orbit of rotation number w.

Suppose that two solutions « and w of (49.1) “exchange rotation numbers” in the sense that:

lim 2p/k>w; > lim wg/k
n—-+oo n——oo

and
lim wi/k<wy < lim xi/k
n—-+00 n— —0oo

holds for some wy < w;. Then Angenent proves that there must be CO orbits of any rotation number
w € [wg,w1]. Moreover this exchange of rotation numbers condition implies chaos: the topological entropy
hiop(Fa) > 0,in that there is a compact invariant set semi conjugate to a Bernouilli shift. This also generalizes
shadowing results of Hall (1989) and Mather (1991a). Angenent proves a few other interesting results for the

map Fa.
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49.* Anti-Integrable Limit

MacKay & Meiss (1992) explore the existence of Aubry-Mather sets (as well as many other possible config-
urations) close to the anti-integrable limit, where the potential of a standard like map becomes all powerful.

Consider a family F. of symplectic twist maps of 7*T"™ given by the generating functions:

S(q,Q) =€T'(q,Q) +V(q)

where, for simplicity, we can assume )
T(qa Q) = §<Q - q)27

although many more general 7”s can be considered. As usual, orbits of F, correspond to solutions of

(49.2) 028¢(qr_1,qy) + N Sc(qy, qp1) = 0.

Even though Fj is not defined, it is perfectly acceptable to set ¢ = 0 in Formula (49.2) . This is called the
anti-integrable limit , a notion that seems to have appeared independently in Aubry & Abramovici (1990) and
Tangerman & Veerman (1991). The force of this concept is that the solutions of (49.2) at e = 0 are perfectly
understood: they are simply allocations of g;, to one of the critical points of V: (49.2) is just dV'(g,;,) = 0 when
e = 0.If V is a Morse function, it has finitely many critical points modulo Z" and they are all nondegenerate.

This has the following consequence:

Theorem 49.2 (MacKay-Meiss) Any solution q(0) of (49.2) for e =0 continues to a solution q(€)

when € is small.

Proof. Rewrite the infinite system of equations (49.2) in the form
G(e,q) =0

where G : IR x X — (IR")% is given by G(¢, q) = 925c(qj,_1, q;,) + 015¢(qy, ;1) and X is the Banach
space of sequences such that supy, ||g;, — ¢;,(0)|| < oc. The Implicit Function Theorem on Banach spaces
(see Lang (1983) ) applies here to find, for small ¢, a g(€) such that G(e, g(¢)) = 0 as long as %(0, q(0)) is
invertible. But this is indeed the case since
e 0,000 = V"(a,(0)

so that %—2 (0, g(0)) is an infinite block diagonal matrix with the n x n diagonal blocks V"’ (g, (0)) all invertible
and uniformly bounded. Indeed these matrices are chosen among a finite set, since g, (0) is necessarily a critical
point of V', of which there are finitely many mod Z", by the assumption that V' is Morse. O
One can simultaneously continue compact sets of stationary solutions from the anti-integrable limit. Such sets
can be quite complicated, since the set of all stationary configurations of the anti-integrable limit can be seen
as a shift on as many symbols as there are critical points. In particular, one can find invariant Cantor sets for
F. One can also get orbits with all rotation vectors w € IR". To do so, consider the anti-integrable stationary

solution g(0) which is such that g, (0) is at some arbitrarily chosen critical point of V' and

44(0) = klw] + g(0),
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where [w] is the integer part of the vector w. Each g, (0) is thus on the same critical point as g, (0), but translated
by the integer vector [w]. Since |g;,(0) — kw| < v/n, g(0) has rotation vector w. Now use Theorem 49.2 to
continue this to an orbit of F, with rotation vector w. One can also continue simultaneously all anti—integrable
solutions as the above with rotation vectors in a compact set: they themselves form a compact set.

Even though this seems almost too easy, the anti-integrable limit is a very useful concept in order to understand
the spectrum of all possible dynamics of symplectic twist maps . It is fair to say that, to this date, the least

understood cases are those that are neither close to integrable nor to anti—integrable.
50.* Mather’s Theory of Minimal Measures

We now come to Mather’s theory of existence and regularity of minimizers. This theory is quite general: it
covers a wide class of convex Lagrangian systems on tangent bundles of arbitrary compact manifolds. Note
that similar, but less developed theories were created by Bangert (1989) in the setting of minimal geodesics
on compact manifolds and Katok (1992) in the setting of perturbations of integrable symplectic twist maps .
There is no doubt that Mather’s theory could be worked out for general symplectic twist maps . Even now, the
correspondences between Lagrangian systems and symplectic twist maps given in Chapter 6 (see in particular
the Bialy-Polterovitch suspension theorem 40.1) should allow an ample transfer of Mather’s results to the
symplectic twist maps case.

The lesson we get from Mather’s work is that, yes, minimizers in general manifolds behave very much
like those on the circle (the realm of the classical Aubry-Mather theory), in that they satisfy a graph property.
The bad news is that minimizers may be much scarcer than in the circle case: Hedlund (1932) had already
constructed a Riemannian metric on T (a setting encompassed by Mather’s) which is very small along 3 non
intersecting geodesics which generate H; (T3). All other minimizers of a certain length are then bound to
spend a good portion of their time close to these geodesics. In particular, these three geodesics are the only
possible recurrent minimizers. This limits the possible rotation vectors of minimizers to these three directions
only. Bangert (1989) (geodesic setting) and Mather (1991b) (Lagrangian setting) show that, in a precise sense,
this is the worst case scenario: there should be at least as many rotation directions represented by minimizers as
there are dimensions in H; (M, IR). And, to end on an optimistic note, Levi (1997) construct, in this worst case
scenario of Hedlund’s example, “shadowing” locally minimizing orbits that spend any prescribed proportion
of time close to each of the minimizers. In particular, he constructs locally minimizing orbits of all rotation

vectors.

A*. Lagrangian Minimizers

Throughout this section and next, we consider time-periodic Lagrangian systems determined by a C?2-
Lagrangian function L : TM x $' — IR, where M is a compact manifold given a Riemannian metric

g. Remember (see Appendix 1 or SG and Chapter 6) that extremals of the action

b
A(y) = / L34, 1)t

satisfies the Euler-Lagrange equations % % — % = 0. Using local coordinates these equations yield a first

order time-periodic differential equation on 7'M , and thus in the standard way, a vector field on 7'M x $'. This
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can be viewed as the Hamiltonian vector field corresponding to the Lagrangian system, pulled back to 7'M by
the Legendre transformation. Since 7'M x $! is not compact it is possible that trajectories of this vector field
are not defined for all time in IR and thus do not fit together to give a global flow (¢.e. an IR-action). When
the flow does exist, it is called the Euler-Lagrange (or E-L) flow . The following quite general hypotheses are
the setting of Mather (1991b) .

Mather’s Hypotheses

LisaC? function L : TM x §' — 1R that satisfies:

(a) Convexity: g";& is positive definite.

(b) Completeness: The Euler-Lagrange flow determined by L exists.

(c) Superlinear: W — oo when ||v|| — +oo.

Mather’s Hypotheses are satisfied by mechanical Lagrangians, i.e. those of the form
L2
Lz, v.t) = S llll” = V(z,1),

where the norm is taken with respect to any Riemannian metric on the manifold. (In fact, one may allow the

norm to vary with time, under some conditions, see Man€ (1991) , page 44).

Minimizers. We know that, for twist maps, orbits on Aubry-Mather sets are minimizers in the sense of
Aubry. We have also seen in INVchapter that orbits on KAM tori are minimizers for symplectic twist maps .
These are natural reasons to look for minimizers in convex Lagrangian systems. Lagrangian minimizers are
defined in a way analogous to the discrete case. If Misa covering space of M (see Appendix 2 or TOPO), L
lifts to a real valued function (also called ) defined on TM x $*. A curve segment v : [a,b] — M is called
a M-minimizing segment or an M-minimizer if it minimizes the action among all absolutely continuous
curves (3 : [a,b] — M which have the same endpoints as v. A curve - : IR — M is also called a minimizer if
Via.s) is a minimizer for all [a, b] C IR. When the domain of definition of a curve is not explicitly given it is
assumed to be IR. In practice, the two main covering spaces that we will consider are the universal cover (in
next section) and the universal abelian cover (in this section, see Appendix 2 or TOPO for the definitions of
these covering spaces).

A fundamental theorem of Tonelli (see Mather (1991b) or Mang (1991) ) implies that if L satisfies
Mather’s Hypotheses, then given a < b and two distinct points z,,z;, € M there is always a minimizer
with 7(a) = x, and v(b) = . Moreover such a + is automatically C? and satisfies the Euler-Lagrange
equations (this uses the completeness of the E-L flow). Hence its differential dv(t) = (y(t),%(¢)) yields a
solution (dv(t), t) of the E-L flow.

Minimizers vs. hyperbolicity. There is a general principle, first unveiled by Morse in Riemannian
geometry, which ties the index of the second derivative of the action of a segment of geodesic to the number of
conjugate points this segment has. In terms of more general Lagrangian systems, this number can be formulated
as a certain rotation index (the Maslov index) of Lagrangian subspaces under the differential of the flow along
an orbit segment (see Duistermaat (1976)). If the orbit is hyperbolic, the Lagrangian tangent subspace can be

chosen to be the unstable manifold. A strong illustration of this occurs in the realm of symplectic twist maps
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where Aubry et. al. (1991) found a striking correspondence between (local) minimizers and hyperbolicity,
which we now sketch. We first need some definitions.
Given a stationary configuration g for a symplectic twist map on 7*T" (i.e. the q coordinate of an orbit

of the map), we can define the Hessian or second derivative of the action as in the proof of 14.2 :

/30' 061' B1

B oz [
VW (q) = B2 a3
) ﬁq—l

an infinite matrix, tridiagonal by blocks, where

ap = 0225(q)_1,q;) + 0115(qy, Qk+1)7 Br = 0125(ak_1, qx)-

If q is a local minimizer, i.e. minimizes W locally on any finite segment, then the spectrum of V2W () is
positive. We say that g has a phonon gap if moreover Spec(V2W (q)) € [a,00), a > 0. An invariant set has

a phonon gap a if each of the orbits it contains does, and if their phonon gaps are all greater or than a.

Theorem 50.1 (Aubry—Baesens—MacKay) Let A be a closed invariant set for a symplectic twist
map of R*™ and A’ be the associated set of critical sequences for W. Suppose that 8125(q,,, Qji1)s
(0129) @y Qit1), 0115(y, Qir1) and 0225(qy, @pyr) are all bounded for q € A’k € Z. Then A is
uniformly hyperbolic if and only if A has a phonon gap.

B*. Ergodic Theory

Most of the material surveyed in this subsection can be found in Hasselblat & Katok (1995) . We start by
motivating this theory by the following trivial remark: if F' is a map of 7*T" and ¢(z) = 7n(F(z)) — 7(2)

(m: T*T™ — T" is the canonical projection) then, when it exists:

N - w(F"(2) — w(F(2))
Jm 5357 @) = Jim, - = pr(2).
the rotation vector of z under F. The expression lim,, ... + >°'_; ¢(F"*(z)) for a general continuous function
¢ is called the time average of ¢. Hence the rotation vector of a point, when it exists, is the time average of

a specific ¢. The relevance of this is the following:

Theorem 50.2 (Birkhoff’s Ergodic Theorem) Let F': (X, u) — (X, ) be a measure preserving

transformation for a Borel measure j on a space X, and ¢ € L' (X, ). Then the time average ¢r(2)

of ¢: .
br(z) = lm 3" 6(FH(z))
k=1
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exists for j — a.e. z. Moreover, if ((X) < oo, [y ¢rdp = [y ¢dp.

Remember that a Borel measure on a topological space is one whose sigma-algebra of measurable sets is
generated by the open sets. That F' is measure preserving means /1(F~1(A)) = u(A) for any Borel subset of

X . An immediate corollary of Birkhoff’s theorem is (one needs to compactify 7*T" with a point at co):

Corollary 50.3 Let F' be a volume preserving map (eg. symplectic) of T™. The rotation vector pg is

defined on a subset of full Lebesque measure of T*T™.

It turns out that the Lebesgue measure is only one of the many measures that a symplectic map F' preserves.

Take z € T*T" to be a N-periodic point of F', for instance, and let :

1 N
n= N ;5%@)

where the Dirac measure d,, is the (Borel) probability measure concentrated at the point w ( §,,(A4) is 1 if
w € A and it is 0 if not). Since dpr () (F ' (A)) = dpr+1(z)(A), 7 is invariant under F. One of the many
differences between 7) and the Lebesgue measure is their supports. In general, the support of a Borel measure
1 is defined as:

Supp pu={z€ X | u(U) >0 whenever z €U, U open }

Clearly, the support of the measure constructed above is the orbit of the periodic point z, whereas the support
of the Lebesgue measure is 7*T". Hence, the support of invariant measures is another way to conceptualize
invariant sets. Let F' : X — X be continuous. Then the support of any F'-invariant Borel measure 1 is closed,
F-invariant and its complement has zero py—measure. If 11(X) < oo, Poincaré’s Recurrence Theorem implies
that Supp p is contained in the set of F'—recurrent points. In fact, z € Supp u = z € w(z) € Supp pu.
Hence, to find recurrent orbits in a dynamical system, as we have been doing in this book, one can look for
invariant measures.

Coming back to rotation vectors, and the measure 7 supported on a periodic orbit, the rotation vector
pr(z) not only exist 7 — a.e., but it is constant on Supp 7). In fact, it can easily be checked that the time

average ¢ is constant on Supp 7 for any function ¢ € L*(T*T", n): the measure 7 is ergodic.

Definition 50.4 An F'-invariant probability measure p on a space X is ergodic if it satisfies one of the
following equivalent properties:

1) Every F-invariant set has has ; measure O or 1.

2)If ¢ € L' (X, p) is F-invariant then ¢ is constant a.e..

3) The time average ¢ equals the space average. f ¢du u—ae.

In terms of support, if 1 is ergodic then F has an orbit in Supp p which is dense in that support. Hence
ergodicity relates to topological transitivity. The Lebesgue measure may never be ergodic for twist maps:
whenever we have a chain of elliptic islands, it comprises an invariant set which is not of full Lebesgue
measure. On the other hand, twist maps do have plenty of ergodic measures. We have seen above the example

of a measure 7) supported on periodic orbits. More generally, Aubry-Mather sets can be defined as supports
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of ergodic measures, pull-back of measures on $* invariant under circle diffeomorphisms. Indeed, take the set
(M) in Theorem AMthmpropertiesam: it is the omega limit set {2(7") for a circle diffeomorphism 7". Now,
pick z € £2(T) and take the weak* limit of the probability measures 1y = 57— ZTN 07k ()" it defines an
ergodic measure for 7', and its pull back by 7 is ergodic for F' with support the Aubry-Mather set M . [the
weak* limit is defined by p,, — piff [ dp, — [y op for all continuous ¢].

Hence our main objects of study in this book, periodic orbits and Aubry-Mather sets, are all supports of

ergodic probability measures, part of the larger set M of all F-invariant Borel probability measures.

Remark 50.5 The existence of an ergodic measure with rotation vector (as defined by the space average) w
does guarantee the existence of at least one orbit with that rotation vector (the support of the measure is not

empty, and the time average is constant on it). This is not the case if the measure is not ergodic.

If X is a compact metric space, it turns out that the set M of all Borel probability measures is convex
and compact under the weak* topology. Moreover M r itself is a compact and convex subset of M for this
topology. A theorem of convex analysis (Krei-Millman) says that M r is then in the convex hull of its extreme
points : those i € M which cannot be written as 11 + (1 — t) uo for two distinct p1, s € M p. Finally, the
extreme points are all ergodic measures. We will see in the next subsection that there is a strong correspondence
between the (strict) convexity of a certain projection of M r and the Aubry-Mather theorem.

As we will see in next section, Mather (1991b) , (1993) considers measures that are invariant under the
Euler-Lagrange (E-L) flow instead of a symplectic twist map . In the light of the suspension theorem of
Bialy-Polterovitch (Chapter ham), his setting encompasses a large class of symplectic twist maps . All the
statements that we made above are valid for E-L flows on 7*T" provided one compactifies 7*T" (as Mather

does) in order to use the compactness of the space of E-L-invariant probability measures.

C*. Minimal Measures

For a more detailed exposition the reader is urged to consult Mather (1991b) or Mang (1991) . There is also a
very nice survey of this theory in the beginning of Mather (1993) . Given a E-L invariant probability measure
with compact support 1. on TM x $, one can define its rotation vector p(y) as follows: let 31, Ba, . .. , Bn
be a basis of H'(M) and let \i,...,\, be closed one-forms with [\;] = $3; in DeRham cohomology.(!")
We refer the reader uncomfortable with (co)homology to Appendix 2 or TOPO and urge her/him to read
through this section thinking of the case M = T", taking [\;] = [dz;], as a basis for H*(T") ~ IR", where

(71,...,,) are angular coordinates on 7*T". Define the i*"

pi(p) = /Aidn-

component of the rotation vector p(u) as

Note that this integral makes sense when one looks at )\; as inducing a function from 7'M x $* to IR by first
projecting 7'M x $' onto 7'M, and then treating the form as a function on 7'M that is linear on fibers. The
rotation vector does depend on the choice of basis [3;, but because these 1-forms are closed, p; (1) does not
depend on the choice of representative \; with [A;] = ;. Since the rotation vector is dual to forms, it can be

1When homology and cohomology coefficients are unspecified they are assumed to be IR, so the notation
H:(M) means H:1(M;IR), etc.
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viewed as an element of H;(M ). In the case M = T, one can check that, if v(0) is a generic point of an

ergodic measure /i, the natural definition of rotation vector of a curve ~ coincides with p(1):

. /i(b) :Yi(a‘) — i 71 /d- /
()= 1 —_ 7 lim i i Pi
p ( /) b mm b—a b 1 b a o, T dzx du (,u)

where 7 is a lift of -y to IR™ and the second equality uses the Ergodic Theorem (again, dz; is seen as a function

TM x $' — IR). This prompts the following formula for the (i*” coordinate of the) rotation vector of a curve

v : IR — M for a general manifold M:

. 1
pi(y) = lim / iy
b—a—oo b — a d’Y\[a,b]

if the limit exists. As before, if v(0) is a generic point for an ergodic measure 1, p(7y) exists and coincides

with p(u). Next we define the average action of a E-L invariant probability on TM x gt

A = [ Lap,
i.e. the space average of L, which equals, when y is ergodic, to its time average along y-a.e. orbit :

b
Ay = tim o= [ 1. 9)an

The set of E-L invariant probability measures, denoted by M, is a convex set in the vector space of all

measures, as we have seen in the previous subsection (It is also compact for the weak* topology if, as Mather

does, one compactifies T'M). and the extreme points of M, are the ergodic measures (see Mafie (1987) ).

Now consider the map M — H;(M) x IR given by:

= (p(p), Alp)) -

This map is trivially linear and hence maps M , to a convex set U7, whose extreme points are images of extreme
points of M, i.e. images of ergodic measures. Mather shows, by taking limits of measures supported on
long minimizers representing rational homology classes, that for each w, there exists an invariant (but not
necessarily ergodic) measure 1 such that p(z) = w and A(x) < 00.(*?) Since L is bounded below, the action

coordinate is bounded below on Uy, . Hence we can define a map 3 : H,(M) — IR by

Blw) = inf{A(u) | pe My, p(p) = w},

which is bounded below and convex: the graph of 3 is the boundary of Uy,. We say that a probability measure
w € My, is a minimal measure if the point (p(u), A(p)) is on the graph of 3. Hence, an extreme point
(w, B(w)) of graph(/3) corresponds to at least one minimal ergodic measure of rotation vector w. It turns
out that if £ is minimal, y-a.e. orbit lifts to a E-L minimizer in the universal abelian cover M of M (whose
deck transformation group is H,(M; Z)/torsion, see Appendix 2 or TOPO). Conversely, if 4 is an ergodic
probability measure whose support consists of )/-minimizers, then / is a minimal measure.

Hence, each time we prove the existence of an extreme point (w,B(w)), we find at least one
recurrent orbit of rotation vector w which is a M-minimizer.
mnt reader may be tempted to proclaim, from this fact, the existence of orbits of all rotation

vectors. Alas, as we noted in Remark 50.5, we can guarantee that the rotation vector of orbits in the
support of a measure y are equal to p(u) only when p is ergodic
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B(x)

llll

Another important property of 3 is that it is superlinear,i.e — oo when ||z|| — co. We motivate this
in the simple case where L = 3 ||#]|> — V(z) and ||| comes from the Euclidean metric on the torus. If 1. is

any invariant probability measure, then

-2
A(u)—/Ld@/(@vmm) dy
2
20

50.1
( ) - VYmax
1 2
=5 - Vmam
5 1P(1)]

Y

where we used the Cauchy-Schwarz inequality for the second inequality. So we see that in this particular,
but important, case (3 grows at least quadratically with the rotation vector. The superlinearity of 3 implies
the existence of many extreme points for graph(3) (although in most cases still too few, as we will see in
the next subsection). Indeed, this growth condition implies that 3’s graph cannot have flat, or linear domains
going to infinity. Any point (w, 5(w)) is part of at least one linear domain of graph(/3), which we call S,
where the index c denotes the “slope” (normal vector) of the supporting hyperplane whose intersection with
Uy, is exactly the convex and flat domain S.. [Since ¢ acts linearly on homology classes w to give the equation
¢-w = aof S, it can be seen as an element of first cohomology.] Let X, be the projection on Hy (M) of
S.. The sets X are compact and convex domains which “tile” the space H; (M ). Extreme points of X are
projections of extreme points of S.. Hence there are infinitely many such extreme points, and infinitely many
outside any compact set. Their convex hull is H; (M), and in particular, they must span H; (M) as a vector

space. Since these extreme points are the rotation vectors of minimal ergodic measures, we have found that

Theorem 50.6 There exist at least countably many minimal ergodic measures and at least n =

dim H1(M) of them with distinct rotation directions.

In particular there are at least n rotation directions represented by minimal measures for a E-L flow on
T*T"™. We will see in Hedlund’s example that this lower bound is attained by some systems. Finally, the

generalized Mather sets are defined as
M, = Support(M.),

where M, is the set of all minimal measures whose rotation vectors lies in X.. Let 7 : TM x $' — M x §!

denote the projection. Mather’s main result in Mather (1991b) is the following theorem.

Theorem 50.7 (Mather’s Lipschitz Graph Theorem) For all ¢ € HY(M), M. is a compact,
non-empty subset of TM x $*. The restriction of © to M, is injective. The inverse mapping 7 L :

m(M.) — M, is Lipschitz.

In the case M = T™, Mather proves that, when they exist, KAM tori coincide with the sets M, (see also
Katok (1992) for some related results in the symplectic twist maps context). The proof of the Lipschitz Graph
Theorem (see Mather (1991b) or Mané (1991) ), which is quite involved, uses a curve shortening argument: if

curves in 7 (M, ) were too close to crossing transversally, one could “cut corners” and, because of recurrence,
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construct a closed curve with lesser action than A,,,;,,. This argument by surgery is reminiscent of the proof

of Aubry’s Fundamental Lemma in Chapter AM.

Remark 50.8 An important special case is that of autonomous systems (¢.e. with time independent L). In
this case, one can discard the time component and view M. as a compact subset of 7'M/ . In this case, Mather’s
theorem implies that M, is a Lipschitz graph for the projection 7 : TM — M. To see this, suppose that
two curves z(t) and y(¢) in w(M,) have 2(0) = y(s) for some s. Mather’s theorem rules out immediately
the possibility that s is an integer, unless © = y is a periodic orbit. For a general s, consider the curve
z(t) = y(t + s). Then, 2(t) = §(t + s) and, by time-invariance of the Lagrangian, (z(¢), 2(¢)) is a solution
of the E-L flow. It has same average action and rotation vector as (y, ¥) and hence it is also in M... But then
2(0) = z(0) is impossible, by Mather’s theorem, unless 2(0) = ¢(s) = #(0) and thus, by uniqueness of
solutions of ODEs, z(t) = y(t + s).

By using Theorem 40.1, one can translate the results of Mather to the realm of symplectic twist maps (see
Exercise 50.9) and deduce the existence of many invariant sets that are graphs over the base and are made
of minimizers. As noted before, one could also redo all of Mather’s theory in the setting of symplectic twist

maps (see Katok (1992), who considered the near integrable case).

D*. Examples and Counterexamples

Recovering past results. When Mather’s function 3 (see previous section) is strictly convex, each point
on graph(/3) is an extreme point and there are ergodic minimal measures (and hence minimal orbits) of all
rotation vectors. One can prove that this is true when M = $*, and Mather (1991b) shows how his Lipschitz
Graph Theorem implies the classical Aubry-Mather Theorem, by taking a E-L flow that suspends the twist
map. The fact that M. is a graph nicely translates into the fact that orbits in an Aubry-Mather set are cyclically
ordered: as pointed out by Hall (1984), the CO property corresponds to trivial braiding of the suspended orbit,
itself guaranteed by the graph property.

The graph of 3 is also strictly convex when L is a Riemannian metric on T?, and hence there are minimal
geodesics of all rotation vectors for any metric on the torus. This was known by Hedlund (1932), who had
basically worked out the same results as Aubry and Mather in that setting, albeit in a different language. [See
Bangert (1988) for a unified approach of the two theories.] Hence one could hope, as a generalization of the
Aubry-Mather theorem, that 3 is strictly convex for any Lagrangian systems satisfying Mather’s hypotheses.

This statement is false as we will see in the following examples.

Examples of gaps in the rotation vector spectrum of minimizers for Lagrangian on T?.
Take L : TT? — IR, given by L(z, i) = ||i: — X||” where X is a vector field on T?. The integral curves x of
X are automatically E-L minimizers since L = 0 on these curves. Mang (1991) chooses the vector field X to
be a (constant) vector field of irrational slope multiplied by a carefully chosen function on the torus which is
zero at exactly one point ¢. The integral flow of X has the rest point ¢(¢) = ¢, and all the other solutions are
dense on the torus. The flow of X (and its lift to 7T by the differential) has exactly two ergodic measures:
one is the Dirac measure supported on (g, 0), with zero rotation vector, the other is equivalent to the Lebesgue

measure on T2 and has nonzero rotation vector, say w. Mafie checks that 3~ 1(0) (trivially always an X,) is
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the interval {\ w | A € [0, 1]}, and that no ergodic measure has a rotation vectors strictly inside this interval.

Thus the Mather set M is the union of the supports of the two above measures .

Boyland & Golé (1996a) give an example of an autonomous mechanical Lagrangian on T? which displays
a similar phenomenon, although we also show in that paper that all autonomous Lagrangian systems satisfying
Mather’s Hypothesis do have minimizers of all rotation directions. We also give in this paper a very precise
description of the 3 function for such systems and show that the support of minimal ergodic measures have

to be either a point, a suspension of a Cantor set or a torus.

Hedlund-Bangert’s counterexamples. Consider in IR? the three nonintersecting lines given by the
x-axis, the y-axis translated by (0,0, 1/2) and the z-axis translated by (1/2,1/2, 0). Construct a Z>- lattice
of nonintersecting axes by translating each one of these by integer vectors. Take a metric in IR® which is the
Euclidean metric everywhere except in small, nonintersecting tubes around each of the axes in the lattice. In
these tubes, multiply the Euclidean metric by a positive function A which is 1 on the boundary and attains its
(arbitrarily small) minimum along the points in the center of the tubes, . e. at the axes of the lattice. Because the
construction is Z*> periodic, this metric induces a Riemannian metric on T%. One can show (Bangert (1989)),
if X is taken sufficiently small, that a minimal geodesic (which is a E-L minimizer in our context) can make
at most three jumps between tubes. In particular, a recurrent E-L. minimizer has to be one of the three disjoint
periodic orbits which are the projection of the axes of the lattice. Thus there are only three rotation directions
that minimizers can take in this example, or six if one counts positive and negative orientations. In terms of
Mather’s theory, the level sets of the function 3 are octahedrons with vertices (+a, 0, 0), (0, %a, 0), (0,0, +a)
(we assume here that the function ) is the same around each of the tubes). Since we are in the case of a metric,
one can check that (3 is quadratic when restricted to a line through the origin (a minimizer of rotation vector
aw is a reparameterization of a minimizer of rotation w). Hence a set .S.. is either a face, an edge or a vertex of
some level set {3 = b}, and the corresponding M. is, respectively, the union of three, two (parameterized at
same speed) or one of the minimal periodic orbits one gets by projecting the disjoint axes. Note that, instead
of the function 3 of Mather, Bangert uses the stable norm. Mather’s function (3 is a generalization of that

norm.

Levi’s counter—counterexample. It is important to note that the nonexistence of minimizers of a certain
rotation vector w does not mean that there are no orbits of the E-L flow that have rotation vector w. For example,
Levi (1997) has shown the existence of orbits of all rotation vectors in the Hedlund example. He construct,
using some broken geodesic methods, local minimizers shadowing any curve made of segments (of sufficient

length) of the minimizing axes and jumps between the axes. This makes for extremely rich, chaotic dynamics.

Exercise 50.9 Find hypotheses on the generating function of an symplectic twist map F' which translate
to Mather’s hypotheses for the Lagrangian that suspends F (Hint. You may want to include Bialy and
Polterovitch’s conditions of Theorem 40.1 for F' to have a convex suspension. Note that completeness of the
flow is for free: F' is defined everywhere.)
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51.* The Case Of Hyperbolic Manifolds

We start this section with another counterexample to the strict convexity of Mather’s 3 function. The setting
is that of a metric on the two-holed torus, the simplest example of a compact hyperbolic manifold. However,
we finish the section on a positive note, by quoting a result of Boyland & Golé (1996b), in which we introduce
another definition of rotation vector suited to hyperbolic manifolds and show the existence of minimal orbits
of all rotation directions for a class of Lagrangian systems on hyperbolic manifolds only slightly smaller than
that considered by Mather.

A*. Hyperbolic Counterexample

Take the metric of constant negative curvature on the surface of genus 2 (the two-holed torus) which has
a long neck between the two holes (see Figure 51. 1). A minimizer here is a minimizing geodesic for the
hyperbolic metric. With a and b as shown, the minimal measure for the homology class [a] + [b] is a linear
combination of the ergodic measures supported on I, and [}, where I, and [} are the closed geodesics in
the homotopy classes of a and b, respectively. Indeed, [, and I}, must “go around” the same holes as a and
b, and any closed curve that crosses the neck will be longer than the sum of the lengths of I, and 3. Hence
([a] + [0], B(a] + [b])) cannot be an extreme point of graph(S).

= ——— o)

Fig. 51. 1. The surface of genus two and the loops a and b. No minimal measure with rotation vector [a]+ [b]
can have support passing through the long neck. In particular, a curve in the homotopy class of ¢ cannot
yield a minimizer in the abelian cover.

B*. All Rotation Directions in Hyperbolic Manifolds

As the previous example shows, the notion of minimizers in the abelian cover is too restrictive, as it rules out
many geodesics. Instead of working on the universal abelian cover, we work in the universal cover and define
minimizers and rotation vectors with respect to that cover.

All manifolds of dimension n which admit a hyperbolic metric of constant curvature —1 have the Poincaré
n—disk as universal covering space IH". Hence a hyperbolic manifold M is the quotient IH" /71 (M) where
m1 (M) acts on IH" as the group of deck transformations. To visualize IH", assume n = 2, which covers any
orientable surface of genus greater or equal to two. IH? is the usual Euclidean unit disk which is given the
hyperbolic metric % . The ratio between the corresponding hyperbolic distance and the euclidean one
tends exponentially to co as points approach the boundary of the disk. Geodesics for the hyperbolic metric
are arcs of (euclidean) circles perpendicular to the boundary TH? of the disk.

The minimizers we consider in this section lift to curves in the universal cover which minimize the action
between any two of their points. We also assume that the Lagrangian L satisfies Mather’s hypotheses (time
periodic C? function with (a) fiber convexity, (b) completeness of the E-L flow) except that we replace his

condition (c) of superlinearity by one of superquadraticity:
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(¢’) superquadraticity: There exists a C' > 0 such that L(z,v,t) > C ||v|*.
(This, again, is satisfied by mechanical systems: if the potential is not positive, one can add a constant to it

without changing the solutions to the system).

Theorem 51.1 (Boyland-Golé) Let (M, g) be a closed hyperbolic manifold. Given a Lagrangian L which
satisfies Hypotheses (a), (b), (¢’), there are sequences ki, ki, T; in R™ depending only on L, with k;
increasing to infinity, such that, for any hyperbolic geodesic I' C H" = M, there are minimizers
vi : R — M with dist(ys, Io) < ki, vi(£00) = Io(£0), and k; < dist(vi(d),7i(c)) < kit

whenever d — ¢ > Tj;.

Theorem 51.2 (Boyland—Golé) Let (M, g) be a closed hyperbolic manifold with geodesic flow g;. Given
a Lagrangian L which satisfies Hypotheses (a), (b), (¢’) with E-L flow ¢y, there exists sequences k;
and T; with k; increasing to infinity, and a family of compact, ¢i-invariant sets X; C M so that for
all i, (X;, ¢¢) is semiconjugate to (TyM, g;) and k; < %dist(gf)T(m), do(x)) < ki1, whenever T > T;
and x € X;.

Hence the geodesic flow and the foliation of invariant ball bundles in 7 M continues to exists, in a weak
sense, in any of our general Lagrangian systems.

We now interpret Theorem 51.1 as saying that there exist minimizers of all rotation directions, with a new
definition of such a concept valid only for hyperbolic manifolds. Let us first reinterpret the rotation vector on
T*T" geometrically: a curve v on T™ has rotation vector v € IR" if its lift 4 in the universal cover IR" is
“asymptotically parallel” to the straight line supporting v and if the average of ||¥(t)|| over all ¢ € IR is equal
to ||v|| (we let the reader make these statement precise and rigorous). Now given two points on OTH?, there
is exactly one geodesic [, that goes to the first as ¢ — —o0, to the other one as t — +00. We can declare a
curve 7 to be asymptotically parallel to /| iff v and I” have same endpoints. This will insure that points of
~ are always at a bounded hyperbolic distance from I". We also declare that the rotation vector exists iff ¥
has the same endpoints at +co as a geodesic I, and if the average |p(v)| of ||¥]| over ¢ € IR exists, and we
define the rotation vector to be the pair p(y) = (1o, |p(7)]) (average direction and average speed). In that
language, Theorem 51.1 states that, given any geodesic I, there are infinitely many E-L minimizers with I”
as a rotation direction.

The naive definition of rotation vector that we just outlined has some major flaws:

1. p(y) (if it exists) does not belong to a linear space.
2. Two lifts of the same curve v will have different rotation vectors.
3. Rotation direction is not constant ;. — a.e. for many ergodic measures for the geodesic flow.

To remedy that, let 1 (M), seen as deck transformation group, act on geodesics in IH? and declare that
two geodesics are parallel iff they belong to the closure of the same 7 (M )-orbit. Consider the set of tangent
vectors at all points of all the geodesics in the closure of a 71 (M) orbit. This forms a closed subset of the unit
tangent bundle of IH?. The projection by the differential of covering map of this set on the unit tangent bundle
of M is the support of a measure 1 which is invariant under the geodesic flow. Because of this, Boyland (1996)

defines the rotation direction of a curve to be a measure invariant under the geodesic flow, weak* limit of
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measures supported by geodesics joining two points of the curve. This rotation vector being defined through
ergodic theory, it is constant ;s — a.e. for any E-L ergodic ;.. Theorem 51.2 implies the existence of minimizer
of all rotation directions, in this new sense of the word.

Note that there are many more such “homotopy” directions than there are “homology” directions. For
instance the “long neck” metric of Figure 51. 1 has no homology minimizer with rotation direction c, as
argued in the previous subsection, but it will have infinitely many homotopy minimizers with that direction.

On the negative side, the counterexamples of Man& (1991) and Boyland & Golé (1996a) on T2 probably
have counterparts on hyperbolic manifolds, even with our new definition of rotation vector and we think there

is little chance to prove the existence of minimizers of all rotation vectors, even on these manifolds.
52.* Concluding Remark

So what, in the end, are the chances of finding orbits of all rotation vectors for symplectic twist maps or
Lagrangian system, in say, 7*T"? Previous attempts at this problem yielded incomplete results. Bernstein
& Katok (1987) “almost” found, for minimizing periodic orbits of symplectic twist maps close to integrable,
some uniform modulus of continuity, which they hoped would unable them to take limits and get orbits with
the limiting rotation vectors. In my thesis, I hoped that proving some regularity of the ghost tori (invariant set
for the gradient flow of the periodic action) might enable one to do the same. This is how ghost circles came
about.

One thing is clear: one cannot hope for global minimizers to achieve all possible rotation vectors. However,
the shadowing methods to construct local minimizers of all rotation vectors of Levi (1997) on the Hedlund
counterexamples indicate a possible approach to the general case. The recent work of Mather on existence
of unbounded orbits (see Delshams, de la Llave & Seara (1998)and the end of INVchapter), also shows
that, for general systems, hyperbolic and variational techniques can combine powerfully to construct orbits
shadowing successive minimizers. One possibility to attack this problem would be to try to construct, in a
manner analogous to Levi (1997), orbits shadowing the different supports of the ergodic measures which are
extreme points of one generalized Mather set M .. Doing so, one may manage to “fill in” the corresponding

set of rotation vectors X with rotation vectors of actual orbits, may they be local minimizers.
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CHAPTER 10 or CZ

GENERATING PHASES AND SYMPLECTIC
TOPOLOGY

July 15 1999

Look up Siburg’s work on capacity vs symplectic twist map . What about the title of this
Chapter? What about the manifold of points that only move radially? Otherwise, declare this
Chapter done, after a last reading.

In Appendix 1 or SG, Section 46, we remark that the differential of a function W : M — T*M gives
rise to the Lagrangian submanifold dW (M) of T*M. As a generalization of this fact, one can construct
Lagrangian submanifolds of 7% M as symplectic reductions of graphs of differentials of generating phases,
which are functions on vector bundles over M .

Generating phases are the common geometric framework to the different discrete variational methods
in Hamiltonian systems, including the method developped in this book. Applications of generating phases
range from the search for periodic orbits to the Maslov index, symplectic capacities and singularities theory.
Generating phases are a viable alternative to the use of heavy functional analytic variational methods in
symplectic topology.

This chapter intends to be a basic introduction to generating phases. We first present Chaperon’s method,
which he used to give an alternate proof of the theorem of Conley & Zehnder (1983) . This theorem, which
solved a conjecture by Arnold on the minimum number of periodic points of Hamiltonian maps of T*", is
considered by many as the starting point of symplectic topology('®). We then survey the abstract structure of
generating phase, highlighting the common geometric frame for the symplectic twist maps method and that

of Chaperon (as well as many others).
53. Chaperon’s Method and the Theorem of Conley-Zehnder

Chaperon (1984) introduced a method “du type géodesiques brisées” for finding periodic orbits of Hamiltonians
which did not make use of a decomposition by symplectic twist maps. This method has been the basis of later
work by Laudenbach, Sikorav and Viterbo.

Until now, we have studied exact symplectic maps that come equipped with a generating function due to
the twist condition. The concept of generating function is more general than this, however: we now show how
an exact symplectic map of IR2n  which is uniformly C' close to Id may have another kind of generating

131n the sense that it implies that the C° closure of the set of symplectic diffeomorphisms is strictly included
in the set of volume preserving diffeomorphisms.
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function. The small time ¢ map of a large class of Hamiltonians satisfy this condition. Hence, the time one
map of these Hamiltonians can be decomposed into maps that posess this kind of generating function, leading

to a new variational setting for periodic orbits. Let

F :1R2n — IR2n
(g,p) — (Q, P)

be an exact symplectic diffeomorphism:
(53.1) PdQ — pdq = F*pdq — pdq = dS,

for some S : IR2n — IR (remember that all symplectic diffeomorphism of IR2n are in fact exact symplectic.
We stress exzact symplectic here in view of our later generalization to 7 M'.) The following simple lemma is

crucial here.

Lemma 53.1 Let F': IR2n — IR2n be an exact symplectic diffeomorphism. Then, if |[F — Id||o. is

small enough, the map
¢:(q,p) =~ (Q,p)

is a diffeomorphism of IR2n .

Proof. Q(q,p)is C* close to q and thus ¢ is (uniformly) C" close to Id, hence a diffeomorphism. a
We now show how, a way that is slightly different from the twist map case, F' can be recovered from S.
We define

5(Q.p) =pq+5(Q,p), where q=q(Q,p);

then
(53.2) dS = PdQ + qdp

and thus S generates [, in the sense that:

S
(53.3) g?

Remark 53.2 Note that Id is not a symplectic twist map and thus it cannot be given a generating function in
the twist map sense. One of the advantages of the present approach is that Id does have a generating function,

which is

5(Q.p) =pQ

As an illustration, fixed points of F" are given by the equations:
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a8
= =P
oQ ’

S
Q*%*%

which are equivalent to the following equation:
d(S - pQ) = (P —p)dQ + (¢ — Q)dp = 0.

Hence have reduced the problem of finding fixed point of an exact symplectic diffeomorphism C* close to
Id on IR*™ to the one of finding critical points for a real valued function. We now apply this method to give
Hamiltonian maps of T?" a finite dimensional variational context. It can also be used for time one maps
of Hamiltonians with compact support in IR2n, or Hamiltonian maps that are C° close to Id in a compact
symplectic manifold.

Let H : IR2n x IR be a C? function with variables (g, p,t). Assume H is Z*" periodic in the variables
(g, p) (i.e., H is a function on T?" x IR). As in Appendix 1 or SG, we denote by hi (a,p) = (q(t),p(t)) the
solution of Hamilton’s equations with initial conditions q(to) = q. p(to) = p. By assumption, h}  can be
seen as a Hamiltonian map on T*". We know that hio is exact symplectic (see Theorem 47.7). Furthermore,
by compactness of T*", when |t — to| is small, hf is C1 close to Id (the Hamiltonian vector field of a C?
function is C', hence so is its flow). For |t — to| small enough, we can apply Lemma 53.2 to get a generating

function for hio. To make this argument global, we decompose h! in smaller time maps (see Exercise 47.4):

N_1 i 1
(53.4) R'=hY%_ i oh¥,0...0hY oh¥
N N N

and thus, for a large enough N, h! can be decomposed into N maps that satisfy Lemma 53.2. [The farther
h! is from Id, the bigger N must be.] We can then apply the following proposition to h':

Proposition 53.3 Let F = Fy o...0 F| where each F}, is exact symplectic in T*IR™, C* close to Id,
and has generating function Sy, (Q,p). The fized points of F are in one to one correspondence with

the critical points of :

N
W (Qy, Py, QN Py) = ng(lepk) —PQr

k=1

where we set Qy = Q -

Proof. We will use the notation
(Pr, Q1) = Fr(qy, pr)

where we know from (53.3) that P}, and g,, are functions of Q,,, p;.. Then, using Equation (53.2) ,

N
dW(Q,p) =Y PrdQy + a,dp), — pdQ;_; — Q;_,dp,
k=1
(53.5) N-1 N
= Z (Pr — Ppy1)dQy + Z(Qk — Qi_1)dpy,
k=1 k=2

+(Py —p1)dQy + (g1 — Qn)dp;.
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This formula proves that (Q, ) is critical exactly when:

Fi(ag, pr) = (@y1>Pry1), Ve € {1,..., N — 1},
FN(qupN) = (qlvpl);

that is, exactly when (q,, p; ) is a fixed point for F'. O
As with the function W in Chapter 6, 1V has the interpretation of the action of a “broken” solution of the

Hamiltonian equation. This time, the jumps are both vertical and horizontal:

p
P1yq1/'~\\ Py 4, DP;s4q;
LN Y
\\ k PN;ql
t \ P> Qi 1, Ry tn t
\\
Yk ~— 1Py, Oy

Pi1> Qs N-1

Fig. 53. 1. Interpretation of W as the action of a “broken” solution I, concatenation of the solution segments
v, and “corners” in the t = ¢ planes.

Each curve 7 in Figure 53. 1 is the unique solution of Hamilton’s equations starting at (g, py,, tx)
where t;, = £21 and flowing for time 1/N. Since Sk(Q,,p;) = Sk(qy,Py) + Pray and Si(qy. pp) =
fw pdq — Hdt (see Theorem 47.7), W measures the action of the broken solution /'

N N
W(QlaplaQNapN):Zpk(q;Lkafl)“‘Z/ pdqudf
(53.6) k=1 k=1"Y "7k

= /pdq—Hdt.
Jr

This is the definition given by Chaperon (1984) and (1989).

The following theorem, solved a famous conjecture by Arnold in the case of the Torus. It was hailed as the
start of symplectic topology, as it shows that symplectic diffeomorphisms have dynamics necessarily different
from that of general diffoemorphisms, or even volume preserving diffeomorphisms. The original proof of
Conley and Zehnder also reduces the analysis to finite dimensions, but by truncating Fourier series of periodic

orbits. Chaperon’s proof avoids the functional analysis altogether.

Theorem 53.4 (Conley-Zehnder) Let h' be a Hamiltonian map of T?". Then h' has at least 2n + 1

distinct fized points and at least 2™ of them if they all are nondegenerate.

Proof. Let W be defined as in Proposition 53.3 for the decomposition of /! into symplectic maps close to

Id given by (53.5) . We will show that W is equivalent to a g.p.q.i. on T2", and hence it has the prescribed
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number of critical points, corresponding to fixed points of h'. We refer the reader to Section TOPOsecgpgi
for the definition and properties of generating phases that are relevant here. We first note that 17 induces a
function on (IR2n)N /Z*" where Z*" acts on (IR2n)" by:

(mQ7mP)‘(Q17p17'-'7QN7pN) = (Ql +mg,p+my,...,Qn+my, Py +mp)

The fact that W is invariant under this action is most easily seen from (53.6) . Indeed, since the Hamiltonian
flow is a lift from one on T>", the curve fyk + (mgy, m,, 0) is the solution between (g, + mg, p;, +m,) and
(Q), + my, Py +m,,) starting at time “=L of that flow. But

/ pdq+Hdt:/ (p+mp)dqudt:mp(Qk—qk)+/ pdq — Hdt
7k+(mq7mp70) Tk Yk

Hence the action of 7, changes by m,(Q,, — q;,) under this transformation. On the otherhand, under the
same transformation, the sum Zﬁ;l P (g, — Qp_,) of Formula (53.6) changes by ij,vzl mp(q, — Qr_1)-
Summing up the actions of the 7., these changes cancel out, from which we deduce that W is invariant under
the Z*" action.

We now show that TV is equivalent to a g.p.q.i. over T>". Let E = (IR2n)N — IR2n be the bundle given
by the projection map onto (Q 5, py) and let x : E — E be the bundle diffeomorphism given by:

X(Qlapla"'aQNapN) = (alablv'":aNflabelaQNapN)

where

ar = Q) —Qp_, (Qo=Qn)

br = p, — Pn-
In these new coordinates, the Z>" action only affects (Qy,pn)> so that W o x~! induces a function W
on (IR2n)N~1 x T?". We now need to show that W is in fact a g.p.q.i. Define W, (resp. Wp) to be the
functions W (resp. W) obtained when setting the Hamiltonian to zero. Since Sk(Q > Pr) = DL Q) in this
case, Wo(Q, D) = Zﬁf:l P, (Q — Q,_1) and hence a simple computation yields

WO(E', 57 QNapN) = Z ak-bk

which, as easily checked, is quadratic nondegenerate in the fiber.
Finally, we need to check that -2 (W, — W) is bounded, where v = (a, b). It is sufficient for this to check
that d(W — W) is bounded. Us1ng (53.5) , we obtain:

N
Zpk_karl ko+Z —Qy_1)dp;,
k=1 -

N

=) Q= Qy_1)dp;, — Z(pk_pk+1)ko

=

B
Il
—
-~
—

p"qz

(a1 — Qr)dpy + Z Py —p;,)dQ,
k=1 k=1

where we have set throughout Q, = Q ., Py, = P;. Since by definition (Q, Px) = Fi(qy,p;) where
F = h . lifts a diffeomorphism of T>", the coefficients of the above differential must be bounded. We can

conclude by applying Proposition 52.8. In fact, Proposition TOPOproptrivialgpqi is enough here. a
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Remark 53.5 Since the lift of the orbits we find are closed, the orbits in T2" are contractible. In general, one
cannot hope to find periodic orbits of different homotopy classes, as the example Hy = 0 shows. It would
be interesting, however, to study the special properties of the set of rotation vectors that orbits of h' may
have, i.e., to find out if being Hamiltonian implies more properties on this set than those known for general

diffeomorphisms of T?".

54. Generating Phases and Symplectic Geometry

In Section TOPOsecgpqi, we define generating phases as functions W : ¥ — IR, where E is a vector bundle
over the manifold M. We then give conditions under which lower estimates on the number of critical points
of W can be obtained from the topology of M. In this section, we show how such functions give rise to
Lagrangian submanifolds of 7 M, hence the adjective “generating”. In particular, we show that the action
function obtained either in the symplectic twist map setting or in the Chaperon approach generate a Lagrangian
manifold canonically symplectomorphic to the graph of of the map F' under consideration. More generally,

this construction unifies the different finite, and even infinite, variational approaches in Hamiltonian dynamics.

B. Generating Phases and Lagrangian Manifolds

Let W be a differentiable function M/ — IR. We have seen in Section 46.C that:

dW (M) = {(q,dW(q)) | g € M}

is a Lagrangian submanifold of 7™ M . Note that this manifold is a graph over the zero section 03, of T M.
Heuristicly, we would like to make it possible to similarly “generate” Lagrangian submanifolds that are not
graphs. One way to do this is to add auxilliary variables and see our Lagrangian manifold as an appropriate
projection in 7* M of a manifold in some bundle over M. This is what is behind the following construction.

Letw : E — M beafiber bundle over the manifold M .Let W (g, v) be areal valued function on an open set
U C E.The derivative %—VX : E — E* of W along the fiber of E is well defined, in the sense that if U is a chart
on M and 11,15 : U x V — 71 (M) are two local trivializations of E/,and W; = W o 4y, Wy = W o)y,

then

LOW, _OW,
o av (q,’u)dv - av (Q(q)v))dv

where @ = 1)y 011 ! is the change of trivialization. We assume that the map: (q, v) — %—VX (g, v) is transverse

to 0. This means that the second derivative (in any coordinates) (%, B;T‘QV) is of maximum rank at points

(g,v) where %—‘;}V (g,v) = 0. With this assumption, the following set of fiber critical points is a manifold of

same dimension as M
ow
(541) o ={(@v) e 8l G @v -0},

[For a proof of this general fact about transversality, see eg. the theorem p.28 in Guillemin & Pollack (1974) ]
Define the map:
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iW : EW —T*M
ow
(qa ’U) - <q7 8_q<q7 U))

Exercise CZexoimmersion shows that this is an immersion. We now show directly that this immersion is
Lagrangian:

iwpdq = oW dq =dW

lypdg = 5 ~(¢.0)dg = AW, (g.v)
and hence:

iy (dg N dp) = d2W|2W =0.

We will say that W is a generating phase for a Lagrangian immersion j : L — T*M if j(L) = iw (Xw).

Exercise 54.1 Show that iw : Yw — T"M is an immersion, i.e. that Diw |, has full rank (Hint. Use
w
the transversality condition to show that KerDiw N1 Xw = {0}.)

B. Symplectic Properties of Generating Phases

We start with the trivial, but important:

Proposition 54.2 Suppose the Lagrangian submanifold L C T*M is generated by a function W :
E — IR. The points in the intersection of L with the zero section 0}, of T*M are in a one to one

correspondance with the critical points of W.

Proof . iw(qg,v) is in L if and only if 4% (g, v) = 0.1tis in 03, if and only if %7 (g, v) = 0. 0
In TOPOsecgpqi, we find that critical points persist under elementary operations on generating phases: if

Wi : E1 — IR,and W5 : E — IR are two generating phases such that
Wood =Wy +ct, or
Wa(g, v1,v2) = Wi(g, v1) + f(q, v2)
where @ is a fiber preserving diffeomorphism and f is nondegenerate quadratic in v2, then W; and W5 had

the same number of critical points. The first operation is called equivalence, the second stabilization. This

persistence is now geometrically explained by Proposition 54.2 and the following:

Lemma 54.3 Two equivalent generating phases generate the same Lagrangian immersion. This is

also true under stabilization.

Proof. Let Wy 0 ¢ = W; + cst where @ is a fiber preserving diffeomorphism between F; — M and
Ey — M. Writing
®(q,v) = (q,9(q,v)) = (q,v"),

where v — ¢(q, v) is a diffeomorphism for each fixed g. we have:

Wa(q,¢(q,v)) = Wi(q,v) +C

and thus
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oW, oWy’ 09

o[22 ) 22
ov ov ov

This implies that Xy, = @(Xw, ), and we conclude the proof of the first assertion by noticing that:

(@0 = 2 @(q.0),

Now let
WZ(qa V1, v2) = Wl(qa vl) + f(qan)

where f is quadratic and nondegenerate. we have:

W /0v =0 v,=0 and OW;/dv1 =0

so that Xy, = Yw, % Og,, where Og, is the zero section of Es5. Moreover 0f/ 8q| (02=0} = 0 so that, at
points (g, v1,0) of X5,
oW 2 8“/1
'z 0)) = )
<qa aq (qvvla )) (q7 aq (qvvl))
O

C. The Action Function Generates the Graph of I’

We examine here the twist map case, and let the reader perform the analysis for the Chaperon case in Exercise
54.4.Let M be an n—dimensional manifold and F' be a symplectic twist map on U C T*M , where U is of
the form {(g,p) € T*M | ||p|| < K}.Let S(q, Q) be a generating function for a lift F' of F. S can be seen
as a function on some open set V' of M x M, diffeomorphic to U. % Since PdQ — pdq = dS (q,Q),we
can describe the graph of F as:

g%(q,Q),Q, gg(q,Q)) | (q.Q) € V} C (T*M)?,

Graph(F) = { <q, —

which is canonically symplectomorphic to:
08
) aQ

One can easily check that this manifold has S as a generating phase. In other words the generating function

{(¢@50a j5@) [@Qev|crurm,

of a symplectic twist map F is a generating phase for the graph of F.
We expand in more details for the more general case where F' = Fy o ... o F} is a product of symplectic

twist maps of U C 1™ M . This time, the candidate for a generating phase is:

N

W(q) = Z Si(rs Tiey1)
k=1

where we do not identify qn 1 and q; in any way. Then, writing
v=_(qs---,qy), q= (qlan—&-l)’
we will show that 1W(q, v) is a generating phase for Graph(F) C (T*M)?. Let

in the case where M = T™, and the map is defined on all of T*T™, we have V = U = R2n.
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U={(@r ) | (@ qxi) € Ue(0)]

where 1, is the “Legendre transformation” attached to the twist map F},. Let 3 : M+ — M x M be the
map defined by: (q;,...,qx,1) — (g1, qx 1) The bundle that we will consider here is:

U— BU)C M x M.

Proposition 24.1 states that %(q7 v) = 0 exactly when § = (g, v) is the ¢ component of the orbit of
(g1, P1(q;,9>)) under the successive F},’s. This means that the set of orbits under the successive Fj,’s is
in bijection with the set Xy = {9¥(q,v) = 0} as defined in (54.1) . Since this set is parametrized by
the starting point of an orbit, it is diffeomorphic to U, hence a manifold.

For g € X3, we have:

F(qlvpl(qlvq2)) = (qN+1aPN+1<qN7qN+1))

but: ~
oW
P1(q1,92) = —0151(q1,q2) = *8—(‘11;QN+1/U)
q,
oW
PN+1(QN7‘JN+1) = aZSN(quqN+1) = 8—(‘11qu+17”)
dN+1

In other words, the graph of FinT*M x T*M can be expressed as:

. oW oW
Graph(F) = {(‘ha 7%(‘17’0)an+13 W(qvv)> ' (q,v) € EW} .
1 +1

To finish our construction, we define the following symplectic map:
g+ (TN TN =@y & 245 ) = (T(V x ND), 241, )
(qapa Qa P) - (q7 Qa -D; P)

where (2x denotes the canonical symplectic structure on 7 X . Clearly:
§(Graph(F)) = iy (Zy),

that is, W generates the Lagrangian manifold Gmph(ﬁ). Note that the fixed points of F' correspond to
Graph(F)NA(T*M xT*M),i.e.toq € Xy, suchthatg, = gy, and —0:51(q1,q5) = 25N (qn, ni1)>

which are critical points of W = W’ (qi=qy. .} 3S WE well know.
1—4IN+41

Exercise 54.4 Show that the generating function W of Chaperon (see Proposition 53.3) generates the
graph of the Hamiltonian map F : T?" — T?". (Hint. If you are stuck, consult Laudenbach & Sikorav (1985)

D. Symplectic Reduction

We introduce yet another geometric point of view for the generating phase construction. We will see that if
a Lagrangian manifold L C 7™M is generated by the phase W : E — IR, than in fact L is the symplectic
reduction of the Lagrangian manifold dW (E) C T* E. We introduce symplectic reduction in the linear case,

and only sketch briefly the manifold case, refering the reader to Weinstein (1979) for more detail.
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Consider V, 2y, be a symplectic vector space of dimension 2n. Let C' a coisotropic subspace of V. Let
A(V) be the set of Lagrangian subspaces of V' (a Grassmanian manifold). The process of symplectic reduction
gives a natural map A(V) — A (C/C™") that we now describe. By Theorem 43.1, we know that we can find

coordinates for V' in which:

C= {(qla"'aqnapla"'apk)}
and we have C* = {(qx+1,---,¢,)} C C.Then

C/C* = {(q1, -+, qhs D1, -, Pk)}

which is obviously symplectic. It is called the reduced symplectic space along C'. We denote by Red the
quotient map C' — C'/C~ . The symplectic form {2 of C/C* is natural in the sense that it makes Red into

a symplectic map:

(54.2) Qc(Red(v), Red(v')) = 2(v,v").

Proposition 54.5 Let L C V be a Lagrangian subspace and C C V a coisotropic subspace. Then
Lo = Red(LNC)=LNC/LNC*

is Lagrangian in C/C*.
We say that L¢ is the symplectic reduction of L along the coisotropic space C'.

Proof. Formula (54.2) tells us that L¢ is isotropic. We need to show that dimL¢c = %dz’mC /C*. Linear
algebra tells us that:
dimLc = dim(LNC) — dim(L N C™).

As would be the case for any nondegenerate bilinear form, the dimensions of a subspace and that of its
orthogonal add up to the dimension of the ambient space. Also, the orthogonal of an intersection is the sum
of the orthogonal. Hence:

dimV = dim(L N C™*) + dim(L N CH)* = dim(L N C*) + dimL + dimC,
since L+ = L. Thus

dimL¢c = dim(L N C) — dimV + dim(L + C) = dimL + dimC — dimV

= dimC — %dimV (54.3)
But
dim(C/C*) = dimC — dimC* = dimC — (dimV — dimC')
= 2dimC — dimV (54.4)
We conclude that dim Lo = %dim(C’ /C1) by putting (54.3) and (54.4) together. O

We now sketch the reduction construction in the manifold case. Let C' be a coisotropic submanifold of a
symplectic manifold (M, (2). Then TC* is a subbundle of 7'C (that is, the fibers are of same dimension and
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vary smoothly) so we can form the quotient bundle 7'C'/T'C*, with base C' and fiber the quotient 7,C/7,C*
at each point g of C'. It turns out that this quotient bundle can actually be seen as the tangent bundle of a
certain manifold C'/C~, whose points are leaves of the integrable foliation 7C'". Moreover one can show
that the naturally induced form {2 is indeed symplectic on C//C. Finally, we define red : C — C/C*
as the propjection. Its derivative is basically the map Red defined above. One can show that, if C' intersect a
Lagrangian submanifold L transversally, then Lo = red(L) is an immersed symplectic manifold of C'/C+,
which is the reduction of L along C.

We now apply this new point of view to the generating function construction. Let £ = M X RY. We
show that if L = iy (Xw) C T*M is generated by the generating phase W : E — IR, then L is in fact the
reduction of dW (F) C T*F along the coisotropic manifold C' = {p,, = 0}, where we have given T*F the
coordinate (q, v, p,, p,,). This is just a matter of checking through the construction. We know that dWW (E) is

Lagrangian in 7™ F. Its intersection with C' is the set:

dW(E)NC = {(q,v,pq,pv) ET'E| pg= %—Z/(q,v), Py = %—v:(q,v) = 0}
=dW (Xw).
where Yy is the set of fiber critical points. Since by the tranversality condition in our definition of generating
phase Xy is a manifold, so is dW (E) N C: for any W, the map dW : E — T*FE is an embedding. The
bundle 7'C'* is the one generated by the vector fields % and thus C//C can be identified with T*M =
{(g.p,)}. The image of dW(E) N C under the projection red : C — C/C* is exactly iw (Xw) =
{(q, %—V;(q, v)) | 2¥(q,v) = 0} = L. Note that because £ = M x IR, the above argument is independent
of the coordinate chosen (e.g. C' is well defined.) With a little care, the argument extends to the case where F/

is a nontrivial bundle over M .

Exercise 54.6 Show that, in the Darboux coordinate used above, the ¢ plane and the p plane of V' both
reduce to the ¢ and p-plane (resp.) of C/C™.

E. Further Applications of Generating Phases

The symplectic theory of Generating Phases does not only provide a unifying packaging for the different
variational approaches to Hamiltonian systems. It can also serve as the basis of symplectic topology, where
invariants called capacities play a crucial role. Roughly speaking, capacities are to symplectic geometry what
volume is to Riemannian geometry: they provide obstruction for sets to be symplectomorphic, or for sets to
be squeezed inside other sets. Viterbo ( 1992) uses generating phases to define such capacities, in contrast
to prior approaches by Gromov (1985)who uses the theory of “pseudo—holomorphic curves”. The basis fo

Viterbo’s definition of capacity is a converse statement to Lemma 54.3:

Proposition 54.7 If W, and Wy both generate h'(0%,), where h' is a Hamiltonian isotopy, then after

stabilization W1 and W5 are equivalent.

In view of this, Viterbo is able to define a capacity for a Lagrangian manifold . Hamiltonian isotopic to

03, by choosing minimax values of a given (and hence any) generating phase for L.
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In another work, Viterbo (1987) shows that a certain integer function called Maslov Index on the set
of paths in the Lagrangian Grassmannian is invariant under symplectic reduction. It can be shown that the
Lagrangian Grassmanian A(1") has first fundamental group 71 (A(V)) = Z. Very roughly, we can interpret
this by saying that A(V") has a “hole” and the Maslov index measures the number of turns a curve makes around
that hole. Now let W, be generating phases for a Hamiltonian isotopy h¢. The set dWr(F) is Lagrangian
in T*E and its reduction is graph of h’. The Maslov Index in A(T*E) detects the change in Morse Index
of the second derivative of W;, whereas on the graph of A!, it detects a non transverse intersection with the
plane {(g,p) = (Q, P)}. This can be used to give a neat generalization to Lemma 31.2and to explain the
classical relationship discovered by Morse between the index of the second variation of the action function
and the number of “conjugate points”(see Milnor (1969) for the classical, Riemannian geometry case, and
Duistermaat (1976) for the more general convex Lagrangian case.) Finally, we refer to Weinstein (1979) ,

Lecture 6, for further survey on generating phases (called Morse families there) .

Proposition CZproplagrim is 41.5, Exercise CZexoimmersion is CZexoimmersion
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Action to be taken: Correct typos, decide whether to make this chapter an appendix or
set it in the middle of the book (Jan 13 1999). Something weird in the header of last page!

Symplectic geometry is the language underlying the theory of Hamiltonian systems. This chapter is a
short review of the main concepts, especially as they apply to Hamiltonian systems and symplectic maps
in cotangent bundles. These spaces are natural when considering mechanical systems, where the base, or
configuration space describes the position and the momentum belongs to the fiber of the cotangent bundle of
the configuration space. In our optic of symplectic twist maps , one important concept studied in this chapter
is that of exact symplectic map. Theorem SGhamexactsymp proves that Hamiltonian systems give rise to
exact symplectic maps. We assume here some familiarity with the notions of manifold, vector bundles and
differential forms. The reader who is uncomfortable with these concepts should consult any of the following
references :Guillemin & Pollack (1974) or Spivak (1970) . For more on symplectic geometry and Hamiltonian
systems, see Arnold (1978), Weinstein (1979), Abraham & Marsden (1985) or McDuff & Salamon (1996).

55. Symplectic Vector Spaces

In this section, we review some essentials of the linear theory of symplectic vector spaces and transformations.
They will be our tools in understanding the infinitesimal behavior of symplectic maps and Hamiltonian systems
in cotangent bundles. A symplectic formon areal vector space V' is a bilinear form {2 which is skew symmetric

and nondegenerate:
2(av + b0’ w) = al(u,w) + b2 (v, w), (u,v’,weV, abeR).
Qu,w) = —2(w,u)
u # 0 = Jw such that 2(u,w) # 0

A symplectic vector space is a vector space V' together with a symplectic form.

Example 55.1 The determinant in IR? is a symplectic form. More generally, the canonical symplectic form

on IR2n, is given by:

0 -—Id
_QO(’U,,’LU)—<J’U,,’LU>, J_<](1 0 )
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where the brackets ( , ) denote the usual dot product. We will see that all symplectic vector spaces “look™ like

this, in particular, their dimension is always even. Usually, one denotes:

n
29 =dpNdq= dek/\ko
k=1

where it is understood that dgy,, dpy, are elements of the dual basis for the coordinates (q1, . . ., qn, P1,- -+, Pn)
of IR2n. The symplectic space (IR2n, {2y) can also be interpreted as IR" ¢ (IR")*, equipped with the canonical
symplectic form:

2(a®b,c®d) =d(a)— b(e).

It is often convenient to view a bilinear form as a matrix. To do this, fix a basis (ey, ..., e,) of V,and set:
Ag = Q(ei, ej)
Equivalently, if (, ) is the dot product associated with the basis (e, .. ., e, ), then A is the matrix satisfying:
Qu, w) = (A%, w).

We now show that all symplectic vector spaces are isomorphic to the canonical (IR2n, £2)).

Theorem 55.2 (Linear Darboux) If (V, (2) is a symplectic space, one can find a basis for V in which
the matriz A? of £2 is given by A? = J = (IOd _éd>.

Hence, the isomorphism that sends each vector in V' to its coordinate vector in the basis given by the
theorem will be an isomorphism between (V, §2) and (IR*", £2;). In classical notation, the coordinates in the

Darboux coordinates are denoted by(!%)

(qap) = (qla"'7QTL7p17"' apn)

Proof. Since (2 is non degenerate, given any v # 0 € V, we can find a vector w € W such that
2(v,w) = —1. In particular, the plane P spanned by v and w is a symplectic plane and the bilinear form

induced by {2 on P with this basis has matrix:
0 -1
(55.1) (1 0 > .
Since {2 is nondegenerate on P, we must have P- N P = {0}. Furthermore V = P + Pt sinceifu eV,
u — Q(u,v)w + 2(u,w)v € P+,

(2 must be nondegenerate on the dimV — 2 dimensional subspace P, so we can proceed by induction, and
decompose P into (2—-orthogonal planes on which the matrix of (2 is as in (55.1) . A permutation of the

vectors of the basis we have found gives A = J. a

0 Id

'5Tn the litterature, one also sees frequently (p, q), with —J = (—Id 0

) as canonical matrix.
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With any bilinear form {2 on a vector space comes a notion of orthogonal subspace W+ to a given
subspace (or vector) W :
Wt ={ueV|2wuw) =0\ YweW}

In the case of symplectic forms, the analogy with the usual notion of orthogonality can be quite misleading,

as a subspace and its orthogonal will often intersect.

Exercise 55.3 Show that the linear transformation whose matrix is J in the cannonical basis is orthogonal
(i.e belongs to O(2n)), that it satisfies J> = —Id (i.e. J is a complex structure) as well as

20(Jv, Jw) = 20(v, w)
(that is, J is symplectic, see section 57.)

Exercise 55.4 Show that a one dimensional vector subspace in a symplectic vector space is included in its
own orthogonal subspace.

Exercise 55.5 Show that in a Darboux basis for a symplectic plane,
2(v,w) = det(v, w).

If (q1,p1) are the corresponding coordinates for the plane in this basis, this determinant form is denoted by
q1 N p1. Show that, in Darboux coordinates for a symplectic space of dimension 2n,

n
Q:q/\P:ZQk/\pk
1

Exercise 55.6 Prove that a general skew symmetric form (2 has “normal form”:

0 —Idx
A% = 1d, O
0;

where k,l do not depend on the basis chosen.

56. Subspaces of a Symplectic Vector Space

Let V' be a symplectic vector space of dimension 2n, W C V a subspace, and {2y the symplectic form
restricted to WW. The previous exercise shows that we can find a basis for W in which :
O —Idi
A% = | Id, 0 dimW = 2k + 1
O

In other words, (W, 2y) is determined up to isomorphism by k& and its dimension. We will say that W is:
e null or isotropicif k = 0 (and [ = dimW),
e coisotropicif k +1 = n.
e Lagrangianif k = 0and [ = n . (i.e. W is isotropic and coisotropic.)
e symplecticif | = 0 and k # 0.
The rank of W is the integer 2k.

The next theorem tells us that the qualitatively different subspaces of a symplectic space can be represented

by coordinate subspaces in some Darboux coordinates.
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Theorem 56.1 A subspace W of rank 2k and dimension 2k+1 in a symplectic space can be represented,

in appropriate Darboux coordinates, by the coordinate plane:

((hv <oy Gk+15, P15 - - - 7p1€)

In particular, in some well chosen bases, an isotropic space is made entirely of ¢’s and a coisotropic one
must have at least n ¢’s (the role of p’s and ¢’s can be reversed, of course) and a symplectic space has the same

number of ¢’s and p’s.

Proof. From the definition of the rank of W, there is a subspace U of W of dimension 2k which is symplectic,
on which we can put Darboux coordinates. U 1 NW, the null space of {2y, is in the subspace U+, which is
symplectic (see Exercise 56.0.) The next lemma shows that we can complete any basis of /" N WV into a
symplectic basis of /. The union of this basis and the one in U is a symplectic basis with coordinates (q, p),

in which W can be expressed as advertised. o

Lemma 56.2 Let U be a null space in a symplectic space V. Then one can complete any basis of U

into a symplectic basis of V.

Proof. Without loss of generality, V' is IR2n with its standard dot product and canonical symplectic form.
Choose an orthornormal basis (u1,. .., u;) for U. Using the results of Exercise 55.3, the reader can easily
check that JU is orthogonal to U ( in the sense of the dot product) and that (u1,...,u;, Juy,...,Ju;) is a
symplectic basis for £ = U @ JU . From Exercise 56.4, E+- @ E = V and E~ is symplectic. We can complete
the symplectic basis of £ by any symplectic basis of £ and get a symplectic basis for V. a

As a simple consequence of Theorem 56.1, we also get:

Corollary 56.3 If U is an isotropic subspace of a symplectic space V', one can find a coisotropic W

such that V. =U @ W. One can also find a Lagrangian subspace in which U is included.

This applies in particular to Lagrangian subspaces: given any lagrangian subspace L, we can find another
one L’ such that V = L @ L’. In the normal coordinates of the theorem, L would be the g coordinate space,

L’ the p coordinate space.

Exercise 56.4 Let W be a subspace of a symplectic space V. Show that: W is symplectic <= W @ W+ =
V <= W is symplectic (Hint: see the proof of the Linear Darboux theorem).

Exercise 56.5 Show that:

W isotropic <= W C W+.

W coisotropic <= W+ C W.

W is Lagrangian <= W is a maximal isotropic subspace, or minimal coisotropic subspace (for the inclusion).

Exercise 56.6 This exercise shows how symmetric matrices can be used to locally parametrize Lagrangian
planes. Suppose you are given a basis ui,...u, for a Lagrangian subspace L of IR2n. In the canonical
coordinates (g, p), write ur = (ug,wy). Let V and W be the n x n matrices whose columns are the vy’s and
wy’s respectively. Suppose that L is a graph over the ¢ plane.
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(a) Show that V is invertible and that the column vectors of (Wél ) form a basis for L.

(b) Show that the matrix WV ~! is symmetric.
(¢) Deduce from this that the (Grassmanian) space of Lagrangian subspaces of IR2n has dimension n(n+1)/2.

57. Symplectic Linear Maps

The Linear Darboux Theorem tells us that, up to changes of coordinates, all symplectic vector spaces are
identical to (IRQ”, £2y). Therefore, as we define and study the transformations that preserve the symplectic

form on a vector space, we need only consider the case (IR*", £2).

Definition 57.1 A symplectic linear map & of (IR*", {2y) is a 1 to 1 linear map which leaves invariant the
symplectic form:
D"y = (29, where & (v, w) := y(Pv, Pw).
The group formed by symplectic linear maps is called the symplectic group and is denoted by Sp(2n; IR),
or in short Sp(2n). Because of the Linear Darboux Theorem, this group is naturally identified with the group

of 2n x 2n real matrices P that satisfy:

—— (0 —-Id
(57.1) @J@-J,J—(Id 0
Examples 57.2
(a) The group Sp(2) is exactly the group of 2 x 2 matrices of determinant 1.

Id d> is symplectic in IR*", and so is any

(b) The transformation F'(q,p) = (g + p, p), with matrix ( 0 Id

0 Id
dimensional foliation of (affine) lagrangian planes {p = constant}.

with matrix Id A ) ,where A® = A. These maps are called completely integrable as they preserve the n

(c) A primordial example will be given by the differential of the time 1 map of Hamiltonian flows. (see Section
60.C

Symplectic linear maps have striking spectral properties:

Theorem 57.3 Symplectic linear maps have determinant 1. If X is an eigenvalue of a symplectic
linear map, so is A™t, and they appear with the same multiplicity. If X is a complex eigenvalue, then

s0 are AL, X_l, all with the same multiplicity.

The origin is a hyperbolic fixed point for a linear symplectic map when all the eigenvalues are real and
distinct from +1. In this case the stable and unstable manifold (the n—dimensional union of eigen—subspaces
with eigenvalues larger (resp. smaller) than 1 in absolute value) are each n dimensional. These manifolds are

also Lagrangian (Exercise 57.6).

Proof. Let @ be a symplectic map. It is not hard to see that :
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(—1)ln/2

dgr A...Ndgy Ndp1 A ... Ndp, = '
n!

QoA A Qo

where [n/2] is the integer part of n/2. Since @ preserves the right hand side of this equation, it must preserves
the left hand side, i.e., the volume. Hence det & = 1. The rest of the theorem is a consequence of the fact
that the characteristic polynomial C'()\) of a symplectic transformation & has real coefficients and that @* is
similar to @~ 1:

&t = Jo—1j 1.

Exercise 57.4 (a) Show that if a 2n x 2n matrix @ is given by its n x n block representation:

a b

then @ is symplectic if and only if ab® = ba!, cd® = dc', ad! — bet = Id,.
(b) Show that
- d -
o = (—ct I ) :

In particular, if @ is symplectic, so are $~' and &' (this can also be shown directly from (57.1) .)

Exercise 57.5 The groups of 2n x 2n real matrices Gl(n,C) and O(2n) are defined by:
D cGln,C)ed]=Jd;, PcO(2n) e d'd=1Id

Show that if @ is in any two of the groups Sp(2n), O(2n), Gi(n, €), it is in the third. Show that, in this case,

we can write:
_ tp _ pt
=% ") it {"t”*”t“
b a a‘a+b'b=1Id

that is, the complex matrix a + ib is in the unitary group U(n).

Exercise 57.6 (a) Show that, when *1 is an eigenvalue of @ € Sp(n) , it must appear with even multiplicity.
(b) Show that if A\, \’ are eigenvalues of ¢ with eigenvectors v, v’ and A\ # 1 then 2y(v,v") = 0.
(c¢) Deduce from (b) that, if @ is hyperbolic, its (un)stable manifold is Lagrangian.

Exercise 57.7 Any nonsingular, real matrix & has the polar decomposition: & = PO where P = ($&*)*/?
is symmetric positive definite, and O = #P~! is orthogonal. (Check this.)

(a) Show that if @ is symplectic, then P and O are also symplectic.(Hint. Prove it for P by decomposing
IR2n into eigenspaces for ®@' and using the previous exercise. Notice, in particular, that O € U(n), by
Exercise 57.5.

(b) Show more generally that (#@%)* is symplectic for all real «, and deduce from this that U(n) is a
deformation retract of Sp(2n).

58. Symplectic Manifolds

Let N be a differentiable manifold. A symplectic structure on N is a family of symplectic forms on the
tangent spaces of N which depends smoothly on the base point and has a certain nondegeneracy condition.

Technically, a symplectic structure is given by a closed nondegenerate differential 2—form (2:

df? =0and,forall v #0 € T, M, 3w € T, M such that (v, w) # 0.
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{2 is called a symplectic form and (M, £2) a symplectic manifold. A symplectic map or symplectomorphism

between two symplectic manifolds (N1, £21) and (Na, 25) is a differentiable map F' : N; — Ns such that:
F*y = 0.

In other words, the tangent space at each point of a symplectic manifold is a symplectic vector space, and

the differential of a symplectic map at a point is a symplectic linear map between symplectic vector spaces.

Example 58.1

(a) Once again , the canonical example is given by (IR*", £2y), where IR*" is thought of as a manifold. The
tangent space at a point is identified with IR*" itself, and the form (2, is a constant differential form on this
manifold.

(b) Any surface with its volume form is a symplectic manifold. Symplectic maps in dimension 2 are just area
preserving maps.

(c) Kéhler manifolds (see McDuff & Salamon (1996) ) are symplectic.

(d) Cotangent bundles are non compact symplectic manifolds (see Section 59) and time 1 maps of Hamiltonian

vector fields on them are symplectic maps.

The fundamental theorem by Darboux (of which we have proven the linear version) says that locally,
all symplectic manifolds are isomorphic to (IR*™, £2;). See Arnold (1978), Weinstein (1979) or McDuff &
Salamon (1996) for a proof of this.

Theorem 58.2 (Darboux) Let (N, 2) be a symplectic manifold. Around each point of N, one can find
a coordinate chart (q,p) such that :

2= dg Adpy := dq A dp.
1

Hence all 2n—dimensional symplectic manifolds are locally symplectomorphic. This is in sharp contrast
with Riemannian geometry, where for example the curvature, is an obstruction for two manifolds to be locally
isometric.

Submanifolds of a symplectic manifold can inherit the qualitative features of their tangent spaces: A
submanifold Z C (N, (2) is (co)isotropic if each of its tangent spaces is (co)isotropic in the symplectic
tangent space of N. Hence a Lagrangian submanifold is an isotropic submanifold of dimension n = %dimN .
Any curve on a surface is a Lagrangian submanifold. The 0-section and the fiber of the cotangent bundle of a

manifold (see next Section) is a Lagrangian submanifold, and so is the graph of any closed differential form.

Exercise 58.3 Show the following:

(a) Any symplectic manifold has even dimension.

(b) If (N, £2) is a 2n dimensional symplectic manifold, then 2™ is a volume form .
(¢) A symplectomorphism is a volume preserving diffeomorphism.

Exercise 58.4 Let (IV, £2) be a symplectic manifold and F : N — N a symplectomorphism. Show that the
set graph F is a Lagrangian submanifold of (N x N, 2 & (—2))
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59. Cotangent Bundles

A. Some definitions

Let M be a differentiable manifold of dimension n. Its cotangent bundle T*M = M is the fiber bundle
whose fiber 7,7 M at a point g of M is the dual to the fiber 7; M of the tangent bundle. The elements of 77, M
are cotangent vectors or linear 1-forms, based at ¢. Given local coordinates (¢1, ..., g,) in a chart of M ,

one usually denotes a tangent vector v by:

v = zl:vk@

where % denotes the tangent vector to the k th coordinate line at the point ¢ considered. A cotangent vector

p at the point ¢ takes the form:
n
p= Zpk dqp,
1

Where dq;, denotes the 1-form dual to a%k:

0
dqi(@) = Ojk-

Once the system of coordinates ¢ = (qi, - - -, ¢n) is chosen, the coordinates p = (p1, .. .,pn) for Ty M are
uniquely determined, and we call them the conjugate coordinates. The cotangent bundle 7* M as a smooth
union of the fibers 7 M is a differentiable manifold of dimension 2n, with local coordinates (g, p) aspresented

above. More precisely, if g Z Q is a coordinate change between two charts U and V' of M, then :

@) '(q.p) = (Q, P) = (¥(q). (D¥}) 'p)

is a change of coordinates in the corresponding charts U x IR"™ and V' x IR™ of T* M. This law of change
of coordinates is what distinguishes tangent vectors from cotangent vectors. More generally, whenever we
have a (local) diffeomorphism F' : M — N between two manifolds M and N, there is (locally) an induced
pull-back map: F* : T*N — T*M which can be written F*(q, p) = (F~'(q), DF}(p)) in coordinates.

Example 59.1

(@IR* = IR™ @ (IR")* can be seen as the cotangent bundle of the manifold IR": this bundle is trivial, as any
bundle over a contractible manifold.

(b)The cotangent bundle of T" is T" x IR™. That T*T" is trivial is a consequence of the fact that T" = IR"* /Z",

where Z" acts as a group of translations on IR", whose differentials are the Id. See the following exercise.

Exercise 59.2 More generally, if M = IR™/I" where I is a group of diffeomorphisms of IR™ acting properly
discontinuously (i.e. around each point g of M there is a neighborhood U(q) such that U N (I'\Id)(U) = 0),
then

T"M = R*™/I™*

where I'* is the set of diffeomorphisms of IR?" of the form ~*, where v € I'.
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B. Cotangent Bundles as Symplectic Manifold

We now show that there is a natural symplectic structure on 7 M . We first construct a canonical differential
1-form called the Liouville form which, we will prove, has the following expression in any set of conjugate

coordinates:

A= prdar = pdq.
1
We then obtain a symplectic form by differentiating \:
2=—d\ (2=dqANdp,

the latter holding in any conjugate coordinate system.

We first present a coordinate free construction of A. To define a 1-form on 7™ M, it suffices to determine
how it acts on any given tangent vector v in a fiber T,,(7T* M) of the tangent plane of 7* M. Since the base
point «v is in T M, it is a linear 1-form. Let 7 : T*M — M be the canonical projection. The derivative
7y 2 T(T*M) — T M takes a vector v to the vector m.v in Tﬂ(a)]V[ . We can evaluate the 1-form « on that
vector, and define:

Aw) = a(m.v)

See Figure 59.5

Fig. 59. 5. The Liouville form on T*M.

We now compute ) in local, conjugate coordinates. If (g, p) are the conjugate coordinates of 7 M, we can

write:

9
op’

Then 7. (v) = uqa% and a(m.u) = Y ayv,, which exactly says that A = pdq. O

0
a= Zakqu and v = uq% + uyp

The fact that the symplectic form (2 is exact (i.e. the differential of another form, here \) on a cotangent
bundle enables us to single out an important class of symplectic map: one way to say that F' : T*M — T*M

is symplectic in 7" M is to say that the form F'*\ — A is closed:

A(F*A—A\) = F*dA —d\ = —(F*2 — 2) =0

Definition 59.3 A map F': T*M — T* M is exact symplectic if F’*\ — ) is exact:
F*AX—=)X=dS

for some real valued function S on T* M.

We will see in Section 60 that time ¢ maps of flows arising in classical mechanics (i.e. Hamiltonian

flows) are all exact symplectic, and so are most of the maps in this book. Note that in IR2n, since any closed
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form is exact, symplectic and exact symplectic are two equivalent properties. On the other hand, the map
(z,y) — (z,y + a), a # 0, of the cylinder is a good example of a map which is symplectic but not exact

symplectic.

Remark 59.4 The term ezact diffeomorphism, or even ezact symplectic diffeomorphism is sometimes used
to denote the time 1 map of a (time dependent) Hamiltonian system. We will see in Section 60 that, on

cotangent bundles, these time—1 maps are indeed exact symplectic in the sense of our definition. It can be
shown that the map (q,p) — (q + Ap,p), A = <? 1) is exact symplectic but not isotopic to /d (true

more generally whenever A is not homotopic (cannot be deformed) to I on T?). Hence these maps cannot
be time—1 maps of Hamiltonians. Cotangent bundles are just one example, albeit the most important one, of
exact symplectic manifolds: symplectic manifolds whose symplectic form is exact. Many facts that are true

for cotangent bundles also hold for exact symplectic manifolds.

Exercise 59.5 Show that the set of exact symplectic maps forms a group under composition. In particular,
show that generating functions if G * A — X = Sg and F*\ — A = SF then

(FoG)*A—A=d[(Sr o G) + S¢]

Exercise 59.6 Let F : T*$! — T*$!. The net flux of F through a non contractible simple closed loop C is
the difference between the area above C' but below F'(C), and the area above F(C) but below C.

(a) Show that, if F' is symplectic, the net flux is independent of the choice of C.

(b) Show that if F' is symplectic then: F' is exact symplectic < F has zero net flux . In particular, an area
preserving map of the annulus that has an invariant circle is automatically exact symplectic.

Exercise 59.7 Show that a map F of T* M is exact symplectic if and only if :

/ pdq = / pdq
Fy Y

for all differentiable closed curve ~.

C. Notable Lagrangian Submanifolds of Cotangent Bundles

It is not hard to see that the fibers of 7* M are Lagrangian submanifolds of 7* M : in coordinates they are
given by {q = g,} and hence their tangent space is of the form {g = 0}. Likewise, the zero section 0%,
of T*M is Lagrangian. Another class of example will be of importance to us in Chapter CZ. Consider a
function W : M — IR. Its differential dWW can be seen as a section of 7% M ,i.e. a map M — T M whose
image dW (M) can be written as {(q, dW (q)) | ¢ € M}. A basis for the tangent space of dW (M) at a point
(g,dW(q)) is given by:

an ]2: aQJan ap]

It is not hard to see that: 82W( ) 82W( )
q q

R(vg,v) = - =0
SO Oqi0q 0q0qy,

so that dW (M) is a Lagrangian submanifold of M. We can generalize this argument somewhat. Any 1-

form « can be seen as a map from M to T M, so we can ask the question: for what « is «(M) a Lagrangian

manifold ? To answer this question, one can check (Exercise 59.8) the following formula:
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(59.1) a*A=a.

where A is the Liouville form (the reader has to get used to the fact that we see « either as a form or a map,
at our convenience. When seen as a map, « is actually an embedding of M into 7 M .)

The manifold «(M) is Lagrangian exactly when:
0=0a"2=a"(—d\) = —d(a")) = —do,

that is, exactly when « is a closed form. In particular, if the form « is exact with « = dW, this gives another
proof that dW (M) is Lagrangian. W is the simplest instance of generating function for the Lagrangian
manifold (M) = dW (M) (generating phase or generating phase function is also used). We will expend
on this important notion of symplectic topology in Chapter CZ.

Exercise 59.8 Verify Formula (59.1) , using local coordinates.

60. Hamiltonian Systems
A. Lagrangian Systems versus Hamiltonian systems

A lot of mechanical problems can be put in terms of a variational problem: under the principle of least action,

trajectories are critical points of an action functional of the form:

Ao = [ o

to

with boundary condition y(tg) = g,7(t1) = q;. The function L is twice differentiable in each variables,
say (absolute continuity is enough). It is called the Lagrangian function of the system. As this is a somewhat
heuristic discussion, we will not specify here the functional space to which -y belongs. In concrete cases (say
v € CY([to,t1]), IR™) or C([to,t1], M), or some Sobolev space of curves...), the following can be made
quite rigorous.

To compute the differential of A, one applies a small variation v = (dg, dp) toy, with 5y (tg) = 6v(t1) =
0. Then:

9L oL
SA(v) = g, q.)5q + —(q,q,t)5q | dt.
(7) /to (aq(q,q,)Q+aq(q,q,)q>

performing an integration by parts on the second term of this integral, we get:

/9L d OL
514("/) = \/t\(] <a—q — Ea_q> (Sth

Since this should be true for any variation J-y, we must have:

(60.1) - 5=

which is a second order differential equation in g called the Euler- Lagrange equations. (The plural to
“equations” just refers to the fact that the dimension is usually greater than 1.) As an example, a large number

of mechanical systems have a Lagrangian function of the form:

) 1.
L(g.q,t) = 3 lall* = Vi(a).
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(“Kinetic - potential”. The time dependance of V' usually refers to some forcing) where V : R" — IR, f :

IR — IR" . The Euler-Lagrange equations for such a system are:
i+ VVi(q) =0

To solve such an O.D.E., one usually proceeds by introducing p = ¢ to get a system of first order ODE’s:

q=p
p=-VV(qg).
As we will see presently, we have just put the Lagrangian problem into a Hamiltonian form. In general, if
0*L
60.2 det —5 # 0,
(60.2) o *
we can introduce
oL
b= 04

to transform the Euler—Lagrange equations (60.1) into a system of first order O.D.E.’s: because of the
nondegeneracy condition (60.2) , the implicit function theorem implies that, locally, we can make a change

of variables :

(60.3) L:(q,q4) — (g.p=57)

This is, when g is seen as a point on a manifold 1/, a local diffeomorphism between 7, M and 7,/ M. This
change of variables is called the Legendre transformation.(16)

Define the Hamiltonian function by:

H(qapa t) = pq - L(qaiIat)a

Where it is understood that ¢ = ¢ o £L~1(q, p). We can compute:
OH 0gq 0oL 0Ldq 0L

g "dq 0q 0q0q  0q’
oH 0q O0LOq
5 =4qTPp - =
op Op 0qOp
But the Euler-Lagrange equations imply that:

_doL 9L  OH
p_dtaq 9q  0q’
Combining this with the previous formula yields Hamilton's equations:
q = Hp

(60.4) ]
p=—H,.

Remark 60.1
(a) The Legendre transformation is involutive: it is its own inverse, in the following sense. The map
'6Tn the classical literature the term Legendre transformation refers to the complete process of changing

the Lagrangian L into the Hamiltonian H as shown in this section, and H is then called the Legendre
transformation of L. It is grammatically less awkward to call H the Legendre transformed of L.
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(q,9) — (q, %—2 = p) has inverse:

(q,p) — (q, o = q)

and L is the Legendre transformed of H in the sense that:

L(qa q7t> :pq_H(qap7t>

where p = p(q, g, t) is given implicitly by %—2’ =q.

(b) In the new coordinates, the action functional becomes:
Aly) = /pdq — Hdt
2l
where - is seen as a curve (q(t), p(t), ) in the space R2n x IR, or T*M x IR.
Hamilton’s equations have a natural expression in the symplectic setting. We assume now that q is in IR".

Using the notation H;(q,p) = H(q, p,t), we can rewrite (60.4) as

. def

2 =—JVH(z) := Xg(z,1).
where VH,; = (gq ) is the gradient of H, with respect to the scalar product on IR*":

<VH1;, ’U> = dHt(’U)
Likewise, X i, which we call the Hamiltonian vector field should be seen as the symplectic gradient of H;:
Q0(Xpg,v) = (—J*VH;,v) = (VH;, v) = dHy(v).
This can be written using the contraction operator on differential forms:
ix, {2 =dH,

Exercise 60.2

(a) Compute the Legendre transformed of L(q, q,t) = %(Ai], q) —V(q).
(b) Show that, in general, if H is the Legendre transformed of L, then

LagHyp = Id.

B. Hamiltonian Systems on a Symplectic Manifold

Motivated by the last expression that we found for the Hamiltonian vector field in IR*", we extend the definition

to symplectic manifolds:

Definition 60.3 Let (IV, 2) be a symplectic manifold and H(z,t) = Hy(z) be a real valued function on

N x IR. The Hamiltonian vector field associated with H is the (time dependent) vector field X ;; defined by:
2(Xg,v) =dH(v), Yv e TM.

Equivalently:
ixy {2 =dH;
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The (time dependent) O.D.E.:
(60.5) 2= Xu(z,t)

is called Hamilton's equations.

In local Darboux coordinate charts (eg. in conjugate coordinates chart of a cotangent bundles), these
equations take the form of (60.4) . If H is time independent, then (60.5) generates a (local) flow on N .If H
is time dependent, then X ;7 generates a (local) flow in the space N X IR, called the extended phase space in

mechanics. Specifically, one solves the following time independent system on IV x IR:

z2=Xpg(z,s)
s§=1

which generates a flow ¢! in N x IR satisfying:
(bt(zv 5) = (hi+s(z)7 s+ t)v

where h?, is a family of C*~! diffeomorphims of V ,depending C*~! on s and . This is a general procedure for
time dependent vector field. The diffeomorphism A is called a Hamiltonian map and, for each fixed s the curve
t — ht is a Hamiltonian isotopy (an isotopy is a smoothly varying 1-parameter family of diffeomorphisms).
Another way of describing h%(z) is by saying that it is the unique solution z(t) of Hamilton’s equation with
initial condition z(s) = z. In practice, one often fixes s = 0 and denotes h}, by ht.

The following exercise shows the one to one correspondence between time dependent vector fields and
isotopies. It also shows that, even though the time O of a solution flow to a time dependent vector field is the

Identity, the flow does not in general form a group.

Exercise 60.4 Let X; be a vector field (not necessarily Hamiltonian) on a manifold N. Let h% be the
solution flow to the O.D.E. 2 = X(2), s = 1. Prove that:

(i) hg = Id, Vs,

(ii)h;l = hﬁ, o b, so that in particular hl = h' o (R®)™'. Compute (R%)™'.

(iii) Conversely, given any (sufficiently smooth) isotopy ¢* in N, with ¢° = Id, show that the time dependent

vector field:
e d
9= ds

t+ ty—1
o9 Tolg)

has solution h% = ¢g* o (gs)il-

C. Invariants of the Hamiltonian Flow
We analyze here how different objects vary under the Hamiltonian flow. If G is a function on a differentiable
manifold V, and X is a vector field, we recall that the Lie derivative of G along X is:

LxG() = | 6(6'(2) = dG(X ()

where ¢ is the flow solution for X .
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Theorem 60.5 Let H be a time independent Hamiltonian function on (M, 2) . Then H is constant

under the Hamiltonian flow it generates:

Lx, H =0.

Proof. Lx,H =dH(Xg)=2(Xg, Xg) =0 a0

Remark 60.6 Lx,G = 2(Xg,Xpg) = —Lx.H is also denoted by {G, H} and it is called the Poisson
bracket of H and G. Hence, the poisson bracket measures how far the function G (resp. H) is from being
constant along the flow of X g (resp.X). When { H, G} = 0, one says that G (resp. H) is a first integral of
the Hamiltonian flow of H (resp. G), or that the functions H and G are in involution. One can show (see eg.
Arnold (1978), Abraham & Marsden (1985)) that the set of Hamiltonian vector fields form a Lie sub— algebra

of the Lie algebra of vector fields on a manifold, in the sense that:
Ximey = [Xu, Xal-

In particular, the poisson bracket of two functions measures how far from commuting their Hamiltonian flows

are.

One can also compute how a differential form « varies along an isotopy g¢; by the Lie derivative. Let
us first extend the notion of Lie derivative to differential forms. If X is any vector field, we define the Lie

derivative in the direction of X by:

Lxa=— gia.
dt],_q

where g is the flow generated by X . At time ¢ # 0,
7 gia=g;Lxa.
Hence, the isotopy g; preserves the form « whenever this Lie derivative is zero:
gia=a, YVt <= Lxa =0.
We have the important homotopy formula (see eg. McDuff & Salamon (1996) ):
(60.6) Lxa=ixda+d(ixc)
and again, at time ¢ # 0,

d . .. )
%= 9 (ixda+d(ixa))

A symplectic isotopy g; on (M, £2) is an isotopy such that g; is a symplectic map for all ¢. By the homotopy

formula (and the fact that a symplectic form is closed), this can be reworded:
(60.7) g+ is a symplectic isotopy <= Lx 2 =0 <= d(ix{2) =0

The following theorem characterises Hamiltonian isotopies, at least in cotangent bundles (or in any exact

symplectic manifold, i.e. one whose symplectic form is exact)
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Theorem 60.7 (a) On any symplectic manifold, Hamiltonian isotopies are symplectic.
(b) On a cotangent bundle T*M, a Hamiltonian isotopy with Hamiltonian H(z,t) is also exact
symplectic:

RN = X\ = h'"pdg — pdg = dS,, with S; = /pdq — Hdr
vy

where «y is the curve (h7(z),7), T € [0,t] solution of Hamilton’s equations in the extended phase
space T*M x IR, and z is the point at which the form is evaluated.
(¢) Conversely, if an isotopy g¢ is exact symplectic then it is Hamiltonian, with the Hamiltonian
function given by:

Hy =ix,pdq — (9{1)*%(53)-

where Xy(z) = %(g;l(z)).

Proof. The first assertion (a) is an immediate consequence of (60.7) : if k! is a Hamiltonian isotopy then
i(ht)_Q = dH, is exact, and therefore closed. In cotangent bundles, it is also a consequence of the second

assertion. We look for < (S,) in the statement (b):

d, . .l . . . . ,
Eht)\ =h} (ixgd\+ d(ix,\) = hijd(—Hy + ix, A) = dh; (—Hy +ix, \)

From this we get:

t
MA—A=d / hi(—Hy +ix, \dr < ds,
JO

that is, h? is exact symplectic. We leave it to the reader to rewrite the integral as the one advertised in the
theorem. This finishes the proof of (b). To prove the converse (c), let g; be an exact symplectic isotopy:
9:pdq — pdq = dS,

for some S; differentiable in all of (g, p, t). We claim that the (time dependent ) vector field:

dgy ,

Xi(2) = 2 (g, (2)

whose time ¢ is g;, is Hamiltonian. To see this, we compute:
5 \48) = rg9rpda = g; Lx,pdq = g; (ix,d(pdq) + d(ix,pdq)),
from which we get

. ) 1. d
ix,dgNdp =d (thpdq — (9, 1) df(St)> = dH,

which exactly means that X, is Hamiltonian with H; as Hamiltonian function. O

A less formal proof of (b) in the above theorem yields extra information. We follow Chapter 9 in Arnold
(1978). We first prove that the vector field (X, 1) in 7" M X IR generates the kernel of the form d(pdq —
Hdt) = dp ANdq — Hqdg A dt — Hpdp A dt. The matrix of this form in the (Darboux) coordinate (g, p, ¢) is:

0 —Id H,
A=| 14 o H,
—-H, —H, 0

since the upper left 2n x 2n matrix is the nonsingular matrix J, A is of rank (at least) 2n. It is easy to see that

the vector (H,, —Hy, 1) generates its kernel.
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Now, take a closed curve v in 7% M x IR. The image under the Hamiltonian flow of v forms an embedded
tube in 7* M x IR. Since the tangent space to this tube at any of its point z contains the vector X (z), the
form d(pdq — Hdt) restricted to this tube is null. As a result, because of Stokes’ theorem, if v; and 72 in
T*M x IR encircle the same tube of orbits of the extended flow, we must have:

(60.8) / pdq — Hdt = / pdq — Hdt

71 2
since y; — 72 is the boundary of a region of the tube. The form pdq — Hdt is called the integral invariant of
Poincaré-Cartan. As a particular case, if 7, is of the form (v,¢;) and vy, = (hif 7, t2), the form Hdt is null
on these curves and hence Equation (60.8) reads:

(60.9) /{ pia = /h }

ty

pdq
~
This last equation implies the statement (b) in Theorem 60.7: it proves that the function

z
(60.10) Sy = / h'"pdq — pdq
z

0
is well defined, i.e. the integral does not depend on the path chosen between z, and z. This proves in turn that
ht is exact symplectic. O
The next theorem, due to Jacobi, runs somewhat against the title of this subsection, in the sense that we
show that symplectic diffeomorphisms conserve Hamilton’s equations. This property in fact characterises
symplectic transformations, which are for this reason called canonical transformations in the classical
litterature. Even though we will not need this theorem in the sequel, we include it here since it explains why

symplectic geometry came to exist.

Theorem 60.8 Let I': (M,wy) — (N,wn) be a diffeomorphism. Then F is symplectic if and only
if for all function H : N — IR,

(60.11) F.Xpor = Xnm.
In this case, F' conjugates the Hamiltonian flows ht and gt of H and H o F respectively:
¢ =F1lohloF.

This holds also when H is time dependent.

Proof. Reminding the reader that by definition F,. X (F'(z)) = DF,X (%) for any vector field X, we also
use the notation F*Y" to mean (F~1),Y . It is not hard to check that the following formula holds:

(60.12) Frixa=ipxF*a
for any vector field X and differential form . Coming back to our statement, we have on one hand:
Fix,wny =F*dH =dH o F

by tracking down definitions, and on the other hand,
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Frix awy = ipsxy Fron = ip-x,wp

because of (60.12) and the fact that ' is symplectic. This proves (60.11) . Conversally, if (60.11) holds for

any H , the same kind of computation shows that,

. % .
7’XH0FF UJN :7’XHQFWJW

and since any tangent vector at a point of M is of the form X, for some H, we must have F*wy = wyy,
i.e. F' is symplectic. The conjugacy statement, a general fact about O.D.Es, is left to the reader, as well as

checking that everything still works with time dependent systems. O

Exercise 60.9 The Lie derivative of a function can be defined, in the obvious way, along any differentiable
isotopy. What fails in Theorem 60.5 when H is time dependent?

Exercise 60.10 Show that in Darboux coordinates:

OH 0G 0H 0G
HGy =229 9297
{H. G} dq O0p Op Oq

Exercise 60.11 Prove that the function S; defined in (60.10) satisfies:
Si(z) = /pdq — Hdt + C(zo,t),
Y

for some C, and v as in Theorem 60.10. (Hint. Apply Stokes on the appropriate surface.)

Exercise 60.12 Prove that hf is exact symplectic (i.e. even for s # 0), where h%(z) is, as in subsection B,
the solution of Hamilton’s equation such that z(s) = z.

Exercise 60.13 Let H be autonomous , or of period 7. Show that Xy (z) is preserved by Dh"(z), i.e. Xu
is an eigenvector of Dh™ with eigenvalue 1.

D. Symplectic Maps as Return Maps of Hamiltonian Systems

Consider a time independent Hamiltonian on IR?" "2 with its standard symplectic structure 2y = Yoo dag A
dpy,. Assume that we have a periodic trajectory - for the Hamiltonian flow. It must then lie in an energy level
H = Hy = H(v(0)), since H is time independent. Take any 2n + 1 dimensional open disk % which is
transverse to -y at 7(0), and such that % intersects ~ only at 7(0).

Such a disk clearly always exists, if -y is not a fixed point. In fact, one can assume that, in a local Darboux
chart, X is the hyperplane with equation gy = 0: this is because in the construction of Darboux coordinates,
one can start by choosing an arbitrary nonsingular differentiable function as one of the coordinate function
(see [Ar78], section 43, or [We77], Extension Theorem, lecture 5.)

Define & = ¥ N {H = Hy}. It is a standard fact (true for periodic orbits of general flows ) that the
Hamiltonian flow /* admits a Poincaré return map R, defined on X around zg, by R(2z) = ht(*)(z), where
t(z) is the first return time of z to X’ under the flow (see Hirsh & Smale (1974), Chapter 13).

We claim that R is symplectic, with the symplectic structure induced by {2; on X

Since X is transverse to v, we may assume that:

_ O0H

o= 5—
Opo
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Fig. 60. 2.
on X. Hence, by the Implicit Function Theorem, the equation

H(qul'-'v(b’l:po’"'apn) :HO

implies that pg is a function of (qi,...,qn,P1,..-,Pn). This makes the latter variables a system of local

coordinates for 37, and since dgy = 0 on X, the restriction of (2, is in fact

w= !20|Z. = quk/\dpk.
k=1

To prove that R is symplectic, remember that, by (60.9) , for any closed curve in 2, or more generally for

/ pdq—Hdt:/pdq—Hdt
Re c

since ¢ and Rc¢ are on the same trajectory tube. Here Rc represent the chain in IR*"™2 x IR given by
(R(c(s)),t°*)).This equality implies that the function S(z) = [ R*(pdq — Hdt) — (pdq — Hdt) is well
defined. But, on X, the differential of the form inside this integral is R*w — w, since both dgy and dH are

any closed 1—chain cin X,

zero there. Hence R*w — w = d?S = 0,ie., R is symplectic.

Remark SGleginv is 60.1,Theorem SGthmcanva is 56.1Theorem SGhamexactsymp is 60.7, Formula
SGintinv is (60.9) , Formula SGst is (60.10) , Exercise SGexoexactsympcurve is 59.7, Exercise SGexoxhev
is 60.13, Exercise SGexoisotopy is 60.4, Formula SGformhomotopy is (60.6) , Exo SGexolagsym is 56.6.
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Appendix 2 or TOPO

SOME TOPOLOGICAL TOOLS

December 30, 1999

In order to estimate the minimum number of periodic orbits a symplectic twist map or a Hamiltonian
system may have, we need an estimate on the minimum number of critical points for the energy function of the
corresponding variational problem. Estimating the number of critical points of functions on compact manifolds
is the jurisdiction of Morse Theory and Lyusternick-Schnirelman Theory. Given the gradient flow of a real
valued function f on a compact manifold M/, Morse Theory rebuilds M from the unstable manifolds of the
critical points of f. The combinatorial data of this construction gives a relationship between the set of critical
points and the topology of M, in the guise of its homology. Unfortunately, the space on which the energy
function W is defined is not compact. However, it usually is a vector bundle over a compact manifold )/, and
reasonably natural boundary conditions on the map or Hamiltonian system translates into some conditions of
“asymptotic hyperbolicity” for 1. This is a situation where Conley’s theory, which studies the relationship
between the recurrent dynamics of general flows and the topology of (pieces of) their phase spaces was brought
to bear with great success.

For the reader who has no background in Algebraic Topology, we start in Section 61 by outlining an easy
way to compute the homology of a manifold by decomposing it into cells. We then illustrate Morse theory
by considering the cells given by the unstable manifolds of critical points of a real valued function on the
manifold. We hope that this will give such a reader at least a flavor of the rest of this chapter. Starting Section
63 , we assume familiarity with algebraic topology. We give the basic definitions of Conley’s theory and state
results on estimates of number of critical points in isolated invariant sets for gradient flows. In Section 64, we
prove these results. In Section 65, we apply these results to functions on vector bundles whose gradient flow

are asymptotically hyperbolic.
61.* Hands On Introduction To Homology Theory

To a manifold, or to certain subspaces of it, we want to associate some algebraic objects called homology
groups that are invariant under homeomorphisms or other natural topological deformations. Usually, the best
way to calculate these groups (but not the best way to show their invariance properties), is to decompose the
spaces studied into well understood pieces, and then define the groups from the combinatorial data describing
how these pieces fit together. In this introduction we decompose spaces into cells, which are discs of different

dimensions, and show how to compute cellular homology.
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A. Finite Cell Complexes

Given a topological space X (e.g. a differentiable manifold) we can construct a new one by attaching a cell
of dimension 7. This is done by choosing an attaching map f from the bounding sphere $™ * of the cell D"
(a disk of dimension ) to X . The new space, denoted by X Uy D" is given by the union of X and D" where
each point of JD" is identified with its image by f in X . The topology on X Uy D™ is that of the quotient
XUD"/{ ~ f(x)}.

Examples 61.1 One can construct the sphere $ by attaching the disc D? to a point p. The space X = {p}isa
manifold of dimension 0, and the attaching map f sends each point of the boundary circle of D? to p. One can
also construct a sphere by attaching a disk to another one (what is the attaching map?). These constructions

have obvious generalization to higher dimensions.

A cellular space is a space built by attaching a finite number of cells (successively), starting from a finite
number of points (cells of dimension 0). If in this process each cell is attached to cells of lower dimensions,
the space obtained is called a finite cell complex or CW complex. The union of all cells of dimension less
than £ in a finite cell complex is called the k—skeleton. Thus the £ + 1—skeleton is built by attaching cells of
dimension k£ + 1 to the k—skeleton. The dimension of the cell of maximum dimension in a cellular space X

(and hence of a CW complex) is called the dimension of X, denoted by the usual dim X .

Examples 61.2 The torus can be decomposed (not in a unique way!) into a finite cell complex: its O—skeleton
is the point z. To get the 1-skeleton we attach both extremities of the “meridian” « and the “equator” b to z.
The attaching maps send the boundaries —1 and 1 of the 1—cells a = [—1, 1] = b to the point z. Finally, the
2-skeleton is obtained by attaching the disk D (stretched to a square) to the 1-skeleton as indicated by the

“flat” picture of the torus. Note that the 1-skeleton looks like a “bouquet of two circles”.
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Célls
dim: 0 1 2
a
—>—
° D = D
—>—
b
b4 ‘i K4
4 6 = A D A
' > Nian vl /
Z > z
dm: O 1 2 ¢
Skeletons

Fig. 61. 2. The torus T? as a finite CW complex.

One can generalize this construction to surfaces of any genus g (spheres with g handles) by gluing a 2 cell
to a polygon with 4¢ sides and identifying all vertices to a single point, and edges two by two as indicated by

their name and orientations on the following figure (g is 2 here):

b
a c
b / d E “
a c
d

b
1 Y 1 )
b

Fig.61. 3. The double torus (surface of genus 2) as a finite CW complex. Identify edges according to their
names and orientations, and identify all vertices to one point. When cutting the octagon in half through the
curve v we obtain two handles, which are tori with a disk (bounded by the curve «) removed in each.

More generally, we will show in the next section that any compact manifold is homeomorphic to a finite

cell complex.



196 Appendix 2: TOPOLOGICAL TOOLS (Dec 30 1999)

Exercise 61.3 Decompose $",T™,IRIP™ and the Klein bottle into finite cell complexes. Remember that
IRIP™ can be defined as ID™/ ~, where the relation ~ identifies any two antipodal points on the boundary
of the n—disk ID™. The Klein bottle is [—1,1]?/ ~ where (1,%) ~ (=1, —y) and (z,1) ~ (z, —1).

B. Cellular Homology

Bouquets of spheres. When we “crush” the (k-2)-skeleton X}, of a finite cell complex X to a point
inside the (k-1)-skeleton X}, 1, the boundary of each (k-1)-cell crushes to that point. Hence each (k-1)-cell of
X},—1 becomes a (k-1)-sphere in X}, 1/ X}, _o. All these spheres meet at exactly one point, where the crushed
X}, collapsed: we say that X1/ X}, is a bouquet of spheres. The attaching map f of a k—cell to X}, 1
gives rise to a map fas X /X2, by composition with the quotient map. Hence we have a map

f from a sphere of dimension k£ — 1 to a bouquet of spheres, all of dimension k — 1.

Digression on degree and homotopy. Any continuous map from a sphere S; to a sphere S5 of same
dimension comes equipped with a degree, which, informally, is an integer which measures the number of
times S; “wraps around” S> under this map. This integer can be negative, as we keep track of orientation.
Since the proper topological definition of degree requires homology (which we are in the process of defining),
we restrict ourselves to differentiable maps. The degree of a differentiable map f between two manifolds of

same dimension is given by:

(61.1) deg(f) = Z 1- (sign det Dfy)

zef~1(2)
where z is any regular value of f, i.e. the determinants in the above sum are not zero (by Sard’s theorem,
almost all values of a smooth map are regular). It turns out that the above number is independent of the (regular)
point z. The degree of a map is invariant under homotopy of the map. [Two continuous maps f; and f; between

the manifold M and the manifold N are homotopic if there is a continuous map F' : [0,1] x M — N such
that F(0, z) = fo(z), F(1,z) = fi(z)forall zin M ]

Back to horticulture. The attaching map f : $* 7! — X, _; / X2 has a multiple degree: on each sphere
S; in the bouquet one can compute the oriented number of preimages under fofa regular point as in (61.1)
(without loss of generality, we can assume that f is differentiable except at the common point of the spheres).
Suppose that c]ffl, cees cﬁfkfl denote the (k — 1)—cells of the cell complex and c}, ..., c’;"vk its k-cells. We
now form an N, x Nj,_; integer matrix J), whose entry 0y (i7) is the degree of the attaching map from dc?
to the jth sphere of the bouquet, i.e. c?il / 80?71. The matrices Jy, for k € {1,...,dimX} essentially give

all the combinatorial data describing how the complex X is pieced together from our collection of cells.

Chain complexes. We now want to view the matrices O, as those of linear maps between finite dimensional
vector spaces, or modules. To do this, one thinks of c’f, e cé"\,k as the basis vectors of an abstract vector

space (or free module) C}, whose elements are formal sums of the form

Ny
C = E ajcf,
1
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where a; is an element of some “coefficient” field (or ring) K (usually Z,, Z, @ or IR). Hence C), is generated

by the k-cells and dimC}, = Nj. For convenience, we define 9y = 0 on Cjy.

Lemma 61.4

(61.2) Ok—100, =0.

(The proof of this crucial lemma, which we will not give here (see, eg. Dubrovin & al. (1987) ) usually
uses the long exact sequence of a triple and a pair in simplicial homology). A chain of maps and vector spaces

(or modules):
C, . B~ =y

satisfying (61.2) is called a chain complex.

Definition 61.5 The kth homology group of the finite cell complex X with coefficients in a ring K is given
by:
Hy(X;K) = Ker 0 /Im Oky1.

where, by convention, Jg = 0 = 0y, 41

This definition makes sense since, by Lemma 61.4, Im Jy+1 C Ker 0.
Note that Hy,(X) = 0 whenever k£ > dim X or k& < 0, since for such k, X, = ().

Example 61.6 The circle $* is a CW complex: we start with a point p and attach to it an interval I = [0, 1]:
the boundary points of I become identified to p under the attaching map. Using IR as coefficients in our chain
complex, we get Cyp = R.p = IR, Cy = IR.J = IR. The map 9; = 0: p has the two preimages {0} and {1}

under the attaching map, but they come with opposite orientation under the orientation induced by I.

Example 61.7 Figure 61. 2 gives the generators for a chain complex for the torus: Cyp = IR - z,(; =
R-a@R-b,C: =R - D. All the boundary maps are 0 in this case: J1a = 0 because it geometrically
yield z twice but with opposite orientation. Likewise for 01b. As for ;D = a + b — a — b = 0, again due to

orientation. Hence Ker 0y = I'm 041 = Cy, for k = 1, 2, 3. We have shown:

R k=0
Hy(T?, R) = R> k=1
R k=2

Clearly, this result remains valid if we replace IR by any coefficient ring K.

Example 61.8 A less trivial example is given by the Klein bottle. This non orientable surface is a torus with
a twist and it cannot be embedded in IR®. We build it with the same cells z, a, b and D as the torus. The only

change occurs in the definition of 0s: instead of gluing D to two copies of b in opposite orientation, we give

them the same orientation (see Figure 61.4). As a result, the matrix of J5 is now .Letus use the integers Z

0
2
as our coefficient ring. Then Ker 0, = {0}. From this we immediately get that Hy(Klein, Z) = 0. Asin the
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torus,d; = Osothat Ker 9 = Cy) = a-Z®b-Z.Since Im 0y = {0}-a®2Z-b, Hy(Klein, Z) 2 Z D Z.
As in the case of the torus, Hy(Klein, Z) = Z (in fact, the rank of Hj gives the number of connected
components of a manifold). Now let’s reexamine the above computation with coefficients K = Z, instead:
the map 0> = 0 in this case since 2=0 in this ring. Thus, in this case we are back to the same situation as
with the torus: Hy(Klein,Zy) = Zy, Hy(Klein, Zy) = Zy @ Zo, Hy(Klein, Zy) =2 Z,. Finally, let’s
choose K = IR. Since Ker 02 = (s in this case again, Hy(Klein,IR) = IR. Since R/2IR = R/R =
{0}, H,(Klein,R) = IR. As before Hy(Klein,IR) = IR.

a
z > Z
b
4 D Y
b
z >
a z

Fig.61. 4. A cell decomposition for the Klein bottle. The only difference with that of the torus is the
orientation of one of the segments b.

Some general properties and definitions related to homology. Let X be a compact manifold
of dimension n. As we will see in next section, it can always be decomposed into a finite CTW complex.
edimHy(M,R) = rank Hy(M,Z) = by, is the k" Betti number of M.

o> 1 (=)*by = x(M) is the Euler characteristic of M.

eNeither by, nor x (M) depend on the chain decomposition chosen for M.

o) gives the number of connected component of M.

ob,, = 1if M is orientable, b,, = 0 if M is not orientable.

Topological invariance. The importance of homology stems in great part from its invariance under
topological equivalences. One topological equivalence is that of homeomorphism. A coarser equivalence (see
Exercise 61.10) is that of homotopy type. Two topological spaces M and /N have the same homotopy type if
there are continuous maps ¢ : M — N, 1) : N — M such that ¢ o v and v o ¢ are homotopic to the Identity

map of M and NN respectively. In other words M can be deformed into N and vice-versa.

Theorem 61.9 If the two manifolds M and N are homeomorphic, or have the same homotopy type,
then they have same homology: H.(M) = H.(N) (the star x stands for any integer).

Since the degree of the attaching maps are invariant under homotopy, homology is itself an invariant under

homotopy equivalence (this requires a more rigorous proof, of course, see eg. Dubrovin & al. (1987) ).

C. Cohomology

Roughly speaking, cohomology is dual to homology. For readers of this book, it might be easier to see it
through differential forms, which are dual to chains of cells in the sense that the integral < c¢,w >= jC wofa
form w on a chain c is a linear, real valued function in ¢ (it is also linear in w). The duality bracket given by

integration also satisfies:
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<de,w>=< c¢,dw >

where d is the exterior differentiation on forms. This formal equality is a general requirement for defining
cohomology. In the case of forms it is simply given by Stokes’ Theorem. Finally, we can define the cochain
complex

d d dn
Ci=Cr=3...33 08

where C}; = A¥ is the vector space of k—forms and dy. is exterior differentiation. As with homology, we can

define the DeRham cohomology group as:
H*(M,R) = Ker dyy1/Im dy,

i.e. this cohomology is the quotient of closed forms over exact forms. One notable difference between
homology and cohomology is the direction of the arrows in the complexes that defines them. Another notable
difference, which makes the use of cohomology often preferable, is the existence of a natural product operation
in cohomology, called the cup product. In DeRham cohomology, this cup product takes the form of wedge
product of the forms:

[wﬂ U [w2] = [wl A LUQ}

where the notation [w] denotes the class of the closed form w. There are many different ways to define
cohomology, but it can be shown that (given some normalization requirements), they all give the same result
on compact manifolds. Poincaré, for instance, introduced cohomology (not under that name) by geometrically
constructing a dual complex to a triangulation (a special CW chain decomposition). In the next section, where
unstable manifolds of critical points of a Morse function will provide us with a chain decomposition, the dual

decomposition can be taken to be that of stable manifolds.

D*. Covering Spaces and Fundamental Group

Covering spaces. The simple notation T? = IR*/ Z? is rich in geometric and algebraic meaning. The
quotient map p : IR? — IR? / Z? is an instance of a covering map in that it is a local homeomorphism which is
such that each point in the torus has an evenly covered neighbourhood U such that p~1 U is made out of disjoint
copies of U (eg. take a disk of radius less than 1 U around the point z). That makes R%a covering space of
T?. In a covering space, the transformations that permute points in a fiber p—* (z) are homeomorphisms which
form a group under composition called the group of deck transformations. For instance, Z? is the group of

deck transformations of the covering space IR* — T2,

Lifting of curves. One can lift curves from a space M to its covering M in a well prescribed way: if the
curve «y starts at zy in M, choose one z(¢ € p‘l(zo) C M to start the lift of v, i.e. a curve v such that
p(¥) = 7. Above an evenly covered neighbourhood U of z, there is only one way to define 7, since there is
only one copy of U containing our choice z;. One then proceed by continuity, covering y with a finite number
of overlapping evenly covered neighborhoods. A curve has as many distinct lifts as there are preimages of its

starting point.

Classification of covering spaces for T?. We can construct other covering spaces of the torus, with

other groups of deck transformations. For instance, the cylinder IR x $' = IR? /Z is a covering space of the
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torus with deck transformations group Z. IR?/(2Z @ 3Z) — IR/ Z? is also a covering space which is itself
a torus, but “6 times as big” as the standard one it covers. It has Z, & Z3 as group of deck transformations,
reflecting the finite number of elements a fiber p~!(z) has. In general, given any normal subgroup G of z?,
you get a covering space IR> /G — T? with deck transformations group Z> /G. In fact these are all the

possible covering spaces of the torus!

The fundamental group. The above classification generalizes to any manifolds, as we will see. Given a
connected manifold M, we need to find a covering space which serves the role IR? does for TZ. It turns out
that the defining feature IR? has in this context is that it is connected and simply connected: any loop in IR?
is homotopic to a point, or constant loop. This makes IR? the universal cover of T?: it is the unique (up to
homeomorphism) covering space of T which is simply connected. Its uniqueness comes from a construction
which works for any manifold. Choose some point 2z in your manifold )M . Declare that two curves starting at
z are equivalent if they have same endpoint and are homotopic. Define the covering space M as the set of all
such equivalence classes. If [y] € M is one such equivalence class, define the covering map as p([7]) = (1)
(its endpoint). One can indeed show that, with the appropriate topology, this is a covering space, and its deck
transformations form a group called the fundamental group of M, denoted by 71 (M, zo) or 71 (M) in short
(changing the base point yields isomorphic groups). Since a deck transformation must permute points in a
fiber, 71 (M) is the group of all homotopy classes of loops based at a chosen point, with group law given by
concatenation of two loops (i.e. follow one, then the next, which is possible since they have same endpoints).
The inverse of a loop is the same loop traversed backwards. As an example, since Z2 is the deck transformation
for the universal cover IR? of T2, we must have 71 (T?) = Z*. More generally 7, (T™) = Z". On the other

hand 7 ($") = {0}, since the sphere is itself simply connected (and thus is its own universal cover).

Classification of covering spaces of any manifold M. As stated above, we can use the universal
cover M to classify all covering spaces of the (connected) manifold M : any other covering space N of M
is of the form N = M /G where G is a subgroup of 71 (M ). Furthermore, G = 71 (N) and if G is a normal
subgroup of 71 (M), then the deck transformations of N — M form the group 7 (M)/G. Remember that G
is normal if aGa~—" = G forany a € 71 (M). As an example, any subgroup of 7, (T?) = Z? is normal, since

Z? is abelian.

Fundamental group vs. homology. Note that 71 (T?) 2 Z? = H,(T?, Z). This is not a coincidence:
both groups were constructed as equivalence classes based on closed loops. In general, a theorem of Poincaré
(1895) says that H; (M, Z) is the abelianization of 71 (M): it is the fundamental group made commutative.
The way to abelianize a group G is by taking its quotient with the subgroup [G, G] of its commutators, which

are of the form xyz 'y ~!. Hence we can write Poincaré’s theorem as:
H (M, Z) =2 7(M)/[r1 (M), 71 (M)].

To see how the case M = T? fits here, note that Z? is already abelian. In general, 71 (M) can be much
more complicated than H;(M,Z). Finally, this leads us to an important case of covering space, called
universal abelian cover of a manifold M. It is the covering M /[m1(M),71(M)] — M which, since
the subgroup [m1 (M), m1(M)] is always normal, has (abelian) deck transformation group H;(M,Z) =
w1 (M) /|7 (M), 71 (M)].
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Exercise 61.10 Show that the circle and the cylinder have same homotopy type but are not homeomorphic.
Exercise 61.11 Using Exercise 61.3 compute the homology of $", T™, IRIP"™.

Exercise 61.12 Convince yourself, looking at Figure 61. 3 that the fundamental group of the double torus is
< a,b,c,d;aba b ede'd™" >, i.e. the group generated by the elements a, b, ¢, d together with the relation
that aba 'b—lcdec 'd™' = e, the neutral element. What is the first homology group of the double torus?
Repeat the question for surfaces of genus g.

62.* Morse Theory

‘We now show how any compact manifold can be described as a cellular space, with cells given by the unstable
manifolds of the critical points of a Morse function. This immediately yields a relationship between critical
points and Homology, in the guise of the Morse Inequalities. We first define some of these terms.

Let f : M — IR be a differentiable function on a manifold M. A critical point for f is a point z at which
the differential of f is zero: df (z) = 0.If f is twice differentiable, the critical point z is called nondegenerate
if
921 (2)

0x?

where this second derivative is taken with respect to any local coordinates = around z on M. The function

(62.1) det

£0

f is a Morse function if all its critical points are nondegenerate. One can show that there are many Morse
functions on any manifold. In fact Morse functions are generic in the set of twice differentiable functions. See
e.g. Guillemin & Pollack (1974) , as well as Milnor (1969) .

Note that the condition (62.1) is independent of the coordinate system. Indeed, at a critical point z,

0*f(z) _ 02" *f(=) Oy

oy2 Oy Oz Oz’

2
This last formula also implies that the number of negative eigenvalues of the real, symmetric matrix %
does not depend on the coordinate system chosen around the critical point z. This number is called the Morse
index of z. Qualitatively, the level set portrait of a function around a nondegenerate critical point is entirely

determined by the index of the critical point. Indeed:

Lemma 62.1 (Morse Lemma) Let z be a nondegenerate critical point for a function f on a manifold

of dimension n. There is a coordinate system x around z such that:

f@)=f(z) —af —...— 2} +aj,q+...+a2.

We refer the reader to Milnor (1969) for a proof of this lemma, which generalizes the diagonalization
process (Gram-Schmidt) for bilinear forms. Since the Morse Lemma clearly implies that the critical points of
a Morse functions are isolated, we have:

Corollary 62.2 A Morse function on a compact manifold has a finite number of critical points.

The gradient flow of a function f is the solution flow for the O.D.E.:
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(62.2) 2= —Vf(z).

The gradient V f is defined here by (V f,.) = df(.), where the brackets denotes some chosen Riemannian

metric. The minus sign is put in (62.2) so that F' decreases along the flow:
d 2
5 (Z@) = —{Vf(z(1))} <0

with equality occurring exactly at the critical points. The eigenvectors corresponding to the negative eigenvalues

of 828’; (f) span a subspace of T, M which is tangent to the unstable manifold at z of the gradient flow: that
is, the z1, ...,z plane given by the Morse Lemma. We remind the reader that the unstable manifold of a
restpoint for a flow is the manifold of points whose backward orbit is asymptotic to the restpoint. Hence the
Morse index of a nondegenerate critical point of a Morse function is the dimension of its unstable

mamnifold.

Remark 62.3 Note that if the metric chosen to define the gradient is the euclidean one in the Morse coordinate
chart, the (x1, ..., xy) plane is itself the unstable manifold of the critical point, at least in that chart. This can

always be arranged, by a local perturbation of the metric, and we will assume from now on that this is the case.

The gist of Morse theory consists in studying how the topology of the sublevel sets:
M*={xe M| f(x)<a}

changes as a varies.

Theorem 62.4 If there is no critical points in f~'[a,b], then M?® and M® are diffeomorphic. The

inclusion of M® in M® is a deformation retraction.

w|
me

Fig. 62. 0. Deformation of a sublevel set M? into the sublevelset M® when there are no critical points in
f'la,b]. The lines with arrows represent trajectories of the gradient flow.

Proof. Deform M?" into M® by flowing down the trajectories of the gradient flow, with appropriate speed
and during an appropriate time interval. This is possible as long as there are no critical value in [a, b]. See

Figure 77?7 ad
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Theorem 62.5 Suppose f~1[a,b] is compact and has exactly one critical point in its interior, which
is degenerate and of index k. Then MY has the homotopy type of M® with a cell of dimension k

attached, namely, a ball in the unstable manifold of the critical point.

Proof. (sketch) Let z be the critical point, c = f(z) and € > 0 be a small real number. By the previous
theorem, M has the same homotopy type as M and likewise for A/°~¢ and M®. Hence, we just have to
show that M "¢ has the homotopy type of M “~¢ with a cell attached.

(Unstable)

(Stable)

Fig.62. 0. A neighborhood of a Morse critical point z. A suitable parameterization of the flow retracts
M°*€ onto M°~°U S, which itself can be deformed into M“~°U B.

We have represented in Figure 62. 0 the sets )/ °*¢ within a Morse neighborhood. The drawing makes
it intuitively clear that some reparameterization of the gradient flow (which we have represented by some

arrows) will collapse M€ into M°~€ U S. But the set S is given by:
S={f<c+ezri+...+ri <3},
which can obviously be deformed into:
B={f<c+ex=...=x, =0},
that is, a ball in the unstable manifold of z. In other words,
Mete ~ MU B.

O

Any cellular space X is homotopically equivalent to a finite cell complex Y, where X and Y have the
same number of cells in each dimension (one deforms each of the attaching maps defining X into one that
attaches to cells of lower dimensions, see Dubrovin & al. (1987) , Section 4). This and the previous theorem

yield:
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Corollary 62.6 Any sublevel set M® of a Morse function on a compact manifold M has the homotopy
type of a finite CW complex, whose cells correspond to the unstable manifolds of the critical points.

Hence, since there always is a Morse function on any given manifold,

Corollary 62.7 Any compact manifold has the homotopy type of a finite CW complex, with a cell of

dimension k for each critical point of index k.

Corollary 62.8 (Morse inequalities) Given any Morse function f on a compact manifold M, the
homology of M is generated by a finite complex {Cy, O }(1,....dimry whose generators correspond to

the critical points of index k of f. In particular, if ¢, = dimCy, is the number of critical points of

ndez k,

(62.3) ek > by =rankHp(M,Z)

and, better:

(62.4) Ck—Ch—1+...%7cg >bp —bp_1+...%bg,

with equality holding for k = n.

Proof. The first statement in the theorem is somewhat of a tautology for us, since we have “defined” the
homology of M as the cellular homology of any cellular complex representing /. Formula (62.3) is then
trivial, since

Hp(M) = Ker 0x/Im Ok1,

and Ker Oy is a subspace of C}.The inequalities (62.4) are a consequence of (62.3) and their proof, left to

the reader, only involves linear algebra. a

Remark 62.9 One can give a nice geometric interpretation of the maps J in the context of Morse theory.
Assume that the gradient flow ¢* of our chosen Morse function is Morse-Smale, i.e. that for any given pair
of critical points x, z, their respective stable and unstable manifold meet transversally. This is again a generic

situation, which has the following implications: the set
M(z,z) = W¥(x) N W?(2),
which is the union of all orbits connecting « and z, is a manifold and
dimM (x, z) = index(x) — index(z).

In particular, if index(x) — index(z) = 1, M (x, ) is a one dimensional manifold made of a finite number of
arcs that one can count, with £ according to a certain rule of intersection. This intersection number m(z, )

gives the coefficient in the generator z of (x), i.e.

O = Z m(x, z).z.

z2€Cy_1
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One can also define cohomology in this fashion: just take the same complex, but defined for the function — f.
What was stable becomes unstable manifold and C}, becomes C,, 1. This not only gives us a geometric way

to see cohomology, but a trivial proof of Poincaré’s duality theorem:
H" *(M,R) = H,(M,R)

. For more details on this chain complex, which is sometimes called the Witten complex but dates back to
J. Milnor’s book on cobordism, see e.g. Salamon (1990) . For a proof of Poincaré’s duality using the Morse

complex, see Dubrovin & al. (1987) .

63. Controlling The Topology Of Invariant Sets

The relationship revealed by Morse between the critical point data of a function and the topology of the
underlying manifold has a very wide generalization in the theory of Conley, which brings about a similar
relationship for general continuous flows on locally compact topological spaces. We will outline this theory
in Section 51.C. For now, we make a small step toward this generalization.

Here, and for the rest of this chapter, the cohomology used is the Cech cohomology with coefficients in
IR. We do not need to define this cohomology here: it is enough to state that it is well defined not only on
manifolds but on their compact subsets as well. Furthermore it is continuous for the Hausdorff topology on
compact subsets. Otherwise, it satisfies all the usual axioms and rules of cohomology and coincides with other
cohomologies on compact manifolds.

Consider a compact set / which is invariant under the gradient flow of a function 1/ on some finite dimen-
sional manifold. If W is a Morse function, then necessarily I is made of critical points and the intersections
of all their stable and unstable manifolds (prove it as an exercise!). Exactly as we did for manifolds, consider
the Floer-Witten chain complex, generated by the critical points and with boundary maps given by the stable-
unstable manifolds intersection data. It turns out (see the proof in Floer (1989) , and also Salamon (1990) ) that
this complex gives the (co)homology not of /, but of its Conley index, a topological/dynamical invariant of 1
that we define below. In certain cases, as in what follows, one can evaluate the Conley index and hence give
lower estimates on the number of critical points. We use these results in Section 65 to estimate the number of

critical points of functions on vector bundles.

Definition 63.1 Let A/ be a finite dimensional manifold. A compact neighborhood B in M is called an
isolating block for a (continuous) flow ¢! if points on the boundary OB of B immediately leave B under the

flow, in positive or negative time:
2€dB=¢%) c B or ¢(=°9 c B® forsome €=e(z)>0.

The exit set B~ of B is defined as the set of points in 9 B which immediately flow out of B in positive time.

Given an isolating block B for the flow ¢', define I(B) to be the maximal invariant set included in B

(“maximal” is in the sense of inclusion here). Alternatively:
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I(B) = Niems'(B).

There are two classical ways to measure the topological complexity of an invariant set I(B). One is its

cohomology cohomology Conley index:
h(I)= H*(B,B™).

The bigger the dimension of this vector space, the more complex the topology of I. Note that in the notation
h(I), we have deliberately omitted the mention of B: this is because the vector spaces H*(B, B~) are
isomorphic for all isolating block B such that I = I(B) (Conley & Zehnder (1984) ). Hence h([) is an

invariant of the set . In practice, the size of h(I) is measured by the sum of the Betti numbers

sb(h(I)) =Y dimH"(B,B").
k

This again is an invariant of /. A second, somewhat rougher way to measure the complexity of an invariant set
I (or any topological space which admits continuous (semi)flows and a cohomology) is the cuplength which

is defined as:
cd(I)=1+sup{k € N | Jw1,...w, w; € HY(I),n; >1, and wiU...Uwy # 0}

The following is a generalization of both Morse and Lyusternick-Schnirelman theories. It is itself the

consequence of the much more general theory of Conley for (semi)flows.

Theorem 63.2 Let I be a compact isolated invariant set for the gradient flow of a function W on
some manifold. If the function is Morse, the number of critical points in I is greater or equal to

sb(h(I)). Otherwise, the number of critical points is at least equal to cl(I).

Historically, the first time Theorem 63.2 was applied in a significant way was in the proof of the following

proposition, which appeared in several pieces in Conley & Zehnder (1983) :

Proposition 63.3 Let M be a compact manifold and W be a real valued function on M x IR™ x R™.
Suppose that the gradient flow of W admits an isolating block B of the form B ~ M x DT x D~
with exit set M x DT x 0D, where DT C IR", D~ C IR™ are homeomorphic to the unit balls. If
W is a Morse function, it has at least sb(M) critical points in B. In general, W has at least cl(M)

critical points.

== -

M 0 Do D
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Fig. 63. 0. The isolating neighborhood in Proposition 63.3.
Conley and Zehnder applied this theorem in the case M = T", where sb(M) = 2", and cl(M) = n + 1,

which gives a measure of the crudeness of the cuplength as compared to the sum of the Betti numbers. In the
following section we will give a proof of Theorem 63.2 (we will only sketch the sum of betti number estimate,

but give a complete proof of the cuplength estimate) as well as of Proposition 63.3.
64. Topological Proofs

The following lemma gives a situation where one can get a handle on the topology of an invariant set /. It is

central to the proofs of several topological results we will use, including Proposition 63.3.

Lemma 64.1 (Floer) Let B be an isolating block for a flow ¢* on a finite dimensional manifold,
and I be its maximal invariant set. Suppose that there is a retraction o : B — P, where P is some

compact subset of B. If there is a class u € H*(B, B™) such that :

v—uUa*(v): H(P) — H*(B,B7)

is an isomorphism, then
ar®: H*(P) — H*(I)

is injective, where oy denotes the restriction of a to I.

(If N C M are two topological spaces and ¢ : N — M is the inclusion map, a retraction is a map
r: M — N such that r o i = Idy, that is r restricts to Id on N). For a proof of Lemma 64.1, see Section
65.B.

Corollary 64.2 Let B, I, P be as in Lemma 64.1, and let the flow ¢t in that lemma be the gradient

of some function W. Then the number of critical points of W is at least cl(P).

Proof. If H*(P) — H*(I) is injective, cI(I) > ¢l(P) and the Corollary is an immediate consequence of
Proposition 63.2. o

A. Proof of the Cuplength Estimate in Theorem 63.2

Conley & Zehnder (1983) prove a cuplength estimate (their Theorem 5) that is valid for a compact invariant
set I of a general flow ¢°. We follow their proof. Define a Morse decomposition for I to be a finite collection
{M,}pep of disjoint compact and invariant subsets of I, which can be ordered in such a way that any z not
in Upc p M), is a-asymptotic to an M; and w-asymptotic to an M;, with i < j ( = is c-asymptotic (resp.
w-asymptotic) to M if lim; .o (1o0) ¢'(z) € M;). One can show that a compact invariant set always has

such a Morse decomposition. We now state Theorem 5 of Conley & Zehnder (1983) :

Theorem 64.6 Let I be any compact invariant set for a continuous flow, and let {Mp}pcp be a

Morse decomposition for I. Then
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(64.1) c(I) <Y cl(My).

peP

The relevant example for us is when ¢’ is the gradient flow of a function with a finite number of (not
necessarily nondegenerate) critical points on a compact invariant set [: it easy to check that these critical
points form a Morse decomposition. Since an isolated point has trivial cohomology, c/(M,,) = 1 for each p in
this example, and we have proven the cuplength estimate in Theorem 63.2. The case when the critical points

are not isolated is trivial in that theorem: ¢l(I) < oo is always true... We now prove Theorem 64.6.

Proof. Note that if (M, ..., M}) is a Morse decomposition, then (M; _,—1, M) is also a Morse de-
composition, where M . ;1 is formed by the union of M; U ... U Mj,_; and of all the connecting orbits
between these sets. Hence, by induction, we only need to consider the case where k = 2, and (M1, M) is a
Morse decomposition for I. From the definition of a Morse decomposition, we can deduce the existence of
two compact neighborhoods 73 of M; and I of My in I with I3 U Is = I and such that M; = ﬁt>0¢>t(11)
and My = My=0¢'(I2). In particular, by continuity of the Cech cohomology H*(I;) = H*(M;),j = 1,2.
Thus the proof of (64.1) reduces to that of the inequality cl(I1) + cl(I3) > cl(I) whenever I; U I, = I are

three compact sets. The next lemma is devoid of dynamics:

Lemma 64.8 Let I1 U I, C I be three compact sets. If i1 : Iy — 1,3 : I — 1 andi:I;Uly — I are

the inclusion maps, then, for any o, 8 € H*(I),

ija=0 and 38=0=1i"(aUp)=0.

Proof. We chase the diagram:

HY(I.I,) ® H*(I,L,) = H*I,I;Ul)

Lt 1 J2 L
H<(I) ® HI) > H*(I)
14 135 L

HY) ® H*L) < H*I,UL).

The vertical sequences are exact sequences of pairs. Starting on the second line of the diagram with «, 3 €
H*(I), suppose ija = 0 = 433 then there must be @ € H*(I,I;) with jia = «a, # € H*(I, ;) with
j3B = B.Now j*(@ U 3) = aU (8 and hence i* (o U §) = i* o j*(& U 3) = 0, by exactness. O

To finish the proof of Theorem 64.6,let ay,...,a; bein H*(I) and oy U ... U oy # 0. Let this product
be maximum, so that ¢/(I) = [ + 1. Order the «’s in such a way that «; U ... U «,. is the longest product
not in the kernel of ¢. In particular ¢/(I;) > r + 1 and ij(aq U ... U, Uayy1) = 0. Lemma 64.8 forces
i5(apy1 U...Uaqq) # 0 (i* is one-to-one here, since I; U Io = I). Thus cl(l2) > 1 — (r+1)+1=1—r,
and cl(1) +cl(I3) > 1+ 1 =cl(I). O
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B. Proof of Lemma 64.1

In this subsection, we prove Lemma 64.1 that we restate here:

Lemma 64.1 (Floer) Let B be an isolating block for a flow ¢* on a finite dimensional manifold,
and I be its mazximal invariant set. Suppose that there is a retraction o : B — P, where P is some
compact subset of B. If there is a class u € H*(B, B™) such that :

v—uUa*(v): H(P) — H*(B,B")

is an isomorphism, then

ar* s H*(P) — H*(I)

is injective, where oy denotes the restriction of a to I.
Proof. Define B> = Ny~q¢' B, the set of points that stay in B for all negative time.

Lemma 64.9 1) H*(B,B*UB ) =0
2)I* : H*(B*®) — H*(I(B)) is an isomorphism, where | : I(B) — B is the inclusion.

Before proving this lemma, we use it to finish the proof of Lemma 64.1. Consider the diagram:

H*(B,B~) ® H*(B,B®) = H*(B,B*UB~) =0
| Id L |k
H*(B,B~) ® H*B) > H*(B,B™)
L
-
H*(B>) = H*(I)

where all vertical maps are induced by inclusions, and the two first horizontal maps are given by Kiinneth
Formula. Suppose a;*v = 0 for some v € H*(P). Since [* is an isomorphism and a; = ape~ ol ,
0 =ar* =" (ap=)*v = (ap=)*v = 0. Since agx = a0 i,0 = ap~*v = i*a*v. The middle, vertical
sequence is the exact sequence of a pair. Hence there is a w € H*(B, B>) such that j*w = a*v. But
uwUa*v =k*(uUw) = k*(0) = 0 . The hypothesis of Lemma 64.1 forces v = 0. O

Proof of Lemma 64.9 Let Bt = ¢!(B) and B® = N;~qB" as before. Note in particular that, in the
Hausdorff topology, lim; .., B! = B, and lim;_.o Bt = B. To the triple of spaces (B, B~ U B*, B™)

corresponds the exact sequence:
. SH*(B.B'UB™) — H*(B,B )SH*(B'UB~,B)>H*"B,B'UB)...,
(see eg. Dubrovin & al. (1987) ). We now show that :* is an isomorphism. Consider the diagram:
(BtUB~,B™)
i1

% Li
(B, B-nB!) 2 (B,B™)
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The excision theorem implies that ¢] is an isomorphism, and the continuity of the Cech cohomology implies that
i3 is an isomorphism. Since the diagram commutes, 7* must be an isomorphism. But this forces H* (B, B! U
B7) = 0 in the above diagram. Taking the limit of this equality as ¢ — oo proves 2).

Using the long exact sequence of the pair (B>, I), the map [* induced by the inclusion [ : I — B is
an isomorphism whenever H*(B>°, I) = (), which we proceed to show. Note that ¢ B> C B> and, by
definition, I = N;>0¢~*(B>°). Consider the maps:

(Bw,¢7th) ﬂt (¢7tBOO,¢_tBOO) i> (BOO,QS_tBOO),

where j is the inclusion. The map j o ¢~ is clearly homotopic to Id, hence H*(B>,¢~*B>)
H*(¢tB>, ¢ *B>) = 0. Since this is true for all ¢, the continuity of the Cech cohomology concludes. O

C*. The Betti Number Estimate of Theorem 63.2 and Conley’s Theory: a Sketch

We have proven in Theorem 64.6that, for a general function W, the number of critical points in an invariant set
I for the gradient flow of W is greater than cl(I). We now show that if W is a Morse function, the number of
critical points in [ is greater than sb(7). To do so, one can either follow Floer (1989) in his generalization of the
Witten complex (of unstable manifolds of critical points for gradient flows, see Remark 62.9) to invariant sets.
His proof relies in part on Conley’s theory. Alternatively, one can use Conley’s generalized Morse inequalities
that we state in this subsection.

Let I be a compact invariant set for a continuous flow ¢' and (M3, ..., M}) be a Morse decomposition
of I. Analogously to Theorem 64.6, Conley-Morse inequalities relate certain betti numbers of the Morse sets
M; to the corresponding betti numbers of I. To define the adequate betti numbers, we need to generalize the
notion of isolating block to that of index pair for isolated invariant sets. A compact set [ is an isolated invariant
set if there is a neighborhood N of I such that I = I(N) is the maximal invariant subset in N. An index
pair for an isolated invariant set I is a pair of compact spaces (N7, N3) such that N\ N, is a neighborhood
of I and I = I(N;\N,). This generalizes the concept of isolating block. In particular N> plays the role of
the exit set, see Conley (1978), Conley & Zehnder (1984) . The fundamental property of these sets is that the
homotopy type [IN1/Na, %] is independent of the choice of index pair for I and hence defines a topological
invariant called the Conley index of the invariant set I. Giving less information, but easier to manipulate is
the cohomology Conley index H*(N;, N») = h(I), again an invariant of 7. If (N;, Ny) = (B, B™) for an
isolating block B, this definition of h(7) is the same as we have given previously. One way to encode the
information given by h(I) is via the coefficients of the Poincaré polynomial:

p(t, h(I)) :== >t/ dimHI (Ny, Ny).
Jj=0
In Conley & Zehnder (1984) , it is proven that, given a Morse decomposition (M, ..., M},) for an invariant
set I of a continuous flow ¢’, there is a filtration Ny C Ny C ... C Ny, such that (N, N;_1) is an index

pair for ;. This is instrumental in proving the following:

Theorem 64.12 (Conley-Morse inequalities)

k

(64.2) > p(t, (M) = p(t, (D)) + (1+1)Q(D),

Jj=1
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where Q(t) is a polynomial with positive coefficients

This theorem is an extraordinary generalization of the classical Morse inequalities: it is valid for any
continuous flow on a locally compact space (not necessarily a manifold!). To see that one indeed retrieves the
betti number estimates of Theorem 63.2, one uses the Morse decomposition of our invariant set / given by
the (isolated) critical points 21, ..., z . Thanks to the Morse Lemma, it is not hard to construct an isolating
block for each z;, and show that the Conley index of z; is a pointed sphere made by collapsing the boundary
local unstable manifold of z; to a point: take the set S in Figure 64. 1.

Xlyeranny Xk
(Unstable)

Xkt Iyananes Xn

(Stable)

Fig.64. 1. The index pair (S, S™) retracts on (B, B™), a pair made of the local unstable manifold of z and
its boundary (a disk of dimension k equal to the index of the critical point z and its bounding sphere). Thus
h(z) = H*(S,S7) = H*(B, B™) & H*($", *) which has exactly one generator in dimension k.

Hence p(t, h(z;)) = "7, where u; is the Morse index of z;. Now the pair (7, (}) is an isolating pair for
I (no points exit 1), and thus p(¢, h(1)) = > t*dimH"(I). The positivity of the coefficients of () in (64.2)

therefore insures that there are at least dim H" () critical points of index .

D. Proof of Proposition 63.3

To prove this proposition, we let the manifold M play the role of P in Lemma 64.1. The retraction « of that
lemma is given by the canonical projection « : B — M. Clearly the projection of B onto M x D~ is a
deformation retract, which deforms B~ onto M x 0D~ .Hence H*(B,B~) 2 H*(M x D, M x 9D ).

Now, Kiinneth Formula gives an isomorphism:
@]
H*(M)® H*(D",0D") = H*(M x D~ ,M x 0D")

where, as suggested by the notation, one gets all of the classes in the right hand side vector space as cup
products of classes in the two left hand side spaces (with the appropriate identifications given by the inclusion
maps). But, letting n = dimD~, we have H*(D—,0D~) = H*($", *), which has exactly one generator u

in dimension 7.
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Hence H*(M) = H*+4m M (B B~) and sb(M) = sb(h(I)) where I is the maximal invariant set in B.
This and Theorem 63.2 yield the Betti number estimate. The homeomorphism H*(M) = H*(B, B~) is of
the type prescribed by Lemma 64.1. This implies that the induced map H*(M) — H*(I) is injective and
hence cl(I) > cl(M). This fact and Theorem 63.2 give the cuplength estimate. O

E*. Floer’s Theorem of Global Continuation of Hyperbolic Invariant Sets.

Floer’s Lemma 64.1 is the cornerstone to the proof of the following theorem, where he makes good use of the
powerful property of “invariance under continuation” of the Conley Index. This theorem illustrates the power
of Conley’s theory, and shows the historical root of Floer’s Cohomology. Note that, in the theory of dynamical
systems, the hyperbolicity of an invariant set for a dynamical system is intimately related to its persistence
under small perturbations of the system: this relationship is the core of many theorems on structural stability.
What is interesting about the following theorem (and Conley’s theory in general) is that it provides situations
when the persistence of an invariant set can be made global (but rough).

The notion of continuation of invariant sets makes use of the simple following fact: an index pair for a
flow ¢* will remain an index pair for all flows that are C° close to ¢!. Two isolated invariant sets for two
different flows are related by continuation if there is a curve of flows joining them (:.e. an isotopy) which
can be (finitely) covered by intervals of flows having the same index pair. The following theorem (Theorem
2 in Floer (refine) ) can be seen as an instance of weak, but global, stability of normally hyperbolic invariant

sets.

Theorem 64.16 (Floer) Let ¢} be a one parameter family of flows on a C* manifold M. Suppose
that Gy is a compact C? submanifold invariant under the flow ¢l. Assume moreover that Gy is

normally hyperbolic, i.e. there is a decomposition:
TM|, =TGy® EY ¢ B~

which is invariant under the covariant linearization of the vector field Vo corresponding to ¢f with

respect to some metric ( , ), so that for some constant m > 0:

(&, Do) < —m(&. ) for & € E-

(64.3)
(&, DVp€) > mi{€, &) for € ET

Suppose that there is a retraction o : M — Gg and that there is a family G of invariant sets for ¢’

which are related by continuation to Gy . Then the map:

(ofg,)" : H*(Go) = H*(G»)

in Cech cohomology is injective.

In this precise sense, normally hyperbolic invariant sets continue globally: their topology can only get

more complicated as the parameter varies away from 0.
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65. Generating Phases Quadratic at Infinity
A. Generating Phases on Product Spaces

The following proposition serves a key role in various proofs in this book, as well as in symplectic topology.

Proposition 65.1 Let M be a compact manifold, and W a real-valued function on M x R® satisfying:
1 [OoW

65.1 lim — | —(q,v —dQv)zO,

(6.1) loll—oo [V (317( ) ®)

where Q(v) is a nondegenerate quadratic form on R™. Then W has at least cl(M) critical points.

If W is a Morse function, then it has at least sb(M) critical points.

The function W of Proposition 65.1 is a special case of a class of function called generating phases. We

develop this notion in the next subsection.

Proof. In an appropriate orthonormal basis (e1,.. ., ex) of R™,

ay
Q(v) = (Av,v) with A= ,

aK

with a; # 0.Let (v1,...,vk) be the coordinates of an element v € IR* in this basis. We claim that:
B(C) = {(g,v) € M x R¥ | sup|v;| < C}
J

is an isolating block for the gradient flow of — ¥, when C' is large enough.
To prove this, note that B(C) is a compact neighborhood. Thus, in order to show that the flow exits in
small positive or negative time at the boundary of B(C'), it suffices to check that, on each “face” {v; = C'} of

0B(C), the dot product of VW with the normal vector to this face is non zero. The same argument will apply

to the face {v; = —C'}. The normal unit vector pointing out at a point z = (g, v) of {v; = C'} is e;. But:
oW 99 (0W 00
ov T v o ov)

- 1 (OW 90
—C(CL]-FG(%—%).BJ)

This last expression must be of the sign of a;, for large C' as the last term inside the bracket tends to zero
when C' — oo (||v]] is of the order of C'.) The same proof works for the face {v; = —C'}, since the outward
normal vector is —e; on this face. We have proved that, for all C' larger than some Cj, the set B(C) is an
isolating block. Denote by B~ the exit set of B = B(C), i.e. the subset of 9B on which points flow out in
positive time. In this case B~ is the union of the faces {v; = £C'} such that the corresponding eigenvalue a;;
is negative (remember, we are looking at the gradient flow of —W).

Hence B = M x DT @ D~ where the disks DT, D™ are respectively the intersections of the positive
and negative eigenspaces of Q with the set {sup, [v;| < C'},and the exit setis B~ = M x D" © 9D~ . We
are exactly in the situation of Proposition 63.3 which gives us the appropriate estimates for the number of

critical points inside B. a



214  Appendix 2: TOPOLOGICAL TOOLS (Dec 30 1999)
B. Generating Phases on Vector Bundles

Proposition 65.1 is a cornerstone in the theory of generating phases. We now develop this theory a little and
prove a generalization of Proposition 65.1 for functions on non trivial bundles which we will need. In Chapter

9, we will show how this theory gives an approach to symplectic topology.

Definition 65.2 A generating phase is a function
W.EFE—-1R

where E is the total space of a vector bundle £ — M and M a manifold.
If moreover W satisfies:
1 0
65.2 lim — —W—Q):O,
(652) lvl|—oo [|V]] <8v( )

where, for each q, Q(q, v) is a nondegenerate quadratic form with respect to the fiber v, then we say W is a

generating phase quadratic at infinity , abbreviated g.p.q.1..

We will see in Chapter 9 that the term “generating” refers to the fact that, provided they satisfy a generic
condition in their derivative, generating phases generate Lagrangian manifolds of 7 M . Generating phases are
also called generating functions when associated to the Lagrangian manifold that they generate, or generating
phase function. We will show in Chapter 9 that twist maps generating functions are generating functions in
this sense. We now define some elementary operations on generating phases. These will enable us to extend
Proposition 65.1 to cover general g.p.q.i.’s. These operations are specially important in symplectic topology
in that they enable one to define symplectic invariants of Lagrangian manifolds (capacities) as minimax values
of their generating functions (see Viterbo ( 1992) and Siburg (1995)).

Definition 65.3 Let W, : F; — IR, and W5 : E5 — IR be two generating phases. We say that WW; and W5

are equivalent if there is a fiber preserving diffeomorphism ¢ : E'; — Es such that:

Wy o® =W + cst.

Definition 65.4 Let W, : F; — IRbeag.p.q.i.and f : £5 — IR a nondegenerate quadratic form in the fibers
of Es. The function Wy : By & Ey — IR defined by:

Wa(gq,v1,v2) = Wi(q,v1) + f(q,v2)

is called a stabilization of Wj.

Proposition 65.5 If the generating phase W1 is equivalent to Wa, or is a stabilization of Wy (or both)
then critical points of W1 are mapped bijectively into those of Wa and the set of critical values are

the same, up to a shift by a constant.

Proof. Let Wy o® = W5 + C as in Definition 65.2. Then,
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dWy = &*dW,

Hence the set of critical points of W is sent bijectively to that of 15 by @. There is a constant discrepancy
of C between critical values of W7 and W5 in this case .

Now let
Wz(qa’UluUZ) = Wl(q7v1> + f(%”z)

be as in Definition 65.3. Critical points of a generating phases W satisfy, in particular, 0W/Jv = 0. But here,

OWy

9 = (8W1111,6fvg) =0=v,=0

and since any point (g, 0) of F is critical for f, the critical points of W5 correspond exactly to those of W7 .

It is easy to see that the critical values of ¥/, and W5 are the same at the corresponding critical points. ad

Proposition 65.6 Let M be a compact manifold and W : E — IR be a g.p.q.i. on a fiber bundle
E — M. Then W has at least cl(M) critical points. If W is a Morse function, then it has at least
sb(M) critical points.

Proof. Ttis a corollary of Proposition 65.1 and of the following:

Lemma 65.7 Let W : E — IR be a ¢.p.q.i. Then it is equivalent, after stabilization, to a g.p.q.i.
W : M x RX — R whose quadratic part Q is independent of the base point.

Proof. ( We follow Theret (1999)) There exists a fiber bundle F' such that E & F is trivial (eg. take F' to
be the dual of E, see Klingenberg (1982)). Stabilize W by endowing F' with a nondegenerate quadratic form
Q5. Since E @ F is trivial, there is a fiber bundle diffeomorphism @ : E @ F — M x IRX. A fiber bundle
diffeomorphism being linear in each fiber, (W @& Q;) o = !isa g.p.q.i.on M x RE.

We now show that any g.p.q.i. W (g, v) on atrivial bundle M x R is equivalent to one with a quadratic part
which is independent of the base point g. Let Q be the quadratic part of W and write Q(q, v) = (A(q)v,v),
where ( , ) denotes the dot product on R . Let Ej ®E, = Eg4bethe decomposition of £, into the positive and

negative eigenspaces of A(q). If the fiber bundles £+ and E~ were trivial, the Gram-Schmidt diagonalization

I 0 + ~ —
0 I) on 7 ¢ E,and

the resulting fiber bundle diffeomorphism would make W equivalent to a g.p.q.i. such as we advertised. To

process would make Q equivalent to a constant quadratic form with matrix

arrive to this situation, stabilize Q| e (resp. Q‘ p-) to a positive definite Q" (resp. negative definite Q)
on a trivial bundle £ (resp. £7). O

Remark 65.8 Our definition of g.p.q.i. is more general than the one commonly found in the (french) literature
(i.e. Sikorav (1986), Laudenbach & Sikorav (1985), Chaperon (1989), Theret (1999), Viterbo ( 1992)). Usually
one asks that W be equal to its quadratic part O outside of a compact set. One can show (see Theret (1999))
that if W — Q is bounded outside of a compact set, then W is equivalent, after stabilization, to such a g.p.q.i..
It is not clear to us that the same would hold with our more general asymptotic condition. In that sense,

Proposition 65.6is stronger of its kind than any we know of in the literature.
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Proposition gpqi or TOPOpropgpqi is 65.6, Proposition TOPOproptrivialgpqi is 65.1Theorem floerthm or
TOPOthmfloer is 64.16, Proposition TOPOpropcz is 63.3, Section TOPOsectionproofs is 64, Section TOPO-
sectioninvtset is 63, Lemma TOPOlemfloer is 64.1, Theorem TOPOthmsbcl is 63.2, Section TOPOsecgpqi
is 65
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