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SYMPLECTIC TWIST MAPS

In this chapter, we generalize the definition of twist maps of the annulus to that of
symplectic twist maps in higher dimensions. We will do that first in the natural higher
dimensional analog of the cylinder, T x IR" = C™, and then treat the case of general
cotangent bundles. There are several reasonsto favor the cotangent bundle of thetorusT" x
IR™. This space arises naturally in many classical mechanical settings whose configuration
spaces can be described by n angles. It also arises as local polar coordinate systems near
elliptic fixed points of symplectic maps. Another reason to start with maps of T" x IR" is
that they are the most accessible: although these notions are at least implicitly present, little
knowledge of manifolds, fiber bundles and differential formsis needed in the study of this
case. Finally, these maps are prone to numerical studies, and for this reason have given rise
to many studies by physicists and astronomers.

Nonethel ess, cotangent bundles of other manifol dsthan the torus do occur in mechanics
(eg. the configuration space of the solid rigid body is SO(3)) and there too it is possible to
define and make use of symplectic twist maps. Wewill seein later chaptersthat they offer a
convenient handle on Hamiltonian systems on cotangent bundles. For the part of the chapter
treating general symplectic twist maps, the reader should be familiar with the notion of
cotangent bundle and differential forms which are reviewed in Section 58 of Appendix 1.

Higher dimensional Symplectic Twist Maps have appeared in many forms, under many
namesin the literature. | owe the nameto MacKay & a. (1989), who use amore restrictive
twist condition. The work of Herman (1990), aswell as my desire to find a geometric twist
condition suitable for general cotangent bundles inspired the definition given here, which
first appeared (to my knowledge) in Banyaga & Golé (1993) and Golé (1994).
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23. Symplectic Twist Maps of T" xR"
A. Definition

LetT" =1R"/Z" bethe n—dimensional torus. An analog to the annulusin higher dimen-
sionswhichismost natural in mechanicsisthespaceT"™ x IR", which can be seen asthecarte-
sian product of n annuli. WegiveT" x IR" thecoordinate (q, p) = (q1,- -, @n,P1,- - s Pn)-
In mechanics, ¢4, . . . , g, would be n angular configuration variables of the system, whereas
p1,-...,pn Would be their conjugate momentum, and T™ x IR"™ is the cotangent bundle
T*T" of thetorus T". The following is a generalization of the definition of twist maps of
the cylinder:

Definition 23.1 Let F' be a diffeomorphism of IR*" and write (Q(q, p), P(q,p)) =
F(q,p). Let F sdtisfies:

1) F(g+m,p)=F(q,p)+(m,0), VmeZ"
2) Twist Condition:themap ¥ : (q,p) — (q, Q(q, p)) isadiffeomorphism of R,
3) Exact Symplectic: in the coordinates (g, Q),

(23.1) PdQ — pdg = dS(q,Q)

where S isareal valued function on IR*" satisfying:

(23.2) S(g+m,Q+m)=15(q,Q), VmeZ"

Thenthemap f that F induceson T" x IR" iscalled a Symplectic Twist Map.

As for maps of the annulus, S(q, Q) is caled a generating function of the map F:
Equation (23.1) is equivalent to

P = 625((1,@),

and thus F' isimplicitly given by S since
F(g,p) = (Q o ¢r(q,p), 025 0 Yr(q, p))

with ¢5'(q,Q) = (¢, —915(q,Q))
Notethat the prescription of £’ throughitsgenerating function .S isoften moretheoretical
than computational: it involves the inversion of the diffeomorphism w;l.

(23.3)
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B. Comments on the Definition

eThe periodicity condition F'(q +m, p) = F(q,p) + (m,0) insuresthat F' induces amap
fonT" x IR". It also impliesthat (in fact is equivalent to) f is homotopic to /d (see the
Exercise 23.3, b)). The periodicity condition is also aconsequence of (23.2) (Exercise23.3
, @). We chose to include it for its importance.

eThe twist condition (2) of definition 23.0 implies the local twist condition often used in
the literature:

Local Twist Condition (2’) det 0Q/dp # 0.

We will explore in Section 25 extra assumptions under which this local twist condition
implies the global twist of Condition (2).

eIntermsof differential forms, PdQ —pdq = F*pdq—pdq. Theperiodicity of S given by
S(g+m,Q+m) = S(q,Q)inthe(q, Q) coordinatesbecomes S(q+m, p) = S(q,p) in
the (q, p) coordinates (i.e. applying @4 ). In particular S inducesafunction s on T” x IR™
suchthat f*pdq—pdq = ds (g isseenascoordinateon T here). Thislast equality expresses
the fact that f is exact symplectic. As we have seen in Chapter 1(see also Appendix 1), if
f isexact symplecticit isalso symplectic:

[* pdq — pdq = ds = d(f*pdq — pdq) = 0 = f*(dq A dp) = dq A dp.

Any symplectic map of IR*" is exact symplectic, but it is not true of maps of T" x IR™: the
map f(q,p) — (g,p +m), m # 0 issymplectic but not exact symplectic. Asin the case
of maps of the annulus, exact symplecticity can be interpreted as a zero flux condition, but
the flux isnow an n dimensional quantity.

C. The Variational Setting

Asinthe case of monotonetwist mapsof the annulus, the generating function of asymplectic
twist map induces a variational approach to finding orbits of the map.

Proposition 23.2 (Critical Action Principle) Let f1,..., fn be symplectic twist maps
of T*T", and let Fy be a lift of Fy, with generating function Sy.There is a one to
one correspondence between orbits {(q1,Ppr1) = Fr(qy, pi)} under the successive

Fy’s and the sequences {q; }rez in (R™)% satisfying:
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(23.4) O15k(qk> Qrr1) + 025k—1(qk—1,qx) =0
The correspondence is given by: p, = —01Sk(qp; Qpy1)-
Proof. Itisidentical tothecasen =1, seeLemma 5.4. O

Remark 23.3 Asinthecasen = 1, Equation (23.4) can be interpreted as:

N-1

VW =0 with Wi(q,...,qn) = Z Sk(@r Argr)-
0

And, asin the proof of Corollary 5.5, (23.4) can aso be written:
Py 1 —p,=0

where we use the notation p, = —91Sk(qy, @y.1); Pr = 025k(qy Q11)-

Exercise 23.4 a) Prove that Condition 1) in Definition 23.3 is a consequence of Conditions
2) and 3).

b) You will now prove that Condition 1) implies that the map f induced by F' is homotopic
to Id. It is known that each homeomorphism of the torus T" is homotopic to a unique torus
map induced by a linear map A of Gl(n,Z) (the group of invertible integer n X n matrices,
see Stillwell (1980)). Likewise, each homotopy classes of homeomorphisms of T™ x IR"™ has
exactly one represent of the form A x Id where A € Gl(n,Z). Show that any lift F' of a
map homotopic to A x Id satisfies:

F(q,p) = (Q,P) = F(q+m,p) = (Q + Am, P).

Exercise 23.5 Show that if F' and F’ are two lifts of the same symplectic twist map F,
their corresponding generating functions S and S’ satisfy:

S(a,Q) = S'(q,Q +m),

where m € Z" is such that F'(:) = F(-) + (m,0).
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24. Examples
A. The Generalized Standard Map

The generalized standard map or standard family is the family of symplectic twist map
whose lift is generated by the following type of functions:

53(9:Q) = 1 1@~ all* + Vala)

where V, is a family of C? functions that are Z"—periodic, with \ a (possibly multidi-
mensional) parameter and V; = 0. In the following, we assume that the norm is the usual
Euclidean one, but that could be changed. It istrivial to see that S satisfies the periodicity
condition S\ (g + m,Q + m) = S\(q, Q). To find the corresponding map, we compute:

p=-015\(q,Q) =Q —q—VVi(q)
P = aQS)\(qa Q) = Q —q
from which we immediately get:
Q=qg+p+VVi(g)
P =p+VVi(q)

In other words, the standard map is given by:

(24.1) Fx(q,p) = (g+p+ VVi(q),p+ VVi(q)).

Inthecasen = 2,thefollowingisthe most widely studied potential. Itisdueto Froeschlé
(1972) (see dso Kook & Meiss (1989), Froeschlé, Laskar & Celletti (1992)):

1
W(q,q2) = W{Kl cos(2mq1) + Ko cos(2mqs) + hcos(2m(q1 + q2)) }-

Inthiscase A = (K3, Ks,h) € IR?, and the standard family attached to this potential is
athree parameter family of symplectic maps of T? x IR2. The picture on the book cover,
gracefully provided by Eduardo Tabacman, represents the stable and unstable manifolds of
a periodic orbit for this map, with parameter ko = ky = 2,h = 1/2. The difference in
colour isto suggest the fourth dimension.

When A\ = 0, themap F, of (24.1) becomes:

Fo(q,p) = (¢ +p,p).
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Thisisan instance of a completely integrable Symplectic twist map: such maps preserve a
foliation of T™ x IR"™ by tori homotopicto T x {0}. On the covering space of each of these
tori, thelift of the map is conjugate to arigid translation. The term “completely integrable”
comes from the corresponding notion in Hamiltonian systems (see Example 24.2.)

Thereason why the standard map hasattracted so much researchisthat itisa computable
example of a higher dimensional conservative system. Because of the relative tractability
of this system, one may understand questions about persistence of invariant tori as the
parameter \ varies away from O, study the various properties of its periodic orbits as well
as problems of diffusion.

B. Hamiltonian systems

As we will see, the relationship between symplectic twist maps and Hamiltonian systems
runs wide and deep. Chapter 7 is devoted to thisrelationship. Let us say here that there are
two ways to generate a sympl ectic twist map from a Hamiltonian system. They occur either
as Poincaré return maps around elliptic orbitsin Hamiltonian systems (we develop thisidea
in the next subsection and Section 40) or as time ¢ maps of a Hamiltonian system, when
restricted to an appropriate domain. As a basic example of the latter, the Hamiltonian flow
generated by:
H(q,p) = %(Ap,p> with A" = A, det A #0

iscompletely integrable, in that it preserves each torus {p = p,} and itstime ¢ map:

9'(q,p) = (g + t(Ap), p)

is a completely integrable symplectic twist map. If A is positive definite, ¢* restricted to
{H = 1} isjust the geodesic flow for the flat metric 1 (A~1v, v) on T" (See Section 38).

More generally, if F'(q,p) = (Q, P) isthelift of thetime ¢ of some Hamiltonian flow
generated by the function H, then:

Q = q(e) = q(0) + e.Hp + o(e?)
P = p(e) = p(0) — e.Hy + o(e?),
and F satisfiesthelocal twist condition det %—g(z(o)) # 0 whenever H,,, isnon degenerate.

Thisremark was made by Moser (1986a) in the dimension 2 case. From thislocal argument
wewill derivein Chapter 7 conditionsunder whichthetimee of aHamiltonianisasymplectic
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twist map . We will also see that, even if the time e map of a Hamiltonian system is not
twist, itstime 1 map can, for large classes of Hamiltonian systems, still be decomposed into
the product of twist maps (see Chapter 7).

C. Elliptic Fixed Points

Aswe will seein Section 40, the study of Hamiltonian dynamics around a periodic orbit of
atime independent Hamiltonian reduces to that of a symplectic map:

R :RR*" — R*", suchthat R(0) =0,

called the Poincaréreturn map. Thecasewhere0 isanelipticfixed point (i.e. thedifferential
DR hasall itseigenvalues on the unit circle, see Sections 33and 56) is of particular interest,
as the dynamics around it offers a microcosm of al the possible symplectic dynamics.
Elliptic fixed points have also been afocus of attention in the discussion on stability with
the KAM theory, Nekhoroshev estimates and Arnold diffusion (see Chapter 6). We now
follow Moser (1977) in proving that, generically, one can find good symplectic coordinates
around the elliptic fixed point which makes the map R a symplectic twist map . A normal
form theorem for elliptic fixed points says that the map R is, around 0 given by:

Qr = qrcosPy(q,p) — prsin®i(q,p) + fr(q,p)
Py, = qisin®@y(q,p) + prcosPy(q,p) + 9x(q, p)

Pr(q,p) = ap + Zﬁkl((ﬁ +17).
=1
wheretheerror terms f;,, g1, are C3.(8) We now show that thismapiis, in “polar coordinates”,
asymplectic twist map of T*T", whenever the matric B = {f;} is non singular. Let
V' be a punctured neighborhood of 0 defined by: 0 < >, (¢ + p3) < e. We introduce on
V' new coordinates (ry, 0x) by:

Q. = V2€erpcos2nl, pr = V2erpsin2mly,

where 6;, is determined modulo 1. One can check that V' is transformed into the “annular”
set:
8

actually, one only need them to have vanishing derivatives up to order 3 at the origin
and be C* otherwise.
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1
U:{(@k,rk)ET”x]Rn | e >0 and Zrk<§}
k

Sincethesymplecticform dgAdp istransformedinto 2wedr Ad@, R remains symplectic
in these new coordinates, with the symplectic form dr A d6. Infact, R isexact symplectic.
To check this, it is enough to show that (Exercise 58.6), for any simple closed curve v:

/ rd0:/rd0.
R~y ¥

It iseasy to seethat 4werydf,. = prdqr — qidps, SO by Stokes' theorem:

47Te/rd9:/ pdq—qdp:—Z/ dqg N dp
0 oD D

where D isa2 manifoldin V' with boundary 0D = ~. Since R preservesdq A dp inV, it
must preserve the last integral, and hence the first.

To see that R satisfies the two other conditions for being a symplectic twist map, we
write R(0,r) = (@, R) in the new coordinates:

O, =0, + Y, (’I") + 01 (6)
Ry, =ri + 01(€)

with ¢p, =k +€ > 2Bur.
=1
where e 10 (¢, 0, 7) and itsfirst derivativesin =, 6 tend to 0 uniformly ase — 0. We can
rewrite this as:

R(O,7) = (0 + eBr + a+ o1(€),r + 01(€)) .

So for small ¢, the condition det 9@ /0r # 0 isgiven by the nondegeneracy of B = {3},
one usesthefact that R isC'! closeto acompletely integrable symplectic twist map to show
that R istwist in U (thetwist condition is open). The fact that it is homotopic to /d derives
from Exercise 23.4. Notethat the set V' and therefore U are not necessarily invariant under
R. Note also that the symmetric matrix B, even though it is generically nondegenerate, is
not necessarily positive definite. Herman (1992 b) has examples of Hamiltonian systems
and symplectic maps arbitrarily close to completely integrable which have elliptic fixed
point with B not positive definite.
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Exercise 24.3 Compute the expression of the lift of a symplectic twist map generated by:

S(q,Q) == (AQ—q),(Q—q))+c.(Q—q)+V(g),

N~

where A is a nondegenerate n X n symmetric matrix (This is yet a further generalization
of the standard map).

25. More on Generating Functions

A. Homeomorphism Between Twist Maps and Generating Functions

The following proposition justifies the name “ generating function”.

Proposition 25.1 There is a homeomorphism®) between the set of lifts F of C!

symplectic twist maps of T*T" and the set of C? real valued functions S on IR*"

satisfying the following:

(a) S(@g+m,Q+m)=15(q,Q), YmeZ",

(b) The maps: ¢ — 025(q, Q) and Q — 015(qy, Q) are diffeomorphisms of R"
for any Q, and q, respectively,

(c) S(0,0) =0.

This homeomorphism is implicitely given by:

(25.1) Flaw) = QP & {87 feK)

Proof. Let F bealift of asymplectic twist map and S(g, Q) beits generating function.
For such F' and S, we have already derived (25.1) from PdQ — pdq = dS, and (a) is
part of our definition of symplectic twist maps. To show that S satisfies (b), first note that,
by (25.1), Q — —0:5(q,, Q) isjust the inverse of the map p — Q(q,,p), whichisa
diffeomorphism since ¢r : (q,p) — (q, Q) is a diffeomorphism by the twist condition.
We also have the composition of diffeomorphisms:

1

@.Q) "% (¢.p) & (Q.P)

 In the compact open topologies of the corresponding sets



96 4: SYMPLECTIC TWIST MAPS

which implies that the map ¢ — P(q,p,) = 025(q, Q) is a diffeomorphism, which
finishes to prove that S satisfies (b). Since two generating functions of the same F' only
differ by a constant there is exactly one such S(0,0) = 0.
Conversely, given an S satisfying (b), we can defineaC'* map F of IR*" by:
F(q,p) = (QovYr(q,p), 025 0 Yr(q, p))
where ¢5'(q,Q) = (¢,-015(q, Q).

F isadiffeomorphism, asit is the composition of the two diffeomorphisms:

(25.2)

(@) % (4,Q) — (Q.3:5(¢.Q)).

It is easy to check that such apair F, S satisfies (25.1). Since S satisfies (a), F' isalift of
adiffeomorphism of 7*T"™ : (a) aso holds for ;.S and 925, which implies (as the reader
should check) that F'(q + m,p) = (Q + m, P) whenever F'(q,p) = (Q, P). Exercise
23.4 shows that F' must be homotopic to the Identity. Because of (b), F' satisfies the twist
condition. Hence the map F' (uniquely) defined from (25.1) is a symplectic twist map and
it is not hard to see that the correspondence we built between the maps F' and the functions
S is continuous in the C'* and C? compact open topol ogies respectively. O

B. Local vs. Global Twist

It is useful to have “local” computational criteria to determine when a function S satisfies
the hypotheses of Proposition 25.1 in order to be the generating function of some map. This
is the purpose of the following proposition:

Proposition 25.2 Let S: IR*™ — IR be a C? function satisfying:

(i) S(g+m,Q+m)=5(q,Q), VmeZ"

(25.3) (43) det 0125 # 0
(ii))  sup  [|(0125(q,Q))7'|| = K < oc.
(g,Q)eR?"

Then S s the generating function for the lift of a symplectic twist map .

The next proposition gives a way to insure the “global” twist condition from a local
condition on the map:



25. Generating Functions 97

Proposition 25.3 Let F(q,p) = (Q,P) be a symplectic map of R*" with F(q +
m,p) = (Q + m, P). Suppose that

(25.4) sup  [(8Q(q,p)/0p) || < cc.
(a,p)ER?"

Then F' is the lift of a symplectic twist map .
The proof of both these propositions are direct consequences of the following:

Lemma 254 Let f: RN — RY be a local diffeomorphism at each point, such that:
sup ||(Dfz) || = K < oc.
zeRN

Then f is a global diffeomorphism.

Proof. Wefirst prove that f isonto. Let yo = f(0) and takeany y € R”Y. Let y(t) =
(1 — t)yo + ty. By the inverse function theorem, f~! is defined and differentiable on an
interval y([0, €)). Let a be the supremum of all such e in [0, 1]. If we provethat f~! isalso
defined and differentiable at a, then a = 1, otherwise, by the inverse function theorem, we
getthecontradictionthat £~ isdefinedon [0, a+«), for somea > 0. Forany to, t1 € [0, a),
we have:

[F~ () = f (y(to))|| < Sup D~ @)y = woll [t — tol

< K |ly — yol| [t1 — %ol -

So that, for any sequence ¢, — a, the sequence f~!(y(tx)) is Cauchy. This proves the
existence of f~!(y(a)). By the Inverse Function Theorem, f~! is differentiable at y(a).
This finishes the proof that f is onto. Since f is onto and open, it is a covering map from
IR™ to IRY. Such a covering has to be one sheeted, i.e. a diffeomorphism, since IRY is
connected and simply connected (see Appendix 2). This finishes the proof. O

Proof of Proposition 25.2. In order to apply Proposition 25.1, we need to show that
S satisfies condition (b) in that proposition. But this is an immediate consequence of
Lemma 25.4 applied to the two maps ¢ — 025(q,Q,) and Q@ — 015(q,, Q) (note
that [|(921.9) 71| = [|(9129) |- O



98 4: SYMPLECTIC TWIST MAPS

Proof of Proposition 25.3. By Lemma 25.4, for each fixed q, the map p — Q(q,p)
is a globa diffeomorphism of IR"™. This implies that v : (g,p) — (q,Q) is a global
diffeomorphism of IR*". O

C. Differential of the Map vs. Generating Function

Proposition 25.5 The following formula relates the differential of a symplectic twist

map F' to the second derivatives of its generating function S':

—0115.(0129) 71 —(0128)71

DF(q,p) =

0915 — 8225.8115.(8125)_1 —8225.(8125)_1

where all the partial derivatives are taken at the point (q, Q) = VYr(q,p).

Proof. We will show that 52 = —(8125)7'(q,Q), where, as usual, we have set
F(q,p) = (Q, P). Differentiating the equality: p = —0,.5(q, Q) with respect to p, view-
ing Q asafunction of q, p, one gets:

Id = —0125(q, Q) (%) :

The computations for the other terms are similar. O

Exercise 25.6 a) Show that if instead of Condition (1) in the definition of symplectic twist
maps we ask F to be homotopic to A x Id, where a lift A of A is in GIT(n,Z), then
Proposition 25.1 remains true, replacing (a) by:

S(g+m,Q+ A(m)) = S(q,Q).
b) Find the map generated by
1 <
S(a.Q) = 5(a—A7'Q)* +V(a)

Note that this exercise shows, in particular, that there are plenty of examples of exact
symplectic maps of T*T™ that are not homotopic to I'd and hence cannot be Hamiltonian
maps.

Exercise 25.7 Let IB™ denote a compact ball in IR". Show that if f : B® — IR" is a
differentiable map satisfying :
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inf (dfyv,v) > a(v,v), VveR"
zelB™

then f is an embedding (diffeomorphism on its image) of IB” in IR".

26. Symplectic Twist Maps on Cotangent Bundles of Compact
Manifolds
A. Definition

Our definition of symplectic twist mapsof T" x IR™ is geometric enough to allow a gener-
alization to cotangent bundles of general compact manifolds. The main difference between
our genera definition and the one in the case of T" x IR™ = T*T" is that we do not
work with the universal covering space of our manifold any more, to the cost of a less
global definition.(1%) In this book, the main examples of symplectic twist maps on general
cotangent bundleswill arisein the context of Hamiltonian systems (see Chapter 7). We also
present, in the next section, ageneralization of the standard map in cotangent of hyperbolic
manifolds. We refer the reader to Appendix 1 for a review of the concepts of cotangent
bundles and their symplectic structure.
In the following, U will denote an open subset of 7 M such that:

(26.1) 71 (q) N U =~ interior(IB")

wheren : T*M — M isthecanonical projection, and IB" C IR" denotesthen-ball. Hence
U isarelatively compact ball bundle over M, diffeomorphic to 7% M. Asin Appendix 1,
we denote by )\ the canonical 1-form on a cotangent bundle.

Definition 26.1 A symplectic twist map F' is a diffeomorphism of an open ball bundle
U CT*M (asin(26.1) ) onto itself satisfying the following:

(1) F ishomotopicto Id.

(2) Fisexact symplectic: F*\ — X\ = S for some real valued function S on U.

(3) Twist condition:themap p : U — M x M givenby ¢p(z) = (n(z), 70 F(z)) is
an embedding.

'9Tf the manifold M is not covered (topologically) by IR™, problems occur when we want to

make the definition of symplectic twist maps of 7" M as global as in T"T": there cannot
be a global diffeomorphism from a fiber of T*M to the universal cover M.
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Thefunction S = S o ¢;1 onyr(U) iscalled the generating function for F.

Often, the kind of neighborhood we have in mind is of the form:
U={(q,p) € T"M | H(q,p) < K}

for some function H convex in p. One could use a less restrictive class of neighborhoods,
to the cost of possible domain complications.

If M = IR"™, onecantake U = T* M and modify the above definition slightly to make
it more global by changing (2) into: (2') If F : T*M — T*M is alift of F, the map
Yp U — M x M givenby ¢z(z) = (n(2), 7 o F(z)) is adiffeomorphism (of IR*").
We leave the reader check that when M = T", Definition 26.1 with 2) replacing 2) isan
obvious, coordinate free generalization of the definition of symplectic twist map of 7*T",
with the appropriate restrictions of domains.

Finally, one could further relax the above definition by asking that F' be only an embed-
ding of U into T M, letting go of the invariance of U.

B. Maps vs. Functions, Revisited

It is not hard to adapt the proof of Proposition 25.1 to the more general:

Proposition 26.2 Given a point q* in the compact manifold M, there is a homeo-

morphism between the set of pairs (F,U) where F is a Ct symplectic twist map of

an open ball bundle U C T*M and the pairs (S,V) , where S is in the set of C?

real valued functions S on an open set V' (diffeomorphic to U) of M x M satisfying

the following:

(i) The map q — 025(q,Q,) (resp- Q@ — 015(qy, Q)) is a diffeomorphism of the
open set {(q,Qy)} NV (resp. {(qy,Q)} NV) of M into (TéoM) NU (resp.

(T;OM) NU) for each Q (resp. q,).
(i) S(q*,q") = 0.
This correspondence is given by:

(26.2) Fla,p) = (Q,P) & {1;;: Ssla Q)
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Remark 26.3 1) As noted before, if M = IR", we can choose U = M x R™ = IR?" in
the above proposition. In this case Corollaries 25.2 and 25.3 also remain valid.

2) Even though we have written Proposition 26.2in coordinates, the relationship between
symplectic twist maps and their generating function isindependent of the canonical System
of coordinates chosen, see Exercise 26.4. In particular, the prescription of Formula (26.2)
will yield the same covectors p and — P regardless of the local coordinates g and Q are
expressed in.

C. Examples

Time t of Hamiltonian Systems. The examples of symplectic twist mapsin general cotan-
gent bundles will mainly come from Chapter 7, astimet of Hamiltonian systems satisfying
the Legendre condition. We will also show how to decompose any Hamiltonian map of a
large class into symplectic twist maps .

Standard Map on Hyperbolic Manifolds. In Proposition 38.7 of Chapter 7, we will prove
that the function S(q, Q) = %Dis2(q, Q) + V(q), where Dis is the distance function on
the hyperbolic half space IH" and V : IH" — IR is some C? function, generates a global
symplectic twist map that we call generalized standard map on hyperbolic space. By using
potential functions V' that are equivariant under discrete groups of isometries, this type of
map provides many examples of symplectic twist maps on compact hyperbolic manifolds
that are covered by TH".

Exercise 26.4 Check that, with the appropriate restriction on the set of sequences, Propo-
sition 23.2 and Remark 23.3 remain valid for symplectic twist mapson general cotangent
bundles.

Exercise 26.5 a) Prove Proposition 26.2. Verify that, although we have written things in
local coordinates, everything in Proposition 26.2 has intrinsic meaning (e.g. 01.5(q, Q)is
an element of T; M, which is independent of the canonical systems of coordinate chosen
above either g or Q).

b) Prove that if M in Proposition 26.2 is the covering space of a manifold N with funda-
mental group I', and if S satisfy S(yq,7Q) = S(q,Q),Vy € I, as well as (i) and (ii), then
the symplectic twist map that S generates is a lift of a symplectic twist map on N.

Exercise 26.6 Show that the set of C'' twist maps on a relatively compact, open neighbor-
hood in the cotangent bundle of a manifold is open in the set of C* symplectic maps on
that neighborhood (Hint: prove first that the twist condition is an open condition).



