
INTRODUCTION

In this introduction, we tell three mathematical stories which introduce themes that are in-

terwoven throughout the book. The first one is the evolution of the dynamics of conservative

systems (the standard map here) as one perturbs them away from completely integrable.

The second story is about the relationship between Lagrangian or Hamiltonian systems

and symplectic twist maps, illustrated here by the connection between the billiard map and

the geodesic flow on a sphere. The third story relates Poincaré’s last geometric theorem to

symplectic topology.

1. Fall from Paradise

Consider the map F0 : IR2 �→ IR2 given by:

F0(x, y) = (x+ y, y).

F0 shears any vertical line {x = x0} into the line {y �→ (x0 + y, y)}, of slope 1: as y

increases, the image point moves to the right. We say that F0 satisfies the twist condition.

F0 is linear with determinant 1 and hence is area preserving. SinceF0(x+1, y) = F0(x, y)+

(1, 0), this map descends to a map f0 of the cylinder S1 × IR. There, the x variable is seen

as an angle. f0 is called an area preserving twist map of the cylinder, or twist map in short.

See Chapter 1 for a more detailed definition of twist maps. The map f0 has an additional

property that makes it special among twist maps: it preserves each circle {y = yc}, on which

it induces a rotation of angle yc (measured in fraction of circumference). We say that f0 is

completely integrable. Completely integrable maps are the paradise lost of mathematicians,

physicists and astronomers. Not only are the dynamics of such maps entirely understood, but
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the invariance of each circle {y = yc} assures that no point drifts in the vertical direction. In

their original celestial mechanics settings, twist maps appeared as local models of sections

of the Hamiltonian flow around an elliptic periodic orbit. In this setting, this lack of drift

means stability of the orbit ( and by extension, one hoped to establish the stability of the

solar system...). Nearby points stay nearby under iteration of the map. Of course “real”

systems are rarely completely integrable. But one of the driving paradigms in the theory of

Hamiltonian dynamics is the study of how one falls from this completely integrable paradise,

and how many of its idyllic features survive the fall.

Falling is easy. Perturb F0 ever so slightly into an Fε:

Fε(x, y) =
(
x+ y − ε

2π
sin(2πx), y − ε

2π
sin(2πx)

)
,

called the standard map. As the reader may check, the vertical lines are still twisted to the

right, and the area is still preserved under Fε. Looking at the computer pictures of orbits

of F0 and Fε in Figure 1.1, we see what appear as invariant circles winding around the

cylinder. We also see new features in the orbits of Fε: some structures resembling collars

of pearls (elliptic periodic orbits and their “islands”), interspersed with regions filled with

clouds of points (chaos and diffusion due to intersecting stable and unstable manifolds of

hyperbolic periodic orbits). We also see some “broken” circles made of dashed lines (Cantori

or Aubry-Mather sets).

Elliptic island within an elliptic island

Aubry Mather set ?

Invariant circle

Elliptic island for a period 2 orbit

Chaos near a homoclinic orbit

Hyperbolic period 2 orbit 
(surrounded by chaos)

Fig. 1.1. The different dynamics in the standard map: the left hand side shows a selection
of orbits for the completely integrable F0, all on invariant circles. The right hand side
displays orbits for Fε with ε = .817.
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These new features become more and more predominant as the value of ε increases: the

elliptic islands bulge, the chaotic regions spread, and less and less circles appear unbroken. In

fact, if ε ≥ 4/3, a theorem of Mather (1984) says that no invariant circle survives. However,

the deep theory of Kolmogorov-Arnold-Moser (KAM, see Chapter 6) implies that uncount-

ably many invariant circles remain for small ε, those that have a “very irrational” rotation

angle. In fact these circles occupy a set of large relative measure in the cylinder. A natural

question arises: what happens to invariant circles once they break? The answer to this

question, given by the Aubry-Mather theorem (see Chapter 2), is that invariant circles are

replaced by invariant sets called Aubry-Mather sets whose orbits retain most of the features

of those of invariant circles (cyclic order, Lipschitz graph regularity, rotation number and

minimization of action). The Aubry-Mather sets with orbits of irrational rotation numbers

form Cantor sets, sometimes called Cantori; those with rational rotation numbers usually

contain hyperbolic periodic orbits and, depending on the authors’ conventions, associated

elliptic orbits. Of course the Aubry-Mather sets with their gaps form no topological ob-

struction to the vertical drift of orbits. In fact Mather (1991a) and Hall (1989) prove that,

in a region with no invariant circle, one can find orbits visiting any prescribed sequence of

Aubry-Mather sets. Hence these vestiges of stability have now become a stairway to drift

and instability! The theory of transport (see Meiss (1992) ) points at the regulatory role

Aubry-Mather sets have on the rate of vertical diffusion of points.

Higher Dimensions

Make F0 : (x, y) �→ (x + y, y) defined above into a map of IRn × IRn by having x, y be

vector variables. In analogy to the former situation, F0 descends to a map f0 from Tn× IRn

to itself (x is now a vector of n angles). This space can be interpreted as the cotangent bundle

of the torus, an important space in classical mechanics. Not only has the differential DF0

determinant 1, but it also preserves the symplectic 2-form
∑
k dxk ∧ dyk (the two notions

are indistinguishable in dimension 2). The vertical fibers {x = xc} are still sheared, in a way

made precise in Chapter 4. The map f0 is called a symplectic twist map in this book. Our

new f0 is again called completely integrable as it preserves the tori {y = yc}, and induces

a translation by the vector yc on each torus. One can perturb f0 (in the realm of symplectic

twist maps ) and ask the same kind of questions as in the 2–dimensional case: what of the

well understood, stable dynamics of f0 survives a perturbation of the map, small or large?
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It turns out that KAM theory still holds in this case, and guarantees the existence of many

invariant tori whose dynamics is conjugated to the translation by (very) irrational vectors

for small symplectic perturbations fε of f0. One of the results central to this book is that for

arbitrary perturbations, periodic orbits of any rational rotation vector exist for all symplectic

twist maps of a large class, and a lower bound on their number is related to the topology of Tn

(see Chapter 5). What about orbits of irrational rotation vector? There are counter-examples

to a full analog of the Aubry-Mather theorem in higher dimensions, in which the rotation

vectors of action minimizing orbits can be sharply restricted. Mather (1991b) developed

a powerful theory of minimal invariant measures and their rotation vectors on cotangent

bundles of arbitrary compact manifolds. This theory proves the existence and regularity of

many minimizing orbits. But in the case where the manifold is Tn with n ≥ 3, the theory

cannot guarantee that more than n directions be represented in the set of all rotation vectors

of minimizing orbits. And indeed, some examples exist of maps (or Lagrangian systems)

of T3 × IR3 all of whose recurrent minimizing orbits have rotation vector restricted to

exactly 3 axes. If one lets go of the requirement that the orbits be action minimizers, then

in certain examples, orbits of all rotation vectors can be found. The work of MacKay &

Meiss (1992) points to a general theory for maps very far from integrable, but the case of

maps moderately close to integrable, where less help from chaos can be expected, is not

understood. Interestingly, if one trades the cotangent of a torus for that of a hyperbolic

manifold, a large amount of the Aubry-Mather theory can be recovered: minimizing orbits

of all rotation “direction”, and of at least countably many possible speed in each direction

exist (see Boyland & Golé (1996b)). Also, full fledge generalizations of the Aubry-Mather

theorem exist in higher dimensional, but non dynamical settings generalizing the Frenkel-

Kontorova model, as well as for some PDE’s (de la Llave (1999)). We survey all these

questions in greater detail in Chapter 9.

2. Billiards and Broken Geodesics

Symplectic twist maps have rich ties with Hamiltonian and Lagrangian systems. They often

appear as cross sections or discrete time snapshots of these systems. In Lagrangian systems,

a trajectory γ is an extremal of an action functional
∫
γ
Ldt. In twist maps, this relates

to an action function which is a discrete sum of the form
∑
Sk(xk, xk+1) where xk is a
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sequences of points of the configuration manifold and Sk are generating functions of twist

maps. We explore this relationship in Chapter 7. A beautiful illustration of this occurs in the

billiard map. The billiard we consider is planar, convex, and trajectories of a ball inside it

are subject to the law of equality between angle of reflection and angle of incidence. Since

we know that it is a straight line between rebounds, a trajectory is prescribed by one of its

points of rebound and the angle of incidence at this rebound. In this way, we obtain a map

f : (x, y) �→ (X,Y ), where x is the coordinate of the point of rebound and y = −cos(θ),
where θ is the angle of incidence (see Figure 2.1). Since x is the point of a (topological)

circle, and y is in the interval (−1, 1), the map f acts on the annulus S1 × (−1, 1). The

choice of y instead of θ insures that f preserves the usual area in these coordinates (see

Section 6). The twist condition for f is a consequence of the convexity of the billiard: if one

increases y (i.e. increases θ) leaving x fixed, X increases.

x

X

θ Θ

Fig. 2.1. In a convex billiard, the point x and angle θ at a rebound uniquely and contin-
uously determines the next point X and incidence angle Θ.

The map f can be seen as a limit of section maps for the geodesic flows(1) of a sphere that

is being flattened until front and back are indistinguishable. The boundary of the billiard is

the fold of the flattened sphere (not so round in our illustration). Now, draw on the sphere the

closed curveCwhich eventually becomes the fold as one flattens the sphere. For a sufficiently

flat sphere, all the geodesics on the sphere (except for maybeC, if it is a geodesic) eventually

crossC transversally, and one can construct a section map which to one crossing at a certain

point and angle of crossing makes correspond the next crossing point and angle. Seen in

1 To define the geodesic flow on the unit tangent bundle of the sphere, take a point on
the sphere and a unit tangent vector (parameterized by its angle with respect to some
tangent frame). Now travel at constant speed along the unique geodesic passing through
this point and in the direction prescribed by the vector.
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the three dimensional unit tangent bundle, the curve C lifts to a surface parameterized by

points in C and all possible crossing angles in (0, π), i.e. an annulus, which all trajectories

(except maybe forC) of the geodesic flow eventually cross transversally. [Poincaré initiated

a similar section map construction in a 3–dimensional energy manifold for the restricted

3–body problem]. The annulus maps that one obtains in this fashion limit, as one flattens

the sphere, to the billiard map. To see this, note that the geometry of the flat sphere near a

point not on the fold is that of the Euclidean plane, where geodesics are straight lines. At a

fold point, the law of reflexion is a simple consequence of what happens to a straight line

segment as it is folded along a line transverse to it (see Figure 2.2).

fold

Fig. 2.2. The law of reflexion as a consequence of folding.

Geodesics are length extremals among all (absolutely continuous) curves on the sphere.

It therefore comes as no surprise that orbits of the billiard map are extremals of the length

on the space of polygonal lines with vertices on the boundary (see Section 6). If we inflate

our billiard back a little, these polygonal lines become broken geodesics on the partially

inflated sphere. Indeed, the straight line segments can be replaced by segments of geodesic

which, since the law of reflexion is not observed at a rebound for a general polygonal line,

meet at some non zero angle, generally. In this space of broken geodesics, parameterized

by the break points, geodesics are critical for the length function. To see why this is not

only a beautiful, but also useful idea, consider the special case of periodic orbits of a certain

period for the billiard map. In the billiard, these correspond to closed polygons (see Figure

2.3), parameterized by their vertices which form a finite dimensional space, whose topology

clearly has to do with that of the circle. The same holds for closed geodesics of our almost

flat sphere. In fact, when studying closed geodesics (or geodesic between two given points)

on any compact manifold one can restrict the analysis from the infinite dimensional
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loop space to a finite subspace of broken geodesics. This was a key idea in Morse’s

analysis of the path space of a manifold (see Milnor (1969) ). And, more generally applied

to Hamiltonian systems, it is one of the important themes of this book: symplectic twist

maps can be used to break down the infinite dimensional variational analysis of Hamiltonian

systems to a finite dimensional one. This is discussed in detail in Chapter 7, and again in

Chapter 10.

Rotation Number and Ordered Configurations

The billiard map also provides a nice illustration of the notion of rotation number of periodic

orbits (see Figure 2.3 (a) and (b)).

1 2

3

4

5

1 2

3 4

5

(a) (b) (c)

Fig. 2.3. Different polygonal configurations in billiards: (a) is of period 5, rotation number
3/5 and is cyclically ordered. (b) is also of period 5, but of rotation 1/5 and is not cyclically
ordered. Note that neither (a) nor (b) represent orbits since the law of reflexion is not
satisfied. (c) is a configuration corresponding to an orbit on an invariant circle for the
completely integrable elliptic billiard map. Its rotation number is presumably irrational.

A consequence of the Aubry-Mather theorem is that any convex billiard has orbits of all

rotation number in (−1, 1). Polygonal curves corresponding to orbits on an invariant circle

with irrational rotation numbers are all tangent to a circle or caustic inside the billiard (see

Figure 2.3 (c)). Polygonal curves corresponding to Aubry-Mather sets are “tangent” to a

Cantor set. Finally, the billiard gives us an illustration of the notion of order for configurations

of points. In Example (a) of Figure 2.3, the configuration is cyclically ordered, in that the

cyclic order of rebound points is conserved on the boundary after following them to their

next rebound. Example (b) is, on the other hand not cyclically ordered. This notion of order

is key to both proofs of the Aubry-Mather theorem we give in this book. In the second

proof, this order property imparts some monotonicity on the gradient flow of the action.

Unfortunately, there is no natural order for orbits of higher dimensional twist maps. But the
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same kind of ordering exists in higher dimensional non dynamical models that generalize

the Frenkel-Kontorova setting (see Chapter 9).

3. An Ancestor of Symplectic Topology

At the end of his life, Poincaré published a theorem, sometimes called his last geometric

theorem, that can be simply stated as: Let f be an area preserving map of a compact

annulus, which moves points in opposite directions on the two boundary circles.

Then f must have at least two fixed points.

Poincaré (1912) gave an incomplete proof of this theorem. In a moving introduction, he

states that he had never done that before, and that it would have been wiser for him to let rest

this important problem on which he had spent almost two years of work, to come back and

finish it later. But, as he points out: “à mon age, je ne puis y répondre(2)”, and indeed, he

died in year. Birkhoff (1913) gave a substantially different proof, which was also somewhat

incomplete as to the existence of at least two fixed points(3). Since then, a number of new

proofs have appeared (Brown & Von Neuman (1977), Fathi (1983), Franks (1988), as well

as Golé & Hall (1992), where the original proof of Poincaré is completed). We now sketch

a proof of the theorem, in the very simple case where the map f also satisfies the twist

condition. The ideas involved connect the original proof of Poincaré, the proof of LeCalvez

(1991) we present in Section 7 and the modern theory of symplectic topology.

Sketch of Proof of the Poincaré-BirkhoffTheorem. Let F be the lift of f to the strip

A = {(x, y) | x ∈ IR, y ∈ [0, 1]}, which moves boundary points in opposite directions.

Such a lift always exists. Denote by (X,Y ) the image of a point (x, y) by F . Consider

Γ = {(x, y) ∈ A | X(x, y) = x},

2 at my age, I cannot count on it
3 it did prove the existence of at least one: he had overlooked the possibility of fixed points

of index 0. Birkhoff (1925) contains a proof of a more topological version of the theorem,
in which he corrected the problem of his first proof. Some mathematicians were still
unsure about the validity of his proof. Brown & Von Neuman (1977) gives a rigorous
version of his proof.
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which is the set of points that only move up or down under the map(4). The twist condition

means that the image of each vertical segment {x = x0} by F intersects that segment

exactly at one point. This implies that Γ is a graph over the x–axis, and, by periodicity, the

lift of a circle γ enclosing the annulus. Clearly, f(γ) must also be a circle, graph over the

x–circle. Any point in the intersection γ ∩ f(γ) is necessarily fixed by f : such points move

neither left, right, nor up, nor down. This intersection is not empty, by area conservation. If

γ = f(γ) (as is the case if f is a completely integrable map), f has infinitely many fixed

points. If not, area preservation dictates that there must be points of f(γ) strictly above γ

and others strictly below. Since both these sets are circles, this implies the existence of at

least two points in the intersection, i.e. two fixed points for f . 
�

Generating Functions. We now show the connection between fixed points of f and critical

points of a real valued function on the circle. As we will see in Chapter 1, the map F comes

equipped with a generating function S(x,X) which satisfies S(x+ 1, X + 1) = S(x,X)

and Y dX − ydx = dS. This derives directly from area preservation and conservation

of boundaries. Consider the restriction w of S to Γ , i.e. w(x) = S(x, x). Write Γ =

{(x, y(x))} and F (Γ ) = {(x, Y (x))}. By definition of Γ , F (x, y(x)) = (x, Y (x)). With

this notation dw = (Y (x)−y(x))dx, which is zero exactly when Y (x) = y(x): the critical

points of w correspond to intersections of Γ and its image by F , i.e. fixed points of

F . By periodicity, w can be seen as a function of the circle, which must have a maximum

and a minimum: two distinct critical points, unless w is constant, in which case all points of

Γ must be fixed. This simple idea is key in Moser (1977), where it is shown that a generic

symplectic maps has infinitely many periodic orbits around an elliptic fixed point. Arnold

(1978) also motivates his famous conjecture on fixed points on closed symplectic manifolds

by a similar argument.

Intersections of Lagrangian Manifolds. The above scheme of proof can be rephrased in

terms of intersections of Lagrangian manifolds. In the coordinates (x, y′) = (x, y − y(x)),
Γ becomes the 0–section {(x, 0)}, and F (Γ ) = {(x, Y (x) − y(x)) is the graph of the

differential of w. Both these sets are prototypical Lagrangian manifolds (see Appendix

2). The function w is called a generating (phase) function for the manifold F (Γ ). Hence

4 Poincaré considered the similar set of points that only moved left or right, see Golé &
Hall (1992)
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the proof of Poincaré’s geometric theorem is reduced, in this simple case, to the proof of

intersection of two Lagrangian manifolds. Important theorems (eg. the Arnold Conjecture)

in symplectic topology can be expressed, as this one, in terms of intersections of a Lagrangian

manifold with the 0–section in some cotangent bundle. Two problems arise in general: 1) to

find a generating function for a Lagrangian manifold which is not a graph and 2) to estimate

the number of critical points of this generating function. In this book, we approach the first

problem by the method of decomposition of symplectic maps in twist maps (in the proof

of Poincaré’s theorem in Chapter 1, and its generalization to higher dimension, Theorem

43.1), a method very much related to that of “broken geodesics” (see Chapter 10). As for

the second problem, we use Conley’s theory here, and its refinements by Floer in his work

on the Arnold’s Conjecture.


