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PERIODIC ORBITS FOR HAMILTONIAN
SYSTEMS

We present in this chapter some results of existence and multiplicity of periodic orbits
in Hamiltonian systems on cotangent bundles. Our main goal is to show the power, and
relative ssimplicity of the method of decomposition by symplectic twist map as presented in
Chapter 7, which results into finite dimensiona variational problems. Some of the results
in this chapter are not optimal. They could probably be improved using methods similar to
the ones presented here. In some case, these results have recently been improved by other
authors, using usually substantially more complicated methods.

In Section 42, we present two theorems of existence of periodic orbits for Hamiltonian
systems in the cotangent bundle of the torus. They are relatively direct applications of
Theorem 27.1 of Chapter 5. In Section 43, we prove atheorem of existence of periodic orbits
for systems in cotangent bundles of arbitrary compact manifolds. The boundary condition
that we impose (that the Hamiltonian flow be the geodesic flow outside a compact set) is
inspired by a similar theorem of Conley & Zehnder (1983) for systems on the cotangent
bundle of the torus. That theorem was itself inspired by a conjecture of Arnold (1965),
where he proposes an entirely topological generalization (the linking of certain spheres) of
the boundary twist condition of the theorem of Poincaré-Birkhoff. In Section 44, we explore
this linking of sphere condition and prove Arnold’'s conjecture in the simple case when the
map isasymplectic twist map .
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42. Periodic Orbits in the Cotangent of the n-Torus

We present here two results of existence and multiplicity of periodic orbitsfor Hamiltonian
systemsin T*T". Thefirst one concerns a certain class of optical systems, the second one
Hamiltonians that are quadratic nondegenerate outside of a bounded set.

A. Optical Hamiltonians

Assumption 42.1 (Uniform Opticity)

H(q,p,t) = H.(z) is atwice differentiable function on 7*T" x IR which satisfies the
following:

(1) sup HVQHtH <K

(2) Thematrices Hp, (2, t) are positive definite and their smallest eigenvalues are uniformly
bounded below by C' > 0.

Theorem 42.2 Let H(q,p,t) be a Hamiltonian function on T*T" x IR satisfying
Assumption 42.1. Then the time 1 map h' of the associated Hamiltonian flow has
at least n + 1 periodic orbits of type m, d, for each prime m,d, and 2" when they

are all nondegenerate.
Proof. We can decompose the time 1 map:

1
ht=h%_10...0R % o...ohJ.
~

and each of the maps h? is the time + of the (extended) flow, starting at time %
Proposition 39.11 showsNthat, for NV big enough, such maps are symplectic twist maps.
Moreover, we noted in Remark 39.10 that these maps also satisfy a convexity condition
which, together with Lemma 27.2 (see (27.5) in its proof) alows us to show that the

generating function S' is coercive. The result follows from Theorem 27.1. O
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B. Asymptotically Quadratic Hamiltonians

We now turn to systems that are not necessarily optical, but satisfy a certain quadratic
“boundary condition” which makes them compl etely integrable outside a compact set:

Theorem 42.3 Let H : T*T" x IR — IR satisfy the following boundary condition:
1
(42.1) H(g,p,1) = 5 (Ap,p) +¢-p, A" = A det A#0 when|lp| > K,

where A is an n x n matriz, ¢ € R" and K is a positive real. Then, for all m,d
in Z" x Z, the time—1 h' map of the Hamiltonian flow has at least n + 1 distinct
m, d—orbits, and at least 2" when they are all nondegenerate (i.e. generically). Fur-
thermore, such an orbit lays entirely in the set ||p|| < K if and only if the rotation

vector m/d belongs to the ellipsoid:
E={zecR"|||A(z—0o)| <K}.

Proof. The boundary condition (42.1) is Assumption 2 preceding Theorem 39.7, in
which it is proven that the time e of such Hamiltonians are twist maps. Hence, as remarked
in Proposition 39.11, thetime 1 map can be decomposed into sympl ectic twist maps. We now
want to apply Theorem 27.1. To insure that these twist maps satisfy the conditions of that
theorem, we notethat, in the proof of Proposition 39.11, instead of G(q, p) = (¢+p, p), we
cantake G(q,p) = (g + Ap + ¢, p), thetime 1 map of Hy(q,p) = 5 (Ap, p) + c.p. This
map is clearly a symplectic twist map . With this minor change, outside the set ||p|| < K,
the maps Fyy., Fyi. 1 of the decomposition are respectively thetime 1 and thetime (% —1)
of the Hamiltonian flow associated to Hy, that is.
Far(q,p) = (g + Ap + ¢, p)
For—1(q,p) = (@+ (1/N - 1)(Ap + ¢),p).
These maps satisfy the conditions of Theorem (27.2) , which proves the existence of the
advertised number of m, d orbits. To localize these orbits, note that an orbit starting in
|p|| > K must stay there, and the map h! on such an orbit isjust G. The rotation number
of such an orbit is thus
(@—-q)=Ap+c
from which we conclude that, in this case, m /d isin the complement of £. 0
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C. Remarks about the Above Results

Periodic Orbits for the Map vs. Periodic Orbits for the Flow. Thereisadistinction between
periodic orbits of A! and periodic orbits of the Hamiltonian equations: for a general time
dependent Hamiltonian flow, (h')™ # h™, and hence an m, d periodic orbit for i! is not
necessarily one for the O.D.E. (which should satisfy hft4(z) = hf(z) + (km,0) for al
t € [kd,(k+ 1)d),k € Z). However, if H is periodic in time, of period 1, the equality
(h')™ = h™ does hold, and in this case the two notions coincide. In particular, this holds
trivialy for time independent Hamiltonians. Unfortunately, these cases are degenerate in
our setting, since Dh¢(z) preserves the vector field X7, which isthus an eigenvector with
eigenvalue one. So in these cases, we can only claim the cuplength estimates for the number
of periodic orbits for the Hamiltonian flow in either Theorems 42.2 or 42.3. We think
that some further argument should yield, even in the time periodic case, the sum of the
betti number estimate for the number of flow periodic orbits, when the periodic orbits are
nondegenerate as orbits of the flow: i.e., when the only eigenvector of eigenvalue one for
Dh4(z) isin the direction of the vector field X ;.

Possible Improvements. Note that the full strength of Theorem 27.1 was not brought
to bear in the proof of Theorem 42.3: the symplectic twist maps that we obtained in the
decomposition of 4! arelinear outside abounded set, whereas Theorem 27.1 can deal with
asymptotic linearity. It is very conceivable that one could cover alarger class of systems
using this method, including classical mechanical systems on the torus.

Related Results in the Literature. Conley & Zehnder (1983) contains atheorem of exis-
tence of multiple homotopically trivial periodic orbits, with a boundary condition similar
to that of Theorem 42.3. In an impressive and technically difficult piece of work, Josal-
lis (1994), (1994b) gives an improved version of Theorem 42.3 in that the Hamiltonian
flow is only asymptotically quadratic. See also Felmer (1992) for related results using a
mountain pass lemma. In Benci, V. (1986), it is shown that fiberwise convex, time peri-
odic Lagrangian systems on arbitrary compact manifolds have at least one periodic orbit of
any given free homotopy class. This result, which assumes also certain assumptions on the
first and second derivative of the Lagrangian implies, viathe Legendre transformation, the
existence of at least one m, 1 orbit for the optical systems we consider in Theorem 42.2.
Conversely, viathe Legendre transformation, Theorem 42.2 appliesto Lagrangian systems
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whose L agrangian function satisfies the same conditions as H in our theorem (it isnot hard
to see that these conditions translate under the Legendre transformation). Hence Theorem
42.2 extends some existing theorems for such systems (see, e.g., Mawhin & Willem(1989),
Theorem 9.3).

43. Periodic Orbits in General Cotangent Spaces

We now turn to the study of Hamiltonian systemsin cotangent spaces of arbitrary compact
manifolds. Our main result, which first appeared in Golé (1994) is:

Theorem 43.1 Let (M, g) be a compact Riemannian manifold, with associated norm
|-||. Let F : T*M — T*M be the time 1 map of a time dependent Hamiltonian H

on B*M, where H is a C? function satisfying the boundary condition:

1
H(g,p,t) =5 lp||* for |lp] = C.

where C' is strictly smaller than the injectivity radius. Then F has at least cl(M)
distinct fized points and at least sb(M) if they are all nondegenerate. Moreover,
these fized points lie inside the set {||p|| < C} and can all be chosen to correspond

to homotopically trivial closed orbits of the Hamiltonian flow.

The injectivity radius on a Riemannian manifold is defined as

qlenjf/[ re[sol,lfoo} {7“ ‘ea:p}B(q’T) isinjective } .
The rest of this section is devoted to the proof of this theorem. Note that Cielieback (1992)

provides a similar theorem, with asymptotically quadratic conditions. His proof uses a
version of Floer conomology.
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A. The Discrete Variational Setting

Define
B*M = {(gq,p) € T*M | g(q)(p,p) = ||lp||” < C?}.

Let 7 denote the canonical projection : B*M — M. Let F beasin Theorem 43.1. From
Proposition 39.11 we can decompose F' into a product of symplectic twist maps:

F:FQNO...OFl,

where Fy, restricted to the boundary 9B* M of B* M isthetime 1 map h{ of the geodesic
flow with Hamiltonian Ho(q,p) = 1 |p||>. Likewise, Fyy_ is hy™ on OB*M. Let
Sy, be the generating function for the twist map Fj, and ¢, = 1, the diffeomorphism
(g,p) — (g, Q) induced by the twist condition on F},. We can assume that 1, is defined
on aneighborhood U of B*M inT* M where

U={(q,p) € T*M ||p| < C+d}.

Our variational study will take place in the set:

O={q=(qy,---,qn) € MY (@rs Gry1) € ¥r(U) and

(43.1)
(qan>q1) € Yon(U)}

Proposition 43.2 The set O can be described as:
O = {g € M*" | Dis(qy,qx41) < lar|(C +9), Dis(qan,q;) < (C+6)}

where

B 1 if k is even
(43.2) @ = { LN itk s odd.

In particular, O contains the set of constant sequences in M?N .

Proof. Thisisan easy application of the twist condition, using the fact that the map Fj,
egual the time a;, of the geodesic flow on the boundary of U'. O
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We notethat U and O areindependent of themap F', aslong as F' satisfies the boundary
condition of Theorem 43.1. Next, define:

2N
(43.3) W(q) = Z Sk(qr, qri1)s

k=0

where we have set g, ; = q;. Choosing to work in some local coordinates around
q € M*N, welet p, = —015k(qy, qp41) ad Py = 925k(qy, g541)- In other words,
(qk,pi) € Ty, M is such that ¢y (qy, pr) = (qk;Gry1) @A (qyyy, Pr) € Ty Mis
such that Fy.(q;,, pi.) = (g1, Pr). Welet the reader check that the following proofs can
be written in coordinate free notation (see Remark 26.3). By Exercise 26.4, a sequence
q of O isacritical point of 1 if and only if the sequence {(q;,,Pr)}re(1,....2n,1} IS
an orbit under the successive F}'s, that isif and only if (g,,p;) is afixed point for F"
dW (@) = 33N, (Pyx_1 — py)dg,, which is null exactly when P;,_, = p,, i.e. when
Fi(q,_1,Pr_1) = (g, Py). Now remember that we assumed that g, = q;.

Hence, to prove Theorem 43.1, we need to find enough critical pointsfor /. Asbefore,
we will study the gradient flow of W (where the gradient will be given in terms of the
metric g) and use the boundary condition to find an isolating block. The main difference
with the previous situations on 7*T" is that we cannot put 17 in the general framework of
generating phases quadratic at infinity. Nonetheless, thanks to the boundary condition we
imposed on the Hamiltonian, we are able to construct an isolating block and use Floer's
theorem of continuation (Theorem 63.7in Appendix 2) to get agrasp on the topology of the
invariant set, and hence on the number of critical points.

B. The Isolating Block
In this subsection we prove that the set B defined as follows:
(43.4) B ={q € O|Dis(qy, gr+1) < |ak|C}

isan isolating block for the gradient flow of W, where O isdefinedin (43.1) , C isasinthe
hypotheses of Theorem 43.1, and ay, isdefined in (43.2) .

Proposition 43.3 B is an isolating block for the gradient flow of W.
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Proof.  Suppose that the point g of U is on the boundary of B. This means that
Dis(qy,, q;1) = |ax|C for at least one k. Using the boundary condition, thisis equivalent
to||p,|| = C,whereasusua p;,, = —015k(qy, qx41)- Wewant to show that Dis(q,,, g, 1)
increaseseither in positive or negativetime along thegradient flow of 1. The k** component
of the gradient vector field is given by:

(43.5) q, = Ap(Pr—1 —p),) = VIVi(Q)

where A, = A(q,,) istheinverse of the matrix of coefficients of the metric ¢ at the point
q;- We used that, on a Riemannian manifold, the gradient of a function f is given by
9(q)(Vf,-) = df(-), see Exercise 61.9. Remember that we have put the product metric
on O, induced by itsinclusion in M2Y . We compute the derivative of the distance along
the gradient flow at a boundary point of B, using Corollary 38.6 and the fact that, on the

boundary, hg* (qy, pr) = (@ry1, Pr):

- DiS(le Qk+1) = 31DiS(Qk, Qk+1) - VW (ﬁ)
t=0

+ 02Dis(qy, qp 1) - VWit1(Q)

(43.6) | —
= sign(ay) le:lﬂ - Ap(Pr—1— py)

. Py,
+ szgn(ak)m Ap1(Prk — Pry1)

We now need asimple linear algebralemmacto treat this equation.

Lemma 43.4 Let (,) denote a positive definite bilinear form in IR"™, and |.|| its

corresponding norm. Suppose that p and p' are in R"™ that ||p|]| = C and that
Ip|| < C. Then :

(p,p —p) <0
Moreover, equality occurs if and only if p' = p.
Proof. From the positive definiteness of the metric, we get:

(p'—p,p—p) >0,

with equality occurring if and only if p’ = p. From this, we get:
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2(p,p") <(p,p' )+ (p,p)

Finally,

(' —p)p)=(p.p)—(pp)< (PP )—(pP,p)) <0

N =

with equality occurring if and only if p’ = p. O

Applying Lemma 43.4 to each of the right hand side terms in (43.6) , we can deduce
that £ Dis(q,, g,,1) iSpositivewhen k is even, negativewhen  is odd. Indeed, because of
the boundary condition in the hypothesis of the theorem, we have || Py || = ||ps || whenever
|lpi|l = C: the boundary 0B* M isinvariant under F' and all the F}’s. On the other hand
qg<c B=|pl <Cand |P| < C,forall, byinvarianceof B* M. Finaly, a; ispositive
when k is even, negative when £ is odd.

The problem is that we have not shown yet that %Dis(qk, q;1) cannot be 0. This
problem is confined to the “edges’ of 0B, i.e. the sets of points g such that more than one
p;, hasnorm C'. The problem at these edges occurswhen k isinaninterval {i, ..., m} such
that, for all j in thisinterval, ||p;|| = C = || P;| and VI;(g) = 0. It is now crucial to
notethat {/, ..., m} can not cover al of {0,...,2N}: thiswould mean that g is acritical
point corresponding to afixed point of 4} in dB* M. But such afixed point is forbidden by
our choiceof C': orbits of our Hamiltonian onthe set ||p|| = C are geodesics, but geodesics
in that energy level cannot be rest pointssince C' > 0, and they cannot close up in time one
either since C' is less than the injectivity radius. We now let £ = m in (43.6) and see that
exactly one of the 2 termsin the right hand side of Equation (43.6) is nonzero. Hence the
flow must definitely escape the set B at g in either positive or negative time, from the m!"
face of B. O

Remark 43.5 If the Hamiltonian considered is optical and we decompose its time 1 map
1

into aproduct of IV twist maps asin 39.11, all the F};’s coincide with 2" on the boundary

of B*M. Inthat case, all the a;’sin the above proof are positive, and B isarepeller block.
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C. End of Proof of Theorem 43.1

Tofinishthe proof of Theorem 43.1 weuse Floer’stheorem 63.7 of continuation of normally
hyperbolic invariant sets. We consider the family F’, of time 1 maps of the Hamiltonians:

Hy = (1 — \)Ho + AH,

where H isasin Theorem 43.1and Hy(q,p) = 3 |p||*. Corresponding to thisis afamily
of gradient flows ¢!, solution of

Ca=vm),

where W), is the discrete action corresponding to the decomposition in symplectic twist
maps of the map F\. We take care that this decomposition has the same number of steps,
say 2N, for each \. As before, the manifold on which we consider these (local) flowsis O,
an open neighborhood of B in M2V . Each F), satisfies the hypothesis of Theorem 43.1,
and thus Proposition 43.3 appliesto (¥ for al X in [0, 1]: B isan isolating block for each
of these flows. Hence the maximum invariant sets G, for the flows ¢} in B are related by
continuation. The part of Floer’s Theorem that we need to check is that G is anormally

hyperbolic invariant manifold for (f.

Lemma 43.5 Let Go = {q € B | q;, = q1,Vk}. Then Gy is a normally hyperbolic

invariant set for (4. Gg is a retract of O and it is the mazimal invariant set in B.

Proof. The only critical points for W, in B are the points of GGy which correspond to
restpoints of the geodesic flow, i.e. the zero section. Indeed, critical points of W, in B
corresponds to periodic points of period 1 for the geodesic flow in B* M. Our definition of
that sets precludes nontrivial periodic geodesicsin B* M. We now show that the maximum
invariant set for ¢} in B isincluded in Gy. Since ¢} is agradient flow, such an invariant set
isformed by critical points and connecting orbits between them. The only critical points of
Wy in B arethe points of Gy. If there were a connecting orbit entirely in B, it would have
to connect two points in Gy, which is absurd since Wy = 0 on G, whereas W, should
increase along non constant orbits. G is a retract of A/2Y under the composition of the
maps:
q=1(q1,---,9>n) = 41 — (41,41, -- -, 41) = a(q)
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which is obviously continuous and fixes the points of Gy. It remains to show that G is
normally hyperbolic. Since Gy = M isan n-dimensional manifold made of critical points,
saying that it is normally hyperbolic is equivalent to saying that for g in Go, kerV2Wy(q)
has dimension n: indeed, if it is the case, the only possible vectors in this kernel must be
tangent to G, and thus he differential of the flow is nondegenerate on the normal space to
TGy. In the present situation, the second variation formula of Lemma 29.4 says that the
1-eigenspace of Dh isisomorphic to the kernel of V2W,. Henceit is enough to check that
at apoint (q,,0) € B*M corresponding to g, 1 is an eigenvalue of multiplicity exactly n
for Dh}(q,,0). Let uscompute Dh}(q,,0) inlocal coordinates. It isthe solution at time 1
of the linearized (or variation) equation:

U=—JV?Hy(q,,0)U

along the constant solution (g(¢), p(t)) = (q4,0), where J denotes the usual symplec-
. (0 —
tic matrix (I 0

exp (—tJV?Ho(g,,0)) . On the other hand:

0 0

V?Hy(q,,0) =

O(‘h ) (O A(q1)>

which wecomputed from Hy(q, p) = %A(q)p.p,thezerotermsappeari ngatp = 0 because

. An operator solution for the above equation is given by U(t) =

they are either quadratic or linear in p. From this,

Dh(l)(‘hao) = exp (JVQHO(ql,O)) - (é A(J‘h))

is easily derived. This matrix has exactly n independent eigenvectors of eigenvalue 1 ( it
hasin fact no other eigenvector). Hence, from Lemma 29.4, V2W (q) hasexactly n vectors
with eigenvalue 0, as was to be shown. O

We now conclude the proof of Theorem 43.1. We have proved that the gradient flow ¢?,
has an invariant set G, with H*(M) — H*(G1). From thiswe get in particular:

c(G1) > cl(M) and sb(G1) > sb(M).

Theorem 61.2 and theremark followingit tell usthat ¢* must haveat least ¢l (G ) rest points
intheset G, and sb(G1 ) if al rest pointsare nondegenerate. But Lemma 29.4 (which, asthe
reader can readily check, isvalid in general cotangent bundles) tells us that nondegeneracy
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for V2 at acritical point is the same thing as nondegeneracy of a fixed point for £ (no
eigenvector of eigenvalue 1). This proves the existence of the advertised number of fixed
points of the map F'. In the following section, we will see how to insure that all the fixed
points of the time 1 map that we find correspond to homotopically trivial periodic orbits.
This concludes the proof of Theorem 43.1. O

D. Periodic Orbits of Different Homotopy Classes

To determine the topological type of a periodic orbit for a map on 7 M, we consider the
free homotopy class of acurve built from a given sequence of points on the manifold, in the
fashion of broken geodesics.

Free Homotopy Classes. The free homotopy class of acurveisan equivalence classof all
curves that are homotopic without a fixed base point. AS aresult, free homotopy classes
can be seen as conjugacy classesin 71 (M) (the conjugacy is by concatenation with acurve
that goes from the starting point of the given curve to a given base point, and back). Thus
this set of free homotopy classes can not be endowed with anatural algebraic structure. Two
elements of a free class give the same element in H, (M ). Hence free homotopy classes
form a set smaller than 71 (M), bigger than H,(M). All these sets coincide if 71 (M) is
abelian.

Construction of the Broken Solutions. For each F}, in the proof of Theorem 43.1, define
vk to be the inverse map of the diffeomorphism Q@ — —0,5k(q, Q). That is, fixing q,
the map that make correspond p to @ according to Fi(q,p) = (Q, P). Since each F},
is a symplectic twist map equal to hg* on 0B, M for some positive or negative ay, the
set i (B; M) isaball of radius |ay| centered at g (in the sense of distance induced by
the Riemannian metric). In particular ¢ € i (B;M). Since B;M — ¢(B*M) is a
diffeomorphism, we can define a path ¢, (q, Q) between g and apoint Q of ¢ (B, M) by
taking theimage by ¢}, of the oriented line segment between ¢, * (¢) and ¢, ' (Q) in B; M.
In the case where Fy, = hi, ¢ isjust the map exp? and this amounts to taking the unique
geodesic between g and Q in ¢ (B, M) . If welook for periodic orbits of period d and in
a given free homotopy class, we decompose F'¢ into 2N d twist maps, by decomposing F
into 2N. Analogously to Equation (43.1) , we then define :
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Oa=1{q=(q1,---9ona) € M*"* |(q1, q141) € Y& (U) and

(g2nva> 91) € Y2nva(U)},
(U is as before a neighborhood of B*M). To each element g in O4, we can associate a
closed curve c(q), made by joining up each pair (q,, g, ;) with the curve c;(q;,, ;4 1)
uniquely defined as above. This “broken solution” ¢(q) is a piecewise differentiable loop,
and it depends continuously on g, and so do its derivatives (left and right). In the case of the
decomposition of A} , taking Fi,=h{, thisisexactly the construction of the broken geodesics
(see Section 38). Now any closed curvein M belongsto some free homotopy class that we
denote by m. To any d periodic point for F', we can associate a sequence g(x) € Oy of ¢
coordinates of the orbit of this point under the successive Fj,’sin the decomposition of £'¢.

Definition 43.6 Let z be a periodic point of period d for F'. Let g be the sequencein O,
corresponding to z. We say that = isan m, d—point if ¢(q) isin the free homotopy classm.

This definition has the advantage to make sense for any map F' of T M which can be
decomposed into the product of symplectic twist maps . If F is aso thetime 1 map of a
Hamiltonian, it agrees with the obvious definition:

Proposition 43.7 If z is an m,d periodic point, then the projection w(z(t)),t € [0, d]
of the orbit of z under the Hamiltonian flow is a closed curve in the free homotopy

class m.

Proof. Leftasanexercise(Hint. Usethegeodesicflow to construct the homotopy between
c(q(z)) and m(z(t))). O
Let

(43.7) Om.a=1{q € Oq|c(q) € m}

Since ¢(q) depends continuously ong € Oy, Oy, 4 is a connected component of O4. The
reader who wants to make sure that, in the proof of Theorem 43.1, the orbits found are
homotopically trivial, can check that the proof we gave in last section works identically
when one replace the space O, by its connected component O. 1, where e is the homotopy
classof thetrivial curve. Another place where one uses this decomposition of O in different
homotopy components is the following:



186 8: PERIODIC ORBITS FOR HAMILTONIAN SYSTEMS.

Theorem 43.8 Let (M,g) be a Riemannian manifold of negative curvature and H be
as in Theorem 1. If v, denotes the (unique) closed geodesic of free homotopy class

m, F has at least 2 m, d-orbits in B*M when length(vymy,) < dC' .

The proof of Theorem 43.8 (see Golé (1994), Theorem 2) hasthe same broad outline as
that of Theorem 43.1. Wework in O, 4 instead of O. The normally hyperbolic invariant set
that we continue to in this setting is given by the set G of critical sequences corresponding
to the orbits under the hg*’s of the points on ~,,. The normal hyperbolicity of G derives
this time from the hyperbolicity of the geodesic flow in negative curvature.

44. Linking of Spheres: Toward a Generalization of the Theorem
of Poincaré And Birkhoff

This section goes back to the original motivation of Theorem 43.1, namely the following
conjecture of Arnold (1965) that generalizes the Theorem of Poincaré-Birkhoff. We will
define and explore the notion of linking of spheresin the sequel.

Conjecture 44.1 (Arnold) State it precisely here ?79¢
In Banyaga & Golé (1993) we proposed the following generalization of this conjecture:

Conjecture 44.2 Let M be a compact manifold, and F' be a Hamiltonian map of a
ball bundle B*M in T* M. Suppose that each sphere OBy M links with its image by
F in OB*M. Then F has at least cl(M) distinct fized points, and at least sb(M) if

they are nondegenerate.

InBanyaga& Golé(1993) (seealso Golé (1994)), we proved thefollowing simple case.
We will give the proof inthe case of M = T".:

Theorem 44.3 Let F' be a symplectic twist map of B*M which links spheres on the
boundary OB*M . Then F satisfies the generalized Arnold Conjecture.
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Linking of Spheres and the Boundary Twist Condition. If you remove acircle C; from
3-space, the holeit leaves out creates sometopol ogy. In particular, another circle C; can“go
around that hole” or not. If it does, the circles C; and Cs link. In mathematical terms, the
complement of C'; hasanew generator in first homology that the 3-space did not have. The
first homology class of C5 in the complement of C'; measures the linking of the 2 circles.
Likewise, removing an n — 1 spherein IR*" ! creates a new generator in H,,_;, and the
homology class of another sphere in that group measures the linking of the two spheres.
We will adapt this notion to the setting where one sphere is the boundary 0 A, of a fiber
Aq of the ball bundle B* M, and the other sphereis F'(04,). We will go into more detail
later on these concepts, when we prove that, at least in the case of symplectic twist maps of
T*T"™, the linking of these two n — 1-spheresin the 2n — 1 dimensional boundary of B* M
isequivalent to:

Definition 44.4 (Fiber Intersection Property) We say that amap F' : B*M — B*M
satisfies the Fiber Intersection Property if each fiber A, = 7~ !(q) intersects its image
F(A,) with a nonzero algebraic intersection number (i.e. the number of intersections
counted with orientation).

Note that, in the case of twist maps of the annulus, this property is clearly equivalent to
the boundary twist condition of the Poincaré-Birkhoff Theorem 7.1: If points on the two
boundary components of the annulus go in opposite directions under F' then the vertical
fiber {x = 2} and itsimage by F' should have a nonzero agebraic intersection number.
Before going through the rigorous definition of sphere linking and its equivalence with the
Fiber Intersection Property, we give the proof of Theorem 44.3.

Proof of Theorem 44.3. We assume for now the equivalence of the linking of spheres
condition and the Fiber Intersection Property. If F'isasymplectic twist map, afiber A, and
itsimage under F' may intersect at most once. Hence the Fiber I ntersection Property means
in this case that each fiber intersects itsimage exactly once. Fixed points of F correspond
to critical points of ¢ — S(q, q). This function is well defined since, by the above, the
diagonal in M x M isintheimage of B*M by the embedding ¢/ ». Hence F' has as many
fixed points as the function ¢ — S(q, q) has critical points on M. Morse and Lyusternick-
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Schnirelman’s theories (See Theorem 61.2 and the remark following it) give the advertised
estimates. 0

Equivalence of Sphere Linking and Fiber Intersection. We now show that, in the case
considered by Arnold, the Fiber Intersection Property is indeed equivalent to linking of
boundary spheres. For the case of more general manifoldsthan 7*T", werefer the reader to
Banyaga & Golé (1993) or Golé (1994). The reader may aready be aware of a connection
between linking and intersection: going back to the example of 2 circlesin IR?, their linking
can be measured by the algebraic intersection number of one circle with any disk bounded
by the other one. This correspondence breaks downin $' x IR? = OB*T" however: there,
the circles 04, and F'(904,) do not bound any disks. We can still define their linking
number homologically, and relate it to the Fiber Intersection property, which takes placein
thefull space B*T”. Theimportant point isthat thelinking of spheresisapurely topological
condition which can be read entirely in the boundary.

Wefirst remind thereader of the definition of linking of spheresfrom algebraic topol ogy.
Let A, beafiber of B*T" 22 §"~1 x IR™. Then A, = $" . It make sense to talk about
itslinking with itsimage F'(04,) in OB*T": the latter set has dimension 2n — 1 and the
dimensions of the spheresadd up to 2n — 2. Thelinking number F/(0A,) with A, isgiven
by theclass [F(A,)] € H,_1(0B*T"\0A,; Z) (from now to the end of this chapter, we
only consider homology with integer coefficients). More precisely, we have:

H, 1(0B*T"\0A,) = H,_ (5" x (R" - {0}))

Kunneth
~

>~ H, (8" Yo H,_(R" —{0})

(44.1)

Thus, removing 04, from OB*T" createsanew generator inthe (n — 1)St homology (with
integer coefficients) of that set, i.e. agenerator, call it b, of H,,_; (IR" — {0}) = Z. Asany
sphere of dimensionn — 1 in E)B*T”\&Aq, F(0A4,) representsann — 1 cohomology class
in that set that we can write:

[F(8A,)] = aa & Bb

in the final decomposition in (44.1) . We call the integer 3 the linking number of the
spheres F'(04,) and 04,. If the linking number is nonzero, we say that the spheres 04,
and F(0A4y) link. Findly, if 0A, and F(04,) link for all g € M, we say that I’ satisfies
the Linking of Spheres Condition.
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Lemma 44.5 If F is the lift of a diffeomorphism of B*T" = T™ x B™, the Fiber
Intersection Property is equivalent to the Linking of Spheres Condition. More pre-

cisely, the algebraic intersection number #(Aq N F(Ay)) and the linking number of
the spheres 0Aq and F(0A,) are equal.

Proof. We complete (44.1) into the following commutative diagram:

H,_1(0B*T"\0A,) = H,_(R"—{0})® H,_1(5")
l i l ji
H, ((B*T"\4,) = H,1({R"-{0}} x B"))

where i, j are inclusion maps and B” isthe n-ball. It isclear that j.b generates
Hp—y (IR" —{0}) x B") = Hp1 ({IR" — {0}} x R").

If Sisany n — 1 spherein {IR" — {0}} x IR", theclass[S] € H,_; ({IR" — {0}} x R")
(i.e. , an integer) measures the (usual) linking number of a sphere with the fiber A, in
B*T" = IR?". But it is well known that such a number is the intersection number of any
ball bounded by the sphere with the fiber A, counted with orientation (see Rolfsen (1976)
page 132). O



