7

HAMILTONIAN SYSTEMS VS. TWIST
MAPS

In this chapter, we explore the relationship between Hamiltonian systems and symplectic
twist maps. Wewill assumethat thereader isfamiliar with thematerial reviewed in Appendix
1, which introduces Hamiltonian systemsin cotangent bundles and some of their fundamen-
tal properties. In the first part of this chapter, we show how to write Hamiltonian systems
as compositions of symplectic twist maps. Thisisinstrumental in setting up asimple varia-
tional approach to these systems, which isfinite dimensional when one searchesfor periodic
orbits. Thismethod generalizesthe classical method of broken geodesics of Riemannian ge-
ometry. Our main contribution is to make such a method available for Hamiltonian systems
that do not satisfy the Legendre condition.

We start in Section 38 with the geodesic flow, which serves as a reference model for
Hamiltonian systems: it plays arole similar to that of the integrable map in the twist map
theory. Almost no knowledge of Riemannian geometry is assumed here. In Section 39, we
expend our approach to general Hamiltonian or Lagrangian systems satisfying the Legendre
condition (which we see as an analog to the twist condition). In Section 39. D we show
that, whether or not the Legendre condition is satisfied, the time 1 map of a Hamiltonian
system may be decomposed into finitely many symplectic twist maps. In Section 40, we see
how symplectic twist maps also arise from Hamiltonian systems as Poincaré section maps
around elliptic periodic orbits.

From an opposite perspective, we show in Section 41 that in many cases, a symplectic
twist map may be written asthe time 1 of a (time dependent ) Hamiltonian system. Most of
this last section is courtesy of M. Biay and L. Polterovitch, who graciously let us publish
their proof of suspension of symplectic twist maps for the first timein this book.
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38. Case Study: The Geodesic Flow

A. A Few Facts About Riemannian Geometry

Hamiltonian Approach to the Geodesic Flow. Let (M, g) beacompact Riemannian man-
ifold. Thismeansthat the tangent fibers’T,, M are endowed with symmetric, positive definite
bilinear forms:

(v,0") = g(q(v,0) forv,v" € T,M

varying smoothly with the base point g. We will denote the norm induced by this metric by
vl == \/9(q)(v,v). A curveq(t) in M isageodesic if and only if it isan extremal of the

action or energy functional.

to 1 )
Azla) = [ 51l ar
t1

between any two of its points g(¢1) and g(t2) among al absolutely continuous curves
B : [t1,t2] — M with sameendpoints. Geodesicsare usually thought of aslength extremals,
that is critical points of the functiona [ 1 ||g|| d¢. But, thanks to the Cauchy-Schwartz
inequality, action extremals are length extremals and vice versa (with the difference that
action extremal s come with a specified parameterization, see Milnor (1969) ). One usually
chooses to compute with the action, since it yields simpler calculations. For more detail on
this, aswell as athe more abstract definition of geodesic given in terms of a connection see
e.g. Milnor (1969).
The variational problem of finding critical points of A hasthe Lagrangian

1 1.
Lo(a,v) = 5960 (v,v) = 5 14l

Following the procedure of Section 59 of Appendix 1, we use the Legendre transform to
compute the corresponding Hamiltonian function. Inlocal coordinatesq in M, we can write

9(q) (U7 U) = <A(—q§'v7 ’U>,

where (, ) denotes the dot product in IR", and A(‘qﬁ isasymmetric, positive definite matrix
varying smoothly with the base point q. With this notation, we have

Bo (DY) =AY, S =4y



38. The Geodesic Flow 147

In particular, 882 UL;) is nondegenerate. Hence the Legendre condition (see Appendix 1) is

satisfied and the Legendre transformation is, in coordinates:

L:(q,v) = (q,p) = (¢, A)v)

which transforms L into a Hamiltonian Hy:

1 1
Ho(q,p) = pv — Lo(q,v) = (P, A(q)P) — 5 AP, AgPp) = 5 (AP, p).

This Hamiltonian isa metric on the cotangent bundle:

1 def 1
Ho(q,p) = 5(A@p:P) = 59?2)(19,19)-
We will also denote the norm associated to this metric by ||p|| = gz‘z) (p,p). Note that

the Legendre transformation is in this case an isometry between the metrics g and ¢7: in
particular, if (g, p) = L(g,v), then ||p|| = ||v||. Hence the Hamiltonian is half of the speed
and we retrieve, from conservation of energy in Hamiltonian systems, the fact well known
by geometers that geodesics are parameterized at constant speed.

The geodesic flow isthe Hamiltonian flow i}, generated by Hy onT* M. 1tisnot hard to
see that the trgjectories of the geodesic flow restricted to an energy level project to the same
curveson M asthe trgjectories in any other energy level: the velocities are just multiplied
by ascalar (See Exercise 38.1). For this reason, one often restricts the geodesic flow to the
unit cotangent bundle TYM = {(q,p) € T*M | ||p| = 1}. Traditionaly, geometers
use the term geodesic flow to denote the conjugate £~h} L on T'M of this Hamiltonian
flow, as restricted to the unit tangent bundle. Remember that projections of trajectories
of a Hamiltonian flow associated to a Lagrangian satisfying the Legendre condition are
extremals of the action of the Lagrangian, and vice versa. (See Section 59 in Appendix 1).
Inthe present case, if (g(t), p(t)) isatrajectory of the geodesic flow, then q(t) isageodesic.
Conversely, if g(t) isageodesic, it isthe projection on M of the solution (q(t), p(t)) of the
geodesic flow with initial condition (g, p,) = (q(O),A;()lq(O)).

Exponential Map. We now want to establish afundamental result of Riemannian geometry,
which wewill rephrase in the next subsection by saying that the time ¢ of the geodesic flow
isasymplectic twist map. The exponential map isdefined by:

expq, (tv) = q(1),
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where g(t) is the geodesic such that g(0) = g, and ¢(0) = v. Note that any geodesic
can be written in this exponential notation. In terms of the geodesic flow, exp, (tv) =
7o hloL(qy,v), wherer : T*M — M isthe canonical projection.

Theorem 38.1 Let M be a compact Riemannian manifold. The map Exp : TM —
M x M

(38.1) Exp: (q,v) — (q,Q) def (g, expq(v))

defines a diffeomorphism between a neighborhood of the O—section in T'M and some

neighborhood of the diagonal in M x M. Moreover, for (q,v) in that neighborhood:

(38.2) Dis(q, expg(v)) = [lv] -

We remind the reader that the distance Dis(q, Q) between two points g and Q in a
compact Riemannian manifold is given by the length of the shortest path between q and Q.
One way to paraphrase thistheorem is by saying that, any two close by points are joined by
aunique, short enough, geodesic segment.

Proof. By definition, expy(0) = g and Lexp,(sv) = vats = 0. Thus:

DEzp|(q0) = (Iod ﬁzi) ’
whose determinant is 1. Hence, Fxp is alocal diffeomorphism around each point of a
compact neighborhood of the O-section. By the compactness of M, thereis an e such that
Exp is a diffeomorphism between an e ball in 7'M around (g, 0) and a neighborhood in
M x M around (q, q), where e isindependent of q.

We now show that Exp is an embedding when restricted to V. = {(q,v) € TM |
|v|| < €}, where e is as above. Since we proved that Exp is alocal diffeomorphism on
V., itis enough to check the injectivity. Let two elementsin V. have the same image under
Ezxp. Sincethefirst factor of Fxp givesthe base point, this can only occur if they arein the
same fiber of V.. But, by our choice of V, thisimplies these el ements are the same.

Finally, weshow that Dis(g, expq(v)) = ||v|| whenever ||v|| < e. Asalengthminimizer,
the shortest path giving the distance between two points is also an action minimizer, and
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hence a geodesic. Since Exp is an embedding of V. in M x M, exp is one to one on
Ve N T, M and the unique geodesic that joins g and expg,(v) in exp(V. N T, M) isthe curve
t — q(t) = expy(tv). The length of this curveis [ [|g] dt = [ |[v]dt = |[v] (see
Exercise 38.2c)). The only way Formula(38.2) may fail isif there were a shorter geodesic
joining g and exp4(v) not in exp(V, N T,M)). But this is impossible since this geodesic
would be of the form exp,, (tw), t € [0, 1] with length [Jw|| > e.

Exercise 38.2 a) Check that, in local coordinates, Hamilton’s equations for the geodesic
flow write:

q= AP
(38.3) . <<9A<q> >
pP=— P p,p
q

b) Verify that hi'(q,p) = hi(q, sp). (Hint. if (¢(t), p(t)) is a trajectory of the geodesic flow,
then (q(st), sp(st)) is also a trajectory).

c) Show that if q(t) = expq, (tv), [14(t)[| = [lv]| for all ¢.

d) Show that Dis(q(0), q(t)) = [¢| [[p(0)]

Exercise 38.3 Show that the completely integrable twist map (x,y) — (z+v,y) is the time
1 map of the geodesic flow on the “flat” circle, i.e. the circle given the euclidean metric

9(z)(v,v) = v2.

B. The Geodesic Flow As A Twist Map

Theorem 38.3 isthe key to the following:

Proposition 38.4 The time 1 map h} of the geodesic flow with Hamiltonian
Hy(g,p) = %||p||2 is a symplectic twist map on U. = {(q,p) € T*M | ||p| < €},
for € small enough. More generally, given any R > 0, there is a tg > 0 (or given
any to there is an R) such that, for any t € [—to,to], hl is a symplectic twist map
on the set Ur = {(q,p) | | |lp|l < R}. The generating function of h is given by
S(q,Q) = £Dis’(q, Q).

Proof. Since h} is a Hamiltonian map, it is exact symplectic (see Theorem 59.7 in Ap-
pendix 1). Define Exp” = Exp o £L~'. By Theorem 38.3, Exp” is a diffeomorphism
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between U, = {(q,p) | ||p|| = ¢} and a neighborhood of the diagonal in M x M. But
Exp”(q,p) = (q,Q(q,p)), where Q = 7 o h}(q,p). Hence h} is a symplectic twist
map on U,, and Ypy = Ezp#. The more general statement derives from the fact that
Exp”(q,tp) = (q.q(t)), where hi(q. p) = (q(t), p(t))-

We now show that %Dis2 (q, Q) isthe generating function of 2} whenitisasymplectic
twist map on adomain U (the proof for hf isidentical). Since h{} isaHamiltonian map,
(38.4) (hl) 'pdq — pdq = dS, with S(q,p) = /pdq — Hydt

Y
where ~ is the curve hf(q,p), t € [0,1] (see Theorem 59.7 in Appendix 1). We now
need to show that .S, expressed as afunction of q, Q isthe one advertised. In this particul ar
case, since ¢ = Ay p (see Exercise 38.2) and Hy = 1 (Ayp,p) = 5 P
simplifies:

?_ the integral

1

! 1 1
35) [ pda— i = | Saqpp) =5l it = [ 5 Ip(o)? e
0% 0 0

But the integrand is H,, which is constant along ~. Hence, using Theorem 38.3, and the
fact that £ is an isometry, we get:

1 1. 1.
S(a.p) = 5 lIpl* = 5 l[o]° = 5Dis*(¢. Q(q.p)).

2
where (q,v) = L7 1(q, p). Thismakes S the advertised differentiable function of g and Q
intheregion where (q, p) — (g, Q) is adiffeomorphism. O

Remark 38.5 1) Note that the proof of Proposition 38.4 equates the action of a geodesic
segment between two points to the generating function evaluated at this pair of points.
2) As a simple example of what makes i cease to be a twist map when the domain
U is extended too far, take M to be the unit circle with the arclength metric. In a chart
0 € (—¢,2m — €), we have:
: 0 when 0 <

Dis(0,6) = {27r—9 when 6 >n7
As aresult, the left derivative of %Disz(o, 0) at 0 = 7 ism, whereas the right derivative is
—: the function Dis? is not differentiable at this point.

The following will be instrumental in the proof of Theorem 43.1.
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Corollary 38.6 Let hi(q,p) = (Q,, Ps) be the time s of the geodesic flow, then:

P

(38.6) 01 Dis(q, Q) = —sign(s) 'HPSH

ﬁ and 0;Dis(q,Q,) = sign(s)

Proof. From Proposition 38.4, we get:

~p =0, Dis*(q,@,) = Disa, Q1)0\Dis(g, Q1) = [Ip]| &1 Dis(a, @,)

which proves 9, Dis(q, Q) = —2:.Using Q, = 7o h}(q, sp), one may replace p by sp
llpll s 0

in the previous computation to prove the first equality. For the second equality, the fact that
Dis(q, Q) = Dis(Q,,q), that ¢ = 7 o h}(Q,, —sP,) (see Exercise 38.2) and the first
equality, enables usto write:

P

9:Dis(q, Q) = 01Dis(Q,, q) = sign(s). A

C. The Method of Broken Geodesics

We now draw the correspondence between the variational methods provided by symplectic
twist maps and the classical method of broken geodesics (see Milnor (1969) ). Asbefore, let
h{ bethetime 1 map'%) of the geodesic flow with Hamiltonian H,. Fix some neighborhood
U of thezero sectionin T M. Proposition 38.4 impliesthat if we decompose h§ = (hoﬁ W,
then for V big enough each ho% isasymplectic twist map in U. Asaresult, periodic orbits
of period 1 for the geodesic flow, i.e. fixed points of i} are given by the critical points of:

N
W(q) = ZS(QkanH), with gy =gy,
k=1

where g belong to the set X v (U) of sequencesin M suchthet (q;, q;,,) € ¥(U), where
wewritey = zph% . We now show that 1/ isthe action of a broken geodesic.

0

Sincehoﬁ isasymplectic twist map, thetwist condition impliesthat, given (q;,, g, 1) in
Y(U), thereisaunique (p,, Pj) suchthat Ay (q;,, pr.) = (@441, Pk). i.€., thereisexactly

onetrajectory c;,: [£, #£1] — T* M of the geodesic flow that joins (g, p;,) t0 (1. Pk).-

4The following discussion remains valid if we replace the time 1 map by any time 7.
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The projection (cx ) on M isageodesic, parameterized at constant speed equal to the norm
of p,. Asnoted in Remark 38.5, S(qy, gy 1) = 3Dis*(qy, g, ) isalso the action of ¢
S(qy:q41) = ka pdq — Hdt. Hence W is the sum of the actions of the ¢;’s, i.e. the
action of the curve C obtained by the concatenation of the ¢;’s.

The curve C' can be described as a broken geodesic. in generd it hasa*“corner” at the
point g, whenever P, # p,: viathe Legendretransformation, P, and p,, correspond
to the left derivative and right derivative of the curve C @t q,. If g isacritical point of W,
P, = p;.,, (see Remark 23.3 and Exercise 26.4), and thus the left and right derivatives
coincide: in this case C' is a closed, smooth geodesic.

In conclusion, thefunction W (q) can beinterpreted astherestriction of the action func-
tional A(c) tothe finite dimensional subspace of broken geodesics, whichis parameterized
by elements of X (U), in the (infinite dimensional) loop space of 7 M. One can further
justify this method by showing that the finite dimensional space X (U) is a deformation
retract(!>) of a subset of the loop space and that it contains all the critical loops of that
subset. This was Morse's way to study the topology of the loop space (see Section 16 in
Milnor (1969)). Conversely, and thisis the point of view in this book (and more generally
that of symplectic topology), knowing the topology of certain subsets of the loop space, one
can gain information about the dynamics of the geodesic flow or, as we will see, of many
Hamiltonian systems.

D. The Standard Map on Cotangent Bundles of Hyperbolic Manifolds

In this subsection, we use our understanding of the relation between geodesic flow and
symplectic twist maps to define the Standard Map on the cotangent bundle of any compact
hyperbolic manifold. Recall that a hyperbolic manifold M of dimension n is a manifold
that can be covered by the hyperbolic half space H" = {(z1,...,z,) € R" | z,, > 0}
given the Riemannian metric ds* = = 37" dz?, which has constant negative curvature.
Geodesics on TH" are open semi ci rclgs or straight lines perpendicular to the boundary
{z,, = 0}. Here, the relevant property of the geometry of IH", and hence of any hyperbolic
manifold, is that the exponential map at each point is a global diffeomorphism between the
fiber and IH™, acorollary of the Hopf-Rinow Theorem (Gallot, Hulin and L afontaine (1987),

15This retraction can be obtained by a piecewise curve shortening method.
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p. 99). The generalization of the standard map that we present now isin fact valid on any
Riemannian manifold with the property that 7 M = M x M.

Proposition 38.7 Let S : H" x H" — IR be given by:

S(q,Q) = %Dis2(q, Q) +Vi(q),

where V. : H" — IR is some C? function, and Dis is the distance given by the
hyperbolic metric. Then S is the generating function for a symplectic twist map
that we call the generalized standard map on H". Furthermore, if V is equivariant
under a group of isometries X of H" representing the fundamental group of the
hyperbolic manifold M = H" /X, then S is the generating function for a lift of a
symplectic twist map on T M.

Proof. We show that S complies with the hypothesis of Proposition 26.2 where we take
M =H"U =T*H" = H" x R". Let h}(q,p) = (Q, P) be the time 1 map of the
geodesic flow on T*IH". The assumption that the exponential is a global diffeomorphism
for thismetric meansthat p — Q(q,, p) isaglobal diffeomorphism {g,} x R" — H" for
each fixed q, and thus i} is a (global) symplectic twist map . Likewise P — q(Q,, P) is
a diffeomorphism because h; ', the inverse of a symplectic twist map is a symplectic twist
map itself. Since, according to Proposition 38.4, 1 Dis? is the generating function for A},
we have established that the maps @ — 0:1Dis*(g,, Q) and ¢ — 9.1Dis*(q, Q) are
both diffeomorphisms for each fized g, Q,. Coming back to our full generating function,
we have proven that:
a - 9:5(0, Qo) = 02 3 Dis*(a, Q)

is adiffeomorphism.

Q  015(a0, Q) = 01 ;Dis* (4, @) + dV (q,)

must also be adiffeomorphism IH" — T, IH" since we added atrandl ation by the constant
dV (q,) to adiffeomorphism. Proposition 26.2 concludesthe proof that .S is the generating
function for atwist map of T*IH". The last statement of the proposition is an easy conse-
guence of Exercise 26.5. 0
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39. Decomposition of Hamiltonian Maps into Twist Maps

In Subsection A, we generalize Theorem 38.4 by proving that Hamiltonian maps satisfying
the Legendre condition are symplectic twist maps, provided appropriate restrictions on the
domain of the map. We then reformulate this result in the Lagrangian setting (Subsection
B), giving ageneralization of the fundamental Theorem 38.1. In Subsection C, wefocuson
T*T"™, where, given further conditions on the Hamiltonian, we extend the domain of these
symplectic twist maps to the whole space. Finaly, in Subsection D we prove a theorem
of decomposition of Hamiltonian maps into symplectic twist maps , whether or not they
satisfy the Legendre condition.

A. Legendre Condition Vs. Twist Condition

Heuristics. Remember that Hamiltonian maps, which are time ¢ maps of Hamiltonian sys-
tems, are exact symplectic (Theorem 59.7) and, through the flow, isotopic to Id. Therefore,
to show that a certain Hamiltonian map is a symplectic twist map, we need only check the
twist condition. Clearly, not all Hamiltonian maps satisfy it. Take F'(q, p) = (g +m, p) on
the cotangent bundle of the torus, for example: it is the time one map of H(q, p) = m.p,
and it isdefinitely not twist. Hereisaheuristic argument, which appeared in M oser (1986a)
in the context of twist maps, to guide usin our search of the twist condition for Hamiltonian
maps. The Taylor series with respect to e of the time e map of a Hamiltonian system with
Hamiltonian H is:

q(e) = q(0) + e.Hp + o(€?)

p(e) = p(0) — €.Hy + o(¢?)
Thus, up to order €2, dq(e)/Op(0) = €.H,,. Thisshowsthat whenever H,, is nondegen-
erate, the time € map is a symplectic twist map in some neighborhood of ¢(0), p(0).
The problem is to extend this argument to given regions of the cotangent bundle: the term
o(e?) might get large as the initia condition varies.

Rigorous Argument. We now present arigorous version of thisargument, valid on compact
subsets of the cotangent bundle of an arbitrary compact manifold. We say that aHamiltonian
H :T*M x IR — IR satisfiesthe global Legendre condition if the map:
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is a diffeomorphism from 77 M +— T, M for each q and ¢. We will say that H satisfies
the Legendre embedding condition if the map p — H), isan embedding (i.e. a1-1, local
diffeomorphism). We let the reader check that, although we have written it in a chart of
conjugate coordinatesin 7 M, this condition is coordinate independent. We give examples
of systems satisfying these conditions after the proof of the theorem.

Theorem 39.1 Let M be a compact, smooth manifold and H : T* M x IR be a smooth
Hamiltonian function which satisfies either the global Legendre condition (39.1) or
the Legendre embedding condition. Then, given any compact neighborhood U in T™* M
and starting time a, there exists g > 0 (depending on U ) such that, for all € < €

the time € map of the Hamiltonian flow of H is a symplectic tunist map on U.

Proof. Choose a Riemannian metric g on M. Define the compact ball bundles:
UK) ={(g;p) e T"M [ [|p| < K}.

The nested union of these sets covers T M. Hence any compact set U is contained in a
U(K) for some K large enough, and we may restrict the proof of the theorem to the case
U = U(K). Since the Hamiltonian vector field of H is uniformly Lipschitz on compact
sets, thereisatime 7" such that the Hamiltonian flow h2**(2) of H isdefined ontheinterval
t € [0, T) whenever z € U(K).

In the rest of this section, we fix a and abbreviate h2t* by ht.

By continuity of the flow, h[>7/(U(K)) is a compact set. We now show that we can
work in appropriately chosen chartsof 7* M. Since M iscompact, we canfind areal » > 0
such that 7* M is trivial above each ball of radius 2 in M. (Indeed, there exist such a
ball around each point. If one had a sequence of points whose corresponding maximum
such r converged to zero, a limit point of this sequence would not have a triviaizing
neighborhood, a contradiction). Take a finite covering {B;} of M by balls of radius r,
and let B. be the ball of radius 2r with same center as B;. Choose ¢3 < T such that
mohl®esl(n=1(B;)NU(K)) C B.. Suchan e3 existssince there are finitely many B;’sand
theflow iscontinuous. From now on, wemay work in any of thechartsm—1(B;) ~ B; xIR",
and know that for thetimeinterval [0, €3], wewill remaininthechartst—!(B!) ~ B x IR".
Welet (g, p) denote conjugate coordinates in these charts.
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Let ¢ < e3 and write h(q,p) = (q(¢),p(e)). Consider the map e : (q,p) —
(q, q(€)). We need to show that ¢, isan embedding of U (K) in M x M. By compactness,
it suffices to show that v, isalocal diffeomorphism whichis1-1on U (K): theinverseis
then automatically continuous. Write the second order Taylor formulafor g(e) with respect
to € (thisis a smooth function since the flow is smooth):

q(€) = g+ eHy(q,p,a) + €R(q, p, e).

The smoothness of the Hamiltonian flow guarantees that R is smooth in all its variables.
Indeed, its precise expression is (see eg. Lang (1983) , p. 116):

1 te
Rlapd = [ (1-nP 8Py,
0 ot
and the integrand is smooth since the flow is. The differential of ¢, with respectto (q, p)
isof the form:

Dipne(q, p) = (I*d g) . A=cHp(q,p.a) +Ryp(q,p,e).

Sincedet Hy, # 0bythelLegendreconditionandsince 12, iscontinuousand hencebounded
onthecompact set U (K') x [0, €3], thereexistses in (0, €3] suchthat det D)y = det A # 0
on U(K) x (0, €] (we have used the fact that there are finitely many of our charts B;
covering U(K)). Hence < is alocal diffeomorphism for all € € (0, e5]. We now show
that, by maybe shrinking further the interval of e, v, is one to one on U(K). Suppose
not and Y« (q, p) = Yn<(q’,p’) for some (q,p), (q¢’,p’) € U(K). The definition of 1),
immediately impliesthat ¢ = q’. Also, since ¢, isaloca diffeomorphismon U(K), we
can assumethat ||p — p’|| > ¢ for somed > 0. Using Taylor's formula, we have:

a(e) — q'(e) = e(Hp(q,p,a) — Hy(q,p',a)) + €(R(q,p,e) — R(q,p,€)).

Define the compact set P(K) := {(q,p,q,.p!) € UK) x UK) | |p—p/| > o}
Since p — H, isadiffeomorphism, the continuous function || H,(q, p,a) — Hp(q, p’, a)||
is bounded below by some K; > 0 on P(K). The continuous function (g, p,¢) +—
|R(q,p,€) — R(q,p’,€)|| isbounded, say by K>, on P(K) x [0, e2] and hence

la(e) = d' ()] = (K1 — €K32) > 0
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whenever € € (0, ¢;] and ¢; issmall enough. Now choosing ¢ = min{ey, €5} finishes the
proof of the theorem. O

Examples 39.2 We give two classes of examples. In the first class, the Hamiltonian is
not assumed to be convex. We characterize the Hamiltonians in local charts of a cotangent
bundles. Again, the following conditions are coordinate independent.

o lLet H(qg,p,t) = %(A(q,t)p,p) + V(q,t) and det A4, # 0, then H satisfies (39.1).
Thisissimply because p — H,, = A4 +)p islinear and nonsingular. Note that no convexity
is assumed here, only nondegeneracy of H,p,, (and its independence of p). Hence this class
contains, but is substantially larger than, the classical mechanical systems.

o If H,,(q, p,t) isdefinite positive, and its smallest eigenvalueis uniformly bounded below
by astrictly positive constant, then H satisfiesthe global L egendre condition. Thisisadirect
consequence of Lemma 25.4. If we remove the lower bound on the smallest eigenval ue, one
can show (see Exercise 39.3) that the map p — H,, isnot necessarily adiffeomorphism any
more, but remains an embedding and thus H satisfies the Legendre embedding condition.
Such an embedding condition, and a version of Theorem 39.1, are also satisfied if Hp), is
positive on a compact set U invariant under the flow (see Exercise 39.4).

Exercise 39.3 Show that a C' map f : R™ ~— IR™ which satisfies (Df, - v,v) > 0 for
all v and z in IR"™ is an embedding, i.e. it is injective with continuous and differentiable
inverse. Deduce that a Hamiltonian such that Hp, is positive definite satisfies the Legendre
embedding condition. Give an example where this embedding is not onto.

Exercise 39.4 Let U be a compact region which is invariant under the flow of a Hamiltonian
H. Assume also that Hypy, is positive definite on U. Show that the time ¢ map is a symplectic
twist map for all ¢ > 0 sufficiently small. (Hint. First prove, as in the previous exercise,
that p — H,, is an embedding of T;M N U for each g. Then adapt the proof of Theorem
39.1).

B. Lagrangian Formulation Of Theorem 39.1

Thefollowing proposition, which isareformulation of Theorem 39.4 in Lagrangian terms,
isageneralization of thefundamental Theorem 38.1. It guaranteesthe existence and unique-
ness of Euler-Lagrange solutions between any two close by points. A time that the solution
is traversed has to be specified within a compact interval. In Chapter 9, we will encounter
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Tonelli’s theorem which implies, for fiber convex Lagrangian systems, that these solutions
can also be assumed to be action minimizers.

Proposition 39.5 Let M be a compact manifold and L : TM x IR — IR be a
Lagrangian function satisfying the global Legendre condition: v — Ly,(q,v,t) is a
diffeomorphism. Then, for all starting time a and bound K on the velocity, there ex-
ists an interval of time [a,a+¢€g| such that, for all € < e, there ezists a neighborhood
O of the diagonal in M x M such that whenever (q,Q) C O, there exists a unique
solution q(t) of the Euler-Lagrange equations such that q = q(a), Q = q(a+€) and
lg(a)]] < K.

Remark 39.6 Note that, in the case of the geodesic flow, the curves joining the same
points g, Q in different time intervals in this proposition are geometrically all the same
geodesic, traversed at different speeds. The dependence on the time interval chosen and the
speed chosen of the geometric solutions of the Euler-Lagrange equationsis one of the main
differences, and sources of confusion, when trying to generalize notions of Riemannian
geometry to Lagrangian mechanics.

Proof. TheLegendre condition enablesusto definethe Legendretransform £ : (g, v) —
(q,p = L,) and the Hamiltonian function H(q,p,t) = pq — L(q, q,t), whereit is un-
derstood that ¢ = g o £L71(q, p) (see Section 59 of Appendix 1). H satisfies the global
Legendre condition and £~ !(q,p) = (q, H,) (see Remark 59.1). In particular Theorem
39.1 appliesto the Hamiltonian H. Let

This set is compact since it corresponds, under the L egendre transformation, to
L7HV(K)) = {(g,9) | lla(a)|| < K}

in the tangent bundle. Theorem 39.1 tells us that, for all € € (0, o] with ¢; small enough,
the map h° isasymplectic twist map on V(K). Define

O = thne(V(K)).
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We now show, maybe by decreasing ¢, that O isaneighborhood of thediagonal in M x M.
LetV,(K) = n~(q)NV(K)andwriteh!(q,p) = (q(t), p(t)) where, asbefore, h! denotes
hott. The curve q(t) isasolution of the Euler-Lagrange equation satisfying g = q(a) and
if (q,p) € Vg(K), then||g(a)|| = ||Hp|| < K. Asinthe proof of Theorem 39.1, we write
the Taylor approximation of the solution:

moh(q,p) = q(€) = g+ eH, + € R(q, p, ¢).
At first order in ¢, theimage of V,(K) under w o he is{q + eHp(q,p) | (¢,p) € V4(K)},
which is a solid ball centered at q. When adding the second order term €2 R, q till isin
mo h¢(V4(K)), provided that e is small enough. By compactness e can be chosen to work
foral g. Thus(q,q) € h*(V(K)) = Ofordl g € M, asclaimed.

Therest of the proof isapuretranslation of the statementsof Theorem 39.1: by construc-
tion,if (¢, Q) € O,then(q, Q) = (g, q(¢)) whereg(t) = moh'(q, p) and (q,p) € V(K).
Hence q(t) is asolution to the Euler-Lagrange equation starting at g at time a, landing on
Q at time a + €. Moreover, since (g, p) € V(K),||q(a)|| = [|[Hp(g,p,a)| < K. Finaly,
this solution is unique. Otherwise, by the uniqueness of solutions of O.D.E.’s, there would
bep # p’ suchthat 7w o h¢(q, p) = wo h*(q, p’), acontradiction to the twist condition. O

C. Global Twist: The Case Of The Torus

When the configuration manifold is T", there is hope to show that the time ¢ map of a
Hamiltonian system is a symplectic twist map on the whole cotangent bundle. We present
here some conditions under which thisistrue. No doubt one could find other, maybe weaker
conditions which would also work.

Assumption 1 (Uniform opticity)
H(q,p,t) = H(z) is atwice differentiable function on 7*T" x IR and satisfies the
following:
(1) sup HV2HtH < K
) Clv|® < (Hpp(z,t)v,v) < C~{Jv||* for some positive C' independent of (z,¢) and
v # 0.
Sometimes Hamiltonian systems such that H,,, is definite positive are called optical.
Thisiswhy we refer to Assumption 1 as one of uniform opticity.
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Assumption 2 (Asymptotic quadraticity)

H(q,p,t) isaC? function on T*T" satisfying the following:

(1) det Hp, # 0.

(2) For ||p|| > K1, H(q,p,t) = (Ap,p) + c.p, A = A,det A #0.

Here A denotes aconstant matrix, ¢ aconstant inIR™ and K; apositiverea. We stressthat,
in Assumption 2, A (and hence H,,) is not necessarily positive definite.

Theorem 39.7 Let h¢ be the time € of a Hamiltonian flow for a Hamiltonian func-
tion satisfying any of the Assumptions 1 or 2. Then, for small enough €, h® is a

symplectic twist map of T*T™ (or on U, respectively).

Remark 39.8 Proposition 39.7 holds for A%< whenever it does for h¢: h2*€ isthetime e
of the Hamiltonian G(z, s) = H(z,t + s), which satisfies all the assumptions H does.

Proof. \We prove the proposition with Assumption 1, and indicate how to adapt the proof

dq(e) 71
op

local Assumptions 1 and 2 into global twist condition. We can work in the covering space
IR?" of T*T™, towhich the flow lifts. The differential of 1! at apoint z = (q, p) issolution
of thelinear variational equation (16)

to Assumption 2. The strategy isto estimate H H and use Proposition 25.3toturnthe

(39.2) U(t) = —JVH(h'(2))U(t), U(0)=Id, ‘]:(Iod _éd>

Wefirst provethat U (e) isnot too far from Id:
Lemma 39.9 Consider the linear equation:

U(t) = A)U(t), Ulto) = U

where U and A are n x n matrices and |A(t)|| < K,Vt. Then :

|U(t) — Usl|| < K ||Upl |t — tO’€K|t—t0|‘

16 In general, if ¢' is solution of the O.D.E. 2 = X;(2) then D¢ is solution of U(t) =
DX:(¢'z)U(t),U(0) = Id. Heuristically, this can be seen by differentiating £ ¢'(z) =
X (¢"(2)) with respect to z (see e.g. Hirsh & Smale (1974)).
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Proof. LetV(t)=U(t) — Uy, sothat V(ty) = 0. We have:

V(t) = A(t) (U(t) — Up) + A(t)Uo
=A(t)V(t) + A(t)Uo
and hence:

V@I = [IV(#) = V({to)ll < [t —to| K [|Uo] +/t K[V (s)l ds

For all |t — to| < €, we can apply Gronwall’sinequality (see Hirsh & Smale (1974)) to get:

V()] < X [|Up] el "!

and we conclude by setting e = |t — to]. 0

We now proceed with the proof of Theorem 39.7. By Lemma 39.9 we can write:
U(s) = Id + Oy(s) where |O1(s)|| < 2K, for s small enough (i.e. such that e* < 2).
Integrating Equation (39.2) on both sides then yields:

(39.3) Ule) = Id + / 6 JV2H(h*(2)).(Id + O1(s))ds
0

Let (g(t),p(t)) = h'(q,p) = h'(z). The matrix b.(z) = 9dq(c)/Op, is the upper right
n x n matrix of U(e). From Equation (39.3), and Assumption 1 (1) we know it is of the

form:

(39.4) bo(z) = /0 CH, (h*(2))ds + /0 " 0u(s)ds

where || [ O2(s)ds|| < K22 From this, and the fact that

(39.5) Cllol* < (Hpp(2)v,0) < C7" o],

we deduce that:

(39.6) (eC — K*&) [o]* < (be(2)v,v) < (C™" + K*€) |lv|”

so that in particular b.(z) is nondegenerate for small enough e. Since b.(q, p) is periodic
in g, the set of nonsingular matrices {b.(z)}.cr2~ isincluded in acompact set and thus:

(39.7) sup [|b " (2)|| < K7,
zeR2™
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for some positive K’. We can now apply Proposition 25.3 to show that /€ is a symplectic
twist map with a generating function S defined on all of IR*".

Remark 39.10 The above proof showsthat 1€ satisfies a certain convexity condition :

-1 = @e _1'0'0 allv|’ v "
398 (b v,v>—<(ap()> , >z [ol?, WoemR".

where a is a positive constant. To see that it is the case, note that, denoting by

m = o =)

inf
lv]|=1, zeR2"™

and M the corresponding sup, (39.6) implies:

m(eC — K22)||v||? < (b1 (2)v,v) < M(eC~' + K22 |jv|)?.

We now adapt the above proof to Assumption 2. Note that under this assumption, we
can still derive (39.4) : the boundary condition (2) impliesthat V2 H isbounded. Since H is
C?,and Hp, = A outside acompact set, Hp, (h*z) isuniformly closeto Hy,(z) for small
s, and thus the first matrix integral in (39.4) isnon singular for z and small s. Thusb.(z) is
aso nonsingular for small e. Since b.(z) = €A outside of the compact set ||p|| < K3, the
set of matrices {b.(z) | z € IR"} iscompact and hence Inequality (39.7) holds and, again,
we can apply Proposition 25.3. O

D. Decomposition Of Hamiltonian Maps Into Twist Maps

When the time ¢ maps of a Hamiltonian system are symplectic twist maps for e < €*,
one can readily decompose the time 1 map into such twist maps. Take a time independent
Hamiltonian, for example. Itstime 1 map h! can be written:

and, for N > 1/€*, each h~ isasymplectic twist map . It isonly slightly more complicated
when H istime dependent. In this case we can write:

N—1 kt1 1
(39.9) ht=hk 1o(hy,)o...h, Y o...hY
N N N
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and each h? is a symplectic twist map by assumption on our Hamiltonian. as the next
Propositi onNshows. What may be more surprising, and gives a greater scope to the use of
symplectic twist maps, is that there is a large class of Hamiltonian systems which, even
though their timee is not twist, can be decomposed into aproduct of symplectic twist maps.
Thisisageneralization of an ideathat LeCalvez (1991) applied in hisvariational proof of
the Poincaré-Birkhoff Theorem (see Chapter 1). Thiswill work with either of the following

broad assumptions:

Assumption 3.

HisaC? functiononT* M x [0, 1], and the domain U isacompact neighborhood in 7* M .

Assumption 4.

H(z,t) = Hy(z) isafunctionon T*T" x IR satisfying sup | V2H,|| < K. The domain
U=T*T".

Proposition 39.11 (Decomposition) Let H(z,t) be a Hamiltonian function satisfying
Assumptions 3 or 4, or the hypothesis of either Theorem 39.10r Theorem 39.7. Then
h', the time 1 map of its corresponding Hamiltonian system, can be decomposed into
a finite product of symplectic twist maps (defined on the domain U corresponding

to the various assumptions):

hlZFgNO...OFl.

Proof. Wehavegiventhetrivia proof abovefor Hamiltoniansthat satisfiesthe hypothesis
of Theorems 39.1and 39.7. We now prove the proposition when H satisfies Assumption 3.
Pick aball bundle U(K) = {(q,p) | |lp|l < K} with K large enough so that U C U(K).
Let G be the time s of the geodesic flow, where s is chosen so that G is a symplectic twist
map on U (K). That such an s existsis proven in Proposition 38.4. We can write:

(39.10)
h1:Go<G_1oh1NA_71>OGO.--O(G_IOh 1)0.-.OGO<G_1OhO%>

e

:FQNO...OFl.
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One can check that, at each successive step of the composition, the p0| ntsremainin U (K).
The map G isasymplectic twist map, by assumption, and G—! o h ha iIsalso asymplectic
twist map by openness of the set of twist maps on a compact nei ghborhood (see Exercise
26.6).

Suppose now that H satisfies Assumption 4. Let G(q,p) = (q + p, p), our favorite
symplectic tV\iislt map on T*T". Decompose h! as in Equation (39.10). We now show

that G=! o h NV isaso asymplectic twist map. Lemma 39.6 implies that h} " satisfies
| DR — IdH < eKefe. Hence

1
N

S 2‘+
Z[x

HDG Dh ™ — DG? <C

k+1

for some positive constant C. Thus G~ o b,V is twist for N large enough, since the
sufficient conditions det 9Q/dp # 0 and ||(8Q/dp) || < oo are both open with respect
to the C'* norm. O

40. Return Maps in Hamiltonian Systems

We show that return maps around a periodic orbit of a Hamiltonian system is exact sym-
plectic. If the periodic orbit is elliptic, the return map has an élliptic fixed point, and thus,
genericaly, it isasymplectic twist map around this point (see Section 91).

Consider a time independent Hamiltonian on IR*"*2, with the standard symplectic
structure 2 = Y, _, dagr A dpy. Assume that we have a periodic trgjectory ~ for the
Hamiltonian flow. It must then lie in the energy level {H = H,} where Hy = H(v(0)).
Take any 2n + 1 dimensional open disk X which is transverse to v at v(0), and such
that X intersects v only at v(0). Such a disk clearly aways exists, if ~ is not a fixed
point. In fact, one can assume that, in a local Darboux chart, X is the hyperplane with
eguation o = 0: thisis because in the construction of Darboux coordinates, one can start
by choosing an arbitrary nonsingul ar differentiablefunction asoneof the coordinatefunction
(seeArnold (1978), section 43, or Weinstein (1979) , Extension Theorem, Lecture5). Define
Y =Y nN{H = Hy}. Itisastandard fact (true for periodic orbits of any C' flow ) that
the Hamiltonian flow h! admits a Poincaré return map R, defined on X around zq, by
R(z) = h*®)(z), where t(z) is the first return time of z to X under the flow (see Hirsh
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& Smale (1974), Chapter 13). We claim that R is symplectic, with the symplectic structure
induced by (2, on X. Since X is transverse to ~, we may assume that:
0H
. _9H
“© = Fps #
on X. Hence, by the Implicit Function Theorem, the equation

H<07q1--'7qnap07"-7pn) :HO

implies that py is afunction of (q1,...,Gn,p1,-..,pn). This makes the latter variables a
system of local coordinatesfor X'. We will now work ina simply connected neighborhood
O of zg in X, parameterized by (q1, ..., qn,D1,---,Pn). SiNCedgy = 0in O, therestriction
of {2y isinfact

de "
w ™ “QO‘(’) = Zd% A dpy.
k=1
To prove that R is exact symplectic, use Formula 59.9 of Appendix 1which states that,

for any closed curvein O, or more generally for any closed 1—chaincin O,

/ pdq—Hdt:/pdq—Hdt
Rec c

since ¢ and Rc are on the same trajectory tube. We now show that [, Hdt = [ Hdt = 0.
Thisisdueto the fact that d(Hdt) = dH Ndt = 0 A dt = 0since H = Hy on O. Since
O issimply connected, Poincaré's Lemma shows that Hdt is an exact form and hence its
integrals along the closed curves ¢ and Rc are null. Now we have [, pdq = [, pdq for
any closed curve ¢ in O and Exercise 58.6 impliesthat R is exact symplectic.

41. Suspension of Symplectic Twist Maps by Hamiltonian Flows

M oser (1986a) showed how to suspend atwist map of theannulusinto atime 1 map of a(time
dependent) Hamiltonian system satisfying the fiber convexity H,,, > 0. In subsection A we
present a suspension theorem for higher dimensional symplectic twist maps announced in
Bialy & Polterovitch (1992b), which implies Moser’s theorem in two dimensions. These
authors kindly agreed to let their complete proof appear for the first time in this book. In
subsection B, we give the proof, due to the author, of a suspension theorem wherewe let go
of a symmetry condition assumed by Bialy and Polterovitch. The price we pay is the loss
of the fiber convexity of the suspending Hamiltonian.
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A. Suspension With Fiber Convexity

Theorem 41.1 (Bialy and Polterovitch) Let F' be a symplectic twist map with gener-
ating function S satisfying:

(41.1) 0125(q, Q) is symmetric and negative nondegenerate.

Then there exists a smooth Hamiltonian function H(q,p,t) on T*T" x [0,1]
convex in the fiber (i.e. Hpp is positive definite) such that F is the time 1 map
of the Hamiltonian flow generated by H. The Hamiltonian function H can also be

made periodic in the time t.

Proof. Following Moser, we will construct a Lagrangian function L(q, v, t) on IR*" x
[0, 1] with the following properties:

(41.2) (a) The corresponding solutions of the Euler-Lagrange eguations connecting the
points g and @ in the covering space IR" in the time interval [0, 1] are straight lines g +
t(@Q —q); 1

(41.2) (1) S@.Q) = | La+4Q@-a).Q - a0

(41.2) (c¢) L isstrictly convex with respect to v : ié is positive definite.
(41.2) (d) L(g + m,v,t) = L(q,v,t) foral minZ".

If such afunction L isconstructed, its Legendre transform H satisfies the conclusion of
Theorem 41.1: (41.2) (a) and (b) imply that F" isthetime 1 map of the Hamiltonian H, (41.2)
(c) implies that H,,, is convex (see Exercise 59.2) and (41.2) (d) that the Euler-Lagrange
flow of L takes place on TT™ and hence the Hamiltonian flow of H is defined on T*T".
Notethat if (41.2) (c) is satisfied then (41.2) (@) is equivalent to the following equation:

%L 0’L 0L
(41.2) (a/) 8v8qv + Godt  dq =

2
Lemma 41.2 Set R;;(q,v,t) = — 05 (g —tv,q + (1 — t)v). Then the following
9q:0Q);
holds:
(41.3) (a) Rij = Rji;
OR;; OR;
(41.3) (b) 2 = &,

c%k an ’
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OR;;  OR
41.3) (c ! = ;
(41.3) (c) qu aqja
Rij Ry
(41.3) (d) = +§l: 5o =0
for all 1,7, k.

The proof is straightforward and uses the fact that the matrix a 8Q IS symmetric.

1
Lemma 41.3 Set L(q,v,t) :/ (1-— )\)ZRij(q, v, t)v;vjd\. Then the following
0

Z'Lj

holds:

(41.4) (a) 01} / ZR” q,7v,t)v;dr
82

41.4 — =Ry

(41.4) () 550 =Ry

(41.4) (c) L satisfies Equation (41.2) (a’).

Proof. Rewrite L asfollows:
(41.5)

1 1 1 s
L(q,v,t) = / / dSZRij(q, )\’U,t)vﬂ}jd)\ = / dS/ d)\ZR”((L )\'v,t)?}ﬂ)j
0 Jx i 0 0 i,7
1 1 1
= / ds/ s ZRU (g, sTv,t)vv;dr = / Zviai(q, sv,t)ds
0 o 7 05

1
where o;(q,v,y) = / ZRij(q,Tv,t)vjdr. We can rewrite the last integral of (41.5)
0 .
asapath integral:

/ Z%Oéz q, sv,t)ds —/Zaldvz,

where~(s) = (g, sv, t). Fixing g and ¢, Equation (41.3) (b) impliesthat theform ) . o;dv;
isclosed, and, becausev € IR", exact, say > -, a;dv; = dA for somefunction A(v) onIR™.
Then the Fundamental Theorem of Calculusyields:

L(q,v,t) = A(v) — A(0).

Since ), aidv; = dA = g—ﬁdv, Equation (41.4) (a) follows. The proof of (41.4) (b) is
similar. We now prove (41.4) (c). Inview of (41.4) (a), theleft hand side I of (41.2) (&) can
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be written as follows:

(3

1 .
- /O 1-2Y a;“ (g, \v, t)vv;dA.
l’j

=ai + a2 — ag,

where a;, isthe k" integral in the above expression. Rewrite as using (41.3) (c) asfollows:

Thefirst term isequal to a,. Therefore:

1
OR;; OR; ;
I— , i Jj '
/0 Ej vj {—815 (q,7v,t) + % a4, (q,T'U,t)Tvl}dT

Equation (41.3) (d) implies that the bracket, and hence I, vanish. O
Given any function L(q, v, t), set

L(g,Q) = /O L(g+t(Q —q),Q — g, t)dt.

Lemma 41.4 Assume that L satisfies (41.2) (a’). Then the following holds:

oL oL

(416) (a) an - _a—vi(qu_qa());
oL  OL
27 2
(41.6) (c) oL L .Q - q.0).

8(]10623 B _Gviavj

Proof. Equation (41.6) (c) isaconsequence of (41.6) (a), which we now prove. The same
argument also proves (41.6) (b). If L satisfies (41.2) (') or equivalently (a) then:

d (OL oL
% {3vz(q+t(Q_q)aQ_q7t)} — aqi(q—l—t(Q—q),Q—q’t)‘

Therefore,
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oL

9,4 Q) =

/0 {—gi(qntt(Q—q),Q—q,t)+(1—t)% (gi(q“(Q—Q),Q—q,t))}dt
:/O %{(1—t)gi(Q—i—t(Q—q),Q—q,t)}dt:_%(q’Q_%O)_

Given any two differentiable functions L(q, v, t), f(q,t), Set:

0 0
Lya.0.0) = Lig,v.6) + 5 (a0 + 5 (.0

Lemma 41.5

(41.7) (a) Ly(a,Q) = L(g, Q)+ f(Q.1) — f(a,0);
(41.7) (b) If L satisfies (41.2) (a’) then Ly satisfies it as well, for all f.

The proof of thislemma s straightforward. We are now in position to finish the proof
of Theorem 41.1. Let L bethe function defined in Lemma 41.3. From (41.6) (c) and (41.4)
(b), we get:
L O*L 9%S

m<q’Q) = —W(%Q—qao) = 90,00,

(q,Q),

and therefore

L(q,Q) = S(q,Q) + alq) +b(Q)
for some differentiable functions a and b. Set
f(g.t) = (1 —t)a(q) — tb(q).

We claim that the function L ; satisfies (41.2) (a)-(d). We prove these properties one by one.
1. Weprovedin (41.4) (c) that L satisfies (41.2) (&), and hence (41.2) (a). Statement (41.7)
(b) provesthat L ; does as well.

2. From (41.7) (a), we get:

L{(q.Q) = L(q,Q) - b(Q) — alq) = S(q.Q),

which proves (41.2) (b).
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2 2 2
. '86_521? : % = (R;j) : —%(.q — tzlf,q + (1 — t)v). Since this last matrix is
positive definite by Hypothesis (41.1), so isthe first one.
4. Since S(g +m,Q +m) = S(q,Q), thefunction L is periodic in q. We need to check
that 5/ and 5L are also periodic in ¢. Using the definitions and (41.6) (8) and (b), one can

easly check that
. oL oL
L(q,q) = 8—q(q,q) = %(q,q) =0.

From the definitions of the functions ¢ and b we obtain that

a(q) +b(q) = —S(q,9), g—g = —g—i(q,q)y S—Z(Q) = —g—g(q,Q)-

Because of the periodicity of .S, al these functions are periodicin g. Since

af pa b Of

at (1_)6_(1_8_(1, a_q:_a_bv

both af and af are periodic. Thisfinishesthe proof of our claim, and hencethat of Theorem
41.1. 0

B. Suspension Without Convexity

If welet go of the symmetry of -2 3050 aQ (but keep some form of definiteness) in Theorem 41.1
, we can still suspend the twist map F' by a Hamiltonian flow. The cost is relatively high
however: we can no longer insure that the Hamiltonian is convex in the fiber. The proof,
quite different from that of Theorem 41.1, first appeared in Golé (1994c). | am indebted to
F. Tangermann for a useful discussion about this theorem.

Theorem 41.6 Let F(q,p) = (Q,P) be a symplectic twist map of T*T" whose
differential b(z) = an(f) satisfies:

(41.8) inf (b~ (2)v,v) >a|v|, a>0, Vvo#0ecR"

zeT*T™

Then F' is the time 1 map of a (time dependent) Hamiltonian H .

Remark 41.7 Condition (41.8) tells usthat F' does not twist infinitely much. Note that
(41.8) holdswhen H satisfies Assumptions 1 and 2 (see Remark 39.10).
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Proof. Let S(q,Q) be the generating function of F. Sincep = —0,5(q, Q), we have
that b = 0Q/0p = — (0125(g, Q)) " Hence equation (41.8) translatesto:
(41.9) inf (—0125(q, Q)v,v) > allv||, a>0,Vvo#0ecIR".

(2,Q) ER?"
The following lemma show that (41.9) implies the hypothesis of Proposition 25.2, which
in turn shows that whenever we have a function on IR*" which is suitably periodic and
satisfies (41.9) , it isthe generating function for some symplectic twist map.

Lemma 41.7 Let {A;}zen be a family of n x n real matrices satisfying:
inf |(Agv,v)| > al|v|]’, Vo #0eR"
ze

Then :
det A, #0 and sup HA;lH <at.
zeA

We postponethe proof of thislemma. We now construct adifferentiablefamily S;, t € [0, 1]
of generating functions, with S; = S, and then show how to make a Hamiltonian vector
field out of it, whosetime 1 map is F'. Let

af()|Q — ql* for 0 <
af(01Q —qll” + (1~ f(1)S(q.Q) forg <
where f is a smooth positive functions, f(1) = f'(1/2) = 0, f(1/2) = 1 and
lim;_ g+ f(t) = +00. Wewill ask also that 1/ f(¢), which can be extended continuously to
1/f(0) = 0, bedifferentiableat 0. Thechoiceof f hasbeen made sothat S; isdifferentiable
with respect to ¢, for ¢ € (0, 1]. Furthermore, it is easy to verify that:

1
St(q7Q) = { i
2

inf  (—8125:(q, Q)v,v) > a|v||*, a>0,Yvo#£0eR" e (0,1].
(¢,Q)eR2"

Hence S; generates a smooth family F;, ¢ € (0, 1] of symplectic twist maps. In fact
Fi(q,p) = (¢ — (af(t))"'p,p), t<1/2,s0thatlim, o+ F; = Id. Define:

St(qvp) = St o ¢Ft (qvp)a

where ¢ 5, isthe change of coordinates given by the fact that F; istwist. Since ¢, (g, p) =
(qa q-— (le(t))_lp), t S 1/2’
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silap) = 5 (af (1) 2]l

In particular, by our assumption on 1/ f(t), s; can be differentiably continued for al ¢ €
[0, 1], with sy = 0. Hence, in the q, p coordinates, we can write:

Fipdq — pdq = ds;, te€][0,1].

By Theorem 59.7, F; isaHamiltonian isotopy. O

Proof of Lemma 41.7.. That det A, # 0 is obvious from the assumption: A has no
kernel. For all non zero v € IR", we have:

Az,
weR" - {0}, inf KAV,
zed o
Also: )
inf [|[Ayv]| > inf [(A,v,0)|= in ’“7”2”)'
lvli=1 vli=1 veR"—{0}  ||v]
so that inf,cx ianvH:l HASEUH > a. But:
Ay
inf Aol = e AUl ”f’l”
lvli=1 veR"—{0} [lv]  wemr"—{o} ||Az ||

so that, finaly:

(e e YT
sup ||AZY|| = [ inf  inf <a .
xel/)l H z || (xe/l veR"—{0} || Az ||



