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GHOST CIRCLES

In Chapter 2, we saw how traces of the invariant circles of the completely integrable

map persist, either as invariant circles, as periodic orbits or as invariant Cantor sets, in any

twist map. The main result of this chapter, Theorem 18.1, provides a vertical ordering of

these Aubry-Mather sets in the cylinder for each given map. Indeed, we show that each

Aubry-Mather set is a subset of a circle in a family of disjoint, homotopically nontrivial

circles that are graph over the circle {y = 0}. The circles in this family are ordered according

to the rotation number of the Aubry-Mather sets.

To prove this, we establish important properties of the gradient flow of the action

functional in the space of sequences. The central property, given by the Sturmian Lemma,

is that the intersection index of two sequences cannot increase under the gradient flow of

the action. One consequence is that the flow is monotone: it preserves the natural partial

order between sequences. This fact yields a new proof of the Aubry-Mather Theorem. It

also enables us to define special invariant sets for the gradient flow that we called ghost

circles, which we study in some detail here. The family of circles that neatly arranges the

Aubry-Mather sets are projections of ghost circles in the cylinder.

The results of this chapter come from three sources: Golé (1992 a), in which properties of

ghost circles were systematically investigated; Golé (1992 b), where gradient flow techniques

were used to give a proof of the Aubry-Mather theorem. There was a gap in that last paper,

pointed out to me by Sinisa Slijepcevic which is fixed here thanks to a lemma from Koch &

al. (1994). Finally, the bulk of this chapter comes from Angenent & Golé (1991), in which

we gave a proof of the ordering of Aubry-Mather sets via ghost circles. I am deeply indebted

to Sigurd Angenent for letting me publish this work here for the first time. The notion of

ghost circles originated in my thesis, in which I was looking for regularity properties for
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ghost tori, their higher dimensional counterparts . In Chapter 5, a link is made between ghost

tori and Floer Homology.

14. Gradient Flow of the Action
A. Definition of the Flow

Throughout this chapter, we consider a twist map f of the cylinder and its lift F whose

generating function S is C2. For simplicity, we will also assume that the second derivative

of S is bounded. This mild assumption is satisfied for twist maps of the bounded annulus

which are extended to maps of the cylinder as in Lemma 8.2, as well as for standard maps.

In this section we investigate the property of the “gradient” flow of the action associated

with the generating function S of F solution to:

(14.1) ẋk = −∇W (x)k = −[∂1S(xk, xk+1) + ∂2S(xk−1, xk)], k ∈ ZZ

Since this is an infinite system of ODEs, we need to set up the proper spaces to talk about

such a flow. We endow IRZZ with the norm :

‖x‖ =
+∞∑
−∞

|xk|
2|k|

We let X be the subspace of IRZZ of elements of bounded norm, which is a Banach space.

On bounded subsets of X , the topology given by the above norm is equivalent to the product

topology, itself equivalent to the topology of pointwise convergence.

Remember from Chapter 2 that ZZ2 acts on IRZZ by:

(τm,nx)k = xk+m + n

The map τ0,1 which we also denote by T has the effect of translating each term of the

sequence by 1. The map τ1,0 which we denote also by σ is called the shift map, as it

shifts the indices of a sequences by 1. We define X/ZZ := X/T and we can choose as a

representative of a sequence x one such that x0 ∈ [0, 1). More generally, in this chapter,

the quotient of any subset of IRZZ by ZZ will be with respect to the action of the translation

T = τ0,1.

Proposition 14.1 Suppose that the generating function S is C2 with bounded second

derivative. The infinite system of O.D.E’s
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(14.2) ẋk = −∇W (x)k = −[∂1S(xk, xk+1) + ∂2S(xk−1, xk)]

defines a C1 local flow ζt on X as well as on X/ZZ, for the topology of pointwise

convergence. The rest points of ζt on X correspond to orbits of the map F.

Proof . We prove that the vector field −∇W is C1 by exhibiting its differential. The

proposition follows from general theorems on existence and uniqueness of solutions of

ODEs in Banach spaces (Lang (1983) , Theorems 3.1 and 4.3). The following map is the

derivative of x �→ −∇W (x):

L : {vk}k∈ZZ �→ {βkvk−1 + αkvk + βk+1vk+1}k∈ZZ

αk = −∂22S(xk−1, xk)− ∂11S(xk, xk+1), βk = −∂12S(xk−1, xk)

Indeed, this map is linear with (uniformly) bounded coefficients, hence a continuous linear

operator. Clearly:

−∇W (x+ v) +∇W (x)− L(v) = ‖v‖ψ(v)

with limv→0 ψ(v) = 0. 
�

B. Order Properties of the Flow

Angenent (1988) was the first author, to my knowledge, to notice the similarity between the

ODE (14.1) and the heat flow of parabolic PDEs. Indeed, when we consider the standard

map with generating function S(x,X) = 1
2 (X − x)2 + V (x), the ODE (14.1) becomes

ẋk = (−∆x)k − V ′(xk)

where ∆(x)k = 2xk − xk−1 − xk+1 is the discretized Laplacian. It is not too surprising

therefore, that the gradient flow solution of (14.1) inherits analogous order properties to

those of heat flows (eg. , the comparison principle). In a nice reversal of roles, de la Llave

(1999) has now proven Aubry-Mather type theorems for certain PDEs, using order properties

(see Chapter 9). To explore these properties in twist maps, we come back to the notion of

order introduced in Chapter 2. IRZZ is partially ordered by:

x ≤ y ⇔ ∀k ∈ ZZ, xk ≤ yk.
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We also define x < y to mean x ≤ y, but x �= y; and we write x ≺ y to denote the

condition xj < yj for all j ∈ ZZ. The order interval [x,y] is defined by:

[x,y] = {z ∈ IRZZ | x ≤ z ≤ y}

The positive order cone at x

V+(x) = {y ∈ X | x ≤ y}

with a similar definition for V−(x). These cones are closed for the topology of pointwise

convergence.

The following statement was observed by Angenent (1988). It is related to the compar-

ison principle for parabolic PDEs (In the case of the standard map.

Theorem 14.2 (Strict Monotonicity of ζt) For x,y ∈ X with x < y one has ζt(x) ≺
ζt(y) for all t > 0.

We will give a simple proof of this theorem in Section 22. It is also a consequence of

the Sturmian Lemma (see below), which was stated in Angenent (1988), and written in

Angenent & Golé (1991). Both proofs were communicated to the author by Sigurd Angenent.

In Chapter 2, we defined the notion of crossing of two sequencesx,y in IRZZ in terms of their

Aubry diagrams. We remind the reader that such a crossing occurs when there is a k ∈ ZZ

at which either xk− yk and xk+1− yk+1 have opposite signs, or xk = yk and xk−1− yk−1

and xk+1−yk+1 have opposite signs. We say that two sequences are transverse if they have

no tangency, i.e. there is no k ∈ ZZ at which xk = yk and xk−1 − yk−1 and xk+1 − yk+1

have same sign. We denote the transversality of x and y by x ∩| y. We now define the

intersection index I(x,y) to be the number of crossings of transverse sequences.

Lemma 14.3 (Sturmian Lemma) Let x,y ∈ X have different rotation numbers. If x,y

are not transverse, then for all sufficiently small ε > 0 ζ±εx, ζ±εy are transverse

and:

I
(
ζ−εx, ζ−εy

)
> I (ζεx, ζεy) .

Otherwise, as long as ζtx and ζty stay transverse, their intersection index does not

change.
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Proof . See Section 22.

As in Section 5.C, Xp,q is the space of sequences of type p, q and Wpq is the periodic

action on these sequences.

Corollary 14.4 The sets CO, COω, and Xp,q are all invariant under the flow ζt, and

so are their quotients by the action of T = τ0,1.

Proof . The inequalities of the type x < τm,nx, which define the sets CO and COω are

all preserved under ζt. The invariance of Xp,q comes from the periodicity of the generating

function S and its derivatives: when x ∈ Xp,q the infinite dimensional vector field −∇W

for the ODE (14.1) is a sequence of period n (made of subsequences of length n equal to

∇Wpq). 
�

15. The Gradient Flow and the Aubry-Mather Theorem

In this section, we show how the existence of CO orbits of all rotation numbers can be

recovered from the monotonicity of the gradient flow ζt. From Lemma 9.2 and Corollary

14.4, we know that the set COω/ZZ is compact and invariant under the flow ζt. Rest points

of the flow in this set lift to CO orbits of rotation number ω. It turns out that, even though

ζt is not the gradient flow of any function, we can still make it gradient like when restricted

to the appropriate subsets. Denote by XK = {x ∈ X | supk∈ZZ |xk − xk−1| < K}.

Theorem 15.1 Let C ⊂ XK/ZZ be a compact invariant set under σ and forward

invariant under the flow ζt. Then C must contain a rest point for the flow. In

particular COω/ZZ contains a restpoint and thus the map has a CO orbit of rotation

number ω.

Proof . Assume, by contradiction, that there are no rest points in C. We show that, for

some large enough N , the truncated energy function WN =
∑N
−N S(xk, xk+1) is a strict

Lyapunov function for the flow ζt on C. More precisely, we find a real a > 0 such that
d
dtWN (x) < −a for all x in C. This immediately yields a contradiction since on one hand
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WN decreases to −∞ on any orbit in C, on the other hand, the continuous WN is bounded

on the compact K. To show that WN is a Lyapunov function for some N , we start with:

Lemma 15.2 Let C be as in Theorem 15.1. Suppose that there are no rest points

in C. Then, there exist a real ε0 > 0, a positive integer N0 such that, for all x ∈ C

N ≥ N0 ⇒ ∀j ∈ ZZ,

j+N∑
j

(∇W (x)k)
2
> ε0.

Proof . Suppose by contradiction that there exist sequences jn, Nn and x(n) with Nn →
∞ such that

(15.1)
jn+Nn∑
jn

(
∇W (x(n))k

)2

→ 0.

Let m(n) = −jn− [Nn/2] where [·] is the integer part function, and letx′(n) = σm(n)x(n).

This new sequence x′(n) is still in C, and satisfies:

Nn−[Nn/2]∑
k=−[Nn/2]

(
∇W (x′(n))k

)2

→ 0 as n→∞.

By compactness of C, it has a subsequence that converges pointwise to some x∞ in C.

Since S is C2, ∇W (x∞)k = limn→∞∇W (x′(n))k = 0 for all k and thus x∞ is a rest

point, a contradiction. 
�
We now show that WN is a strict Lyapunov function on C. By chain rule:

(15.2)

d

dt
WN (x) =−

N∑
−N

[∂1S(xk, xk+1)∇W (x)k + ∂2S(xk, xk+1)∇W (x)k+1]

=−
N∑
−N

∂1S(xk, xk+1)∇W (x)k −
N+1∑
−N+1

∂2S(xk−1, xk)∇W (x)k

=− ∂1S(x−N , x−N+1)∇W (x)−N − ∂2S(xN , xN+1)∇W (x)N+1

−
N∑

−N+1

(
∇W (x)k

)2
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For all x in XK , we have |xk − xk−1| < K and hence, by periodicity, S(xk−1, xk), its

partial derivatives as wellas ∇Wk are bounded on XK . In particular, we can find some M

depending only on K such that

|−∂1S(x−N , x−N+1)∇W (x)−N − ∂2S(xN , xN+1)∇W (x)N+1| < M

for all x in XK and all integer k. Let p = [M/2ε0] and N > (p + 1)N0, where N0, ε0

are as in Lemma 15.2. We claim that for such an N , WN is a Lyapunov function. Indeed,

we can split the sum
∑N
−N+1

(
∇W (x)k

)2
into 2p + 2 sums of length greater than N0. By

Lemma 15.2, each of these subsums must be greater than ε0, and thus the total sum must

be greater than M + 2ε0, making the expression in (15.2) less than −2ε0. 
�

Remark 15.3 As in Chapter 2, we can derive from Theorem 15.1 the existence of Aubry-

Mather sets of all rotation numbers. This proof does not yield the fact that the orbits found are

minimizers. This apparent weakness may be an asset in considering possible generalizations

of this theorem to higher dimensions (see Chapter 9). This proof is a variation of the one

given in Golé (1992 b). We are very grateful to Sinisa Slijepcevic, who pointed to a gap in

Section 3 of that paper. The above is essentially a rewriting of that section. It was inspired

by arguments found in Koch & al. (1994), who prove an interesting generalization of the

Aubry-Mather Theorem for functions on lattices of any dimensions (see Chapter 9).

16. Ghost Circles

The set of critical sequences corresponding to the orbits of an invariant circle of the twist

map f , is itself a circle in IRZZ/ZZ. Trivially, this circle is invariant under ζt, as it is made of

rest points of the flow. This circle is one instance of a ghost circle. In general, we think of

ghost circles as ζt-invariant sets that are the surviving traces in the sequence space IRZZ of

such critical circles.

Definition 16.1 A subset Γ ⊂ IRZZ is a Ghost Circle, hereafter GC, if it is

1. strictly ordered: x,y ∈ Γ ⇒ x ≺ y or y ≺ x.

2. invariant under the ZZ2 action (by τm,n), as well as under the flow ζt,
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3. closed and connected.

We will see in the Section 17 that GC’s can be constructed by bridging the gaps of

the Aubry-Mather sets (identified to their corresponding subsets of rest points in IRZZ) with

connecting orbits of the gradient flow ζt.

Any sequence x in a ghost circle Γ is CO: since τm,nx must also lie in Γ , which is

ordered, we must have x ≺ τm,nx or τm,nx ≺ x. Moreover, the fact that Γ is ordered

implies, by Lemma 13.3, that all sequences in Γ have same rotation number. We will call

this number ρ(Γ ), the rotation number of the ghost circle.

Proposition 16.3 Let Γ be a ghost circle.

a) The coordinate projection map IRZZ �→ IR defined by x �→ x0 induces a homeo-

morphism of Γ to IR. The corresponding projection map IRZZ/ZZ �→ IR/ZZ induces a

homeomorphism between Γ/ZZ and the circle.

b) The set of ghost circles is closed in the Hausdorff topology of closed sets of IRZZ,

and it is compact in CO[a,b]/ZZ. The rotation number on GCs is continuous in this

topology.

Proposition 20.2 improves on part b) of this proposition by giving a sufficient condition

for convergence of sequences of GCs

Proof of Proposition 16.3. We show that, for any x,y in Γ , the projection δ : x �→ x0

defines a homeomorphism from [x,y]∩ Γ to the interval [x0, y0] in IR. As before, we give

IRZZ the product topology. The projection map δ is continuous and the set [x,y] is compact,

by Tychonov Theorem, as a product of closed intervals. Clearly δ preserves the strict order:

x ≺ y ⇒ x0 < y0 and hence it is one to one on Γ . Take any two points x ≺ y in Γ .

As a continuous injection, the map δ defines a homeomorphism between the compact set

Γ ∩ [x,y] and its image. We show that δ(Γ ∩ [x,y]) = [δ(x), δ(y)]. For this, it suffices to

show that Γ ∩ [x,y] is connected. Suppose not and Γ ∩ [x,y] = A∪B where A and B are

closed and disjoint in Γ ∩ [x,y]. There are two possibilities: either both x and y belong to

the same set, say A or else x ∈ A, y ∈ B. In the first case, we could write Γ as the union

of two disjoint closed sets:
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Γ = [(V−(x) ∩ Γ ) ∪A ∪ (V+(y) ∩ Γ )]
⋃
�=

B,

a contradiction sinceΓ is connected. The other case yields the same contradiction. SinceΓ is

ordered, any bounded open ball for the product topology intersectsΓ inside an interval [x,y].

Hence what we have shown above implies in particular that δ is a local homeomorphism on

Γ . To show that it is a global homeomorphism, it remains to show that it is onto. Since Γ is

τ–invariant, if x is a point of Γ , then τm,0x is as well, and hence the set {x0 +m | m ∈ ZZ}
is in δ(Γ ). By what we proved above, all the points in between are also in δ(Γ ) and hence

δ is onto IR.

This proves a). To prove b), note that if Γk → Γ (in the Hausdorff topology) as k →∞
then any point x ∈ Γ is limit (in the product topology of IRZZ) of points x(k) ∈ Γk. Since

τm,n and the flow ζt are continuous, Γ must be invariant under these maps. “Close” and

“connected” are adjectives that also behave well under Hausdorff limits. Finally, to see that

Γ is strictly ordered, note that ifx �= y are inΓ , we can find sequencesx(k),y(k) ∈ Γk with

x = limx(k),y = limy(k). If xj < yj , we can assume x(k) ≺ y(k) for all k sufficiently

large. Since Γk is strictly ordered and ζt-invariant, we must have ζ−tx(k) ≺ ζ−ty(k) and

hence ζ−tx ≤ ζ−ty. The strict monotonicity of the flow now implies:x ≺ y. The continuity

of the rotation number is a direct consequences of the continuity of the rotation number on

CO sequences, given by Lemma 9.1. 
�
It follows from this proposition that any GC has a parameterization ξ ∈ IR �→ x(ξ) ∈ Γ

of the form

(16.1) x(ξ) = (· · · , x−1(ξ), ξ, x1(ξ), x2(ξ), · · ·) .

where thexj(ξ) are strictly increasing and continuous functions of ξ. In particular ξ �→ x1(ξ)

is a homeomorphism of IR. Invariance of Γ under the ZZ2 action τ implies that xj(ξ + 1) ≡
xj(ξ) + 1, so that the xj define homeomorphisms of the circle as well; τ -invariance also

implies that x2(ξ) = x1(x1(ξ)), and more generally that the xn are all iterates of x1.

Any GC projects naturally to a circle πΓ in the annulus, where the projection π : IRZZ →
A is defined by

π(x) = (x0,−∂1S(x0, x1))

Proposition 16.3 Let Γ be a GC for the twist map f . Then πΓ and f(πΓ ) are

periodic graphs of periodic functions ϕ(ξ) and ψ(ξ) such that there is a constant
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L <∞, depending only on the map, and, where the derivatives are defined,

ϕ′(ξ) ≥ −L, ψ′(ξ) ≤ L.

Proof . If one parameterizes Γ as in (16.1) , then πΓ is the graph of

(16.2) y = −∂1S(ξ, x1(ξ))
def= ϕ(ξ).

Likewise, the image f(πΓ ) is the graph of y = ∂2S(x−1(ξ), ξ) = ψ(ξ). We now give a

proof of the Lipschitz estimate. Using the parameterization of the projection of our GC as

in (16.2), it is enough to prove that the derivative of ϕ is bounded below. The same proof

would hold for the estimate for the image f(πΓ ) of our circle. Applying the chain rule to

(16.2), we find:

ϕ′ = −∂11S − ∂12S ·
dx1

dξ
≥ −∂11S.

This last term is bounded below by our assumption on the second derivative of S. A similar

argument proves the estimate for ψ′(ξ). 
�

Remark 16.4 As mentioned before (see also Exercise 16.6 ), the set of critical sequences

corresponding to an invariant circle of f is a GC, call it Γ . In this case πΓ = f(πΓ ), and

Proposition 16.3 provides a proof that invariant circles are Lipschitz, a result of Birkhoff

(see also Proposition 12.3).

We end this section by giving a condition that insures that GCs do not intersect. We can

define a partial ordering on GC’s as follows. Let Γ1, Γ2 be GCs. We say that Γ1 ≺ Γ2 if

(i) for all x ∈ Γ1,x
′ ∈ Γ2 one has x ∩| x′ and I(x,x′) = 1;

(ii) ρ(Γ1) < ρ(Γ2), i.e. ρ(x) < ρ(x′).

Lemma 16.5 (Graph Ordering Lemma) If Γ1 ≺ Γ2 then the circle πΓ1 lies below πΓ2.

Proof . Let x(j)
n (ξ) be parameterizations of the form (16.1) for Γj (j = 1, 2). Then πΓj is

the graph of ϕj(ξ) = −∂1S(ξ, x(j)
1 (ξ)). We claim that x(1)

1 (ξ) < x
(2)
1 (ξ) for all ξ. Indeed,

for a given ξ the sequences x
(1)
n (ξ) and x

(2)
n (ξ) intersect at site n = 0. Since they are

transverse, we must have x
(1)
1 (ξ) �= x

(2)
1 (ξ); by comparing rotation numbers we then get
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x
(1)
1 (ξ) < x

(2)
1 (ξ). By combining this inequality with the twist condition ∂12S < 0 we then

conclude that ϕ1(ξ) < ϕ2(ξ), as claimed. 
�

Exercise 16.6 Prove that the set of x sequences corresponding to orbits of an nontrivial
invariant circle for the map is a GC. [If the map has a transitive invariant circle of rotation
number ω, then its associated GC is the only GC with rotation number ω (Golé (1992
a), Lemma 4.22. We conjecture that this remains true when the invariant circle is not
transitive (i.e., of Denjoy type).

17. Construction of Ghost Circles

This section will show that GCs are plentiful. In the first subsection we construct GCs whose

projection passes through any given Aubry-Mather set. The next subsection will specialize

to GCs with rational rotation numbers. For generic twist maps, we construct smooth GCs

containing periodic minimizers. In Section 18 we will refine this construction to obtain

ordered sets of GCs, whose projections do not intersect.

A*. Ghost Circles Through Any Aubry-Mather Sets

Let Mω the minimal, recurrent Aubry-Mather set of rotation number ω, as defined in Propo-

sition 12.9. It corresponds bijectively to the set, call it Σω of x sequences of orbits in Mω.

By Aubry’s Fundamental Lemma 10.2, Σω is a completely ordered subset of COω. If x is

a recurrent minimizer, than so is τm,nx for any m,n ∈ ZZ, so Σω is invariant under τ . Each

point of Σω corresponds to an orbit of F , and thus is a rest point of ζt. In Golé (1992 a),

we proved the following theorem:

Theorem 17.1 The set Σω is included in a ghost circle Γ , and hence the Aubry-

Mather set Mω is included in the projection πΓ of a ghost circle.

Proof (Sketch). Σω is a Cantor set whose complementary gaps are included in order

intervals of the type ]x,y[ where x,y ∈ Σω. A theorem of Dancer and Hess (1991) on

monotone flows implies that, in conditions that are satisfied in the present case, if x ≺ y are

two rest points for the strictly monotone flow ζt and there is no other restpoint in [x,y] then

there must be a monotone orbit (i.e. completely ordered) of ζt joining x and y. Hence we
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can bridge all the gaps of Σω with ordered orbits of ζt, taking care to do so in an equivariant

way with respect to the τ action. The resulting set is a GC. 
�

B. Smooth, Rational Ghost Circles

We now build rational Ghost Circles by piecing together the unstable manifolds of mountain

pass points for Wpq in Xp,q . This construction will be crucial when we build disjoint GCs

in Section 18. Let ω = p/q be given. Beginning here and throughout Sections 18 and 19 ,

we shall assume the following:

For any p/q ∈ Q, Wpq is a Morse–function on Xpq. (17.1)

This is a generic condition on twist maps, as will be proven in Proposition 29.6. Since a

GC consists of CO sequences we may assume that p and q have no common divisor (see the

proof of Proposition 10.4). Let x ∈ Xp,q be a critical point of Wpq. The second derivative

of Wpq atx is a Jacobi matrix: it is tridiagonal with positive subdiagonal terms and positive

“corner” elements as well:

(17.2) −∇2Wpq(x) =




α1 β1 0 · · · βq
β1 α2 β2 · · · 0

0 β2 α3
. . .

...
. . .

. . . βq−1

βq 0 · · · βq−1 αq



,

where αj = −∂22S(xj−1, xj)−∂11S(xj , xj+1), and βj = −∂12S(xj−1, xj) > 0. Due to

the Perron–Fröbenius theorem, the largest eigenvalue λ0 of−∇2Wpq(x) is simple, and the

eigenvectorv = (vj) corresponding toλ0 can be chosen to be positive: vj > 0, j = 1, . . . , q.

Moreover all other eigenvectors are in different orthants (See Angenent (1988), Proposition

3.2 and Lemma 3.4). Ifx is a critical point of index 1, there exist two orbits α±(x; t), t ∈ IR

of the gradient flow ζt of Wpq with α±(x; t)→ x as t→ −∞, and with

α±(x; t) = x± eλ0tξ + o
(
eλ0t

)
.

These two orbits, together withx itself, form the unstable manifold ofx. The orbitsα±(x; t)

are monotone, α+ being increasing, and α− decreasing; since τ±1,0x = x ± 1 are also

critical points, we have x− 1 ≤ α±(x; t) ≤ x+ 1 so that α±(x; t) is bounded. Hence the

limits
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ω±(x) = lim
t→∞

α±(x; t)

exist and they are critical points of Wpq. Since ζt is monotone, there are no other critical

points y with ω−(x) < y < x or x < y < ω+(x). If y > x is another critical point, then

y ≥ ω+(x). Moreover, since the Morse index must decrease along the negative gradient

flow, the points ω±(x) have index 0, i.e. they are local minima of Wpq. We now show

that the orbits α±(x; t) converge to these points along their “slow stable manifold”, tangent

to the largest eigenvalue of −∇2Wpq(ω±(x)). Indeed, since ω±(x) are minima, all the

eigenvalues are negative, and thus the largest one has the smallest modulus. All orbits in the

stable manifold of ω±(x) except for a finite number that are tangent to the eigenspaces of

the other eigenvalues, are tangent to this ”slow stable manifold”. But the other eigenvectors

are in different orthants than the positive or negative ones. Hence α±(x; t), which are

in the positive or negative orthant of ω±(x), must converge to ω±(x) tangentially to the

eigenvector of largest eigenvalue.

To construct a GC in Wpq we first consider the set of critical points such a GC must

contain.

Definition 17.2 A subset A ⊂ Xp,q is a skeleton if the following hold.

S1 A consists of critical points of Wpq with Morse index ≤ 1,

S2 A is invariant under the ZZ2 action τ ,

S3 A is completely ordered.

A skeleton A is maximal if the only skeleton A′ with A ⊂ A′ ⊂ Xp,q is A itself.

Lemma 17.3 A maximal skeleton A for Wpq exists.

Proof . Choose r, swith rp+qs = 1 and define T = τr,s. By Aubry’s fundamental lemma

the set A0 of absolute minimisers of Wpq is a skeleton. We fix some element x ∈ A0. Any

skeleton A ⊃ A0 is completely determined by

B = A ∩ [x, T (x)] = {z ∈ A : x < z < T (x)}.

Indeed, given B we can reconstruct A as follows:

(17.3) A =
∞⋃

j=−∞
T j (B) .
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Conversely, any ordered set B ⊂ [x, T (x)] of critical points determines a skeletonA ⊃ A0

by (17.3). The closed order interval [x, T (x)] is compact and Wpq is a Morse function, so

there are only finitely many critical points in [x, T (x)]. We can therefore choose a maximal

ordered set of critical points B ⊂ [x, T (x)] and be sure that the corresponding A is a

maximal skeleton. 
�

Lemma 17.4 (Mountain Pass Lemma) If the skeleton A is maximal, then every

other point (according to the order) is a local minimum; the remaining points are

minimaxes.

Proof . If x < y are consecutive elements of a maximal skeleton A then we must show

that exactly one of x and y is a local minimum.

Step 1. Ifx andy are both local minima then the following standard minimax argument

shows that there is a third critical point of index 1 between x and y. DefineQ = [x,y] and

consider

Qγ = {z ∈ Q : Wpq(z) ≤ γ}

EachQγ is compact, and if γ > maxWpq

∣∣
Q thenQγ = Q is connected. On the other hand,

Qγ0 with γ0 = max (Wpq(x),Wpq(y)) is not connected, since x and y are local minima

of Wpq. Consider

γ1 = inf{γ > γ0 : x and y are in the same connected component of Qγ }.

By compactness, x and y are connected in Qγ1 , and hence γ1 > γ0. Suppose there is no

critical point of Wpq in ]x,y[. Note that, by order preservation, Q = [x,y] is forward

invariant under the gradient flow: ζt(Q) ⊂ Q for t ≥ 0. By compactness of Qγ1 =

∩γ>γ1Qγ there is an ε > 0 such that ζ1(Qγ1) ⊂ Qγ1−ε, which implies that x and y are

connected in Qγ1−ε, a contradiction. Hence there is at least one critical point z ∈]x,y[,

with Wpq(z) = γ1. If the Morse index of all such z were 2 or more, then the Morse Lemma

61.1 would show that Qγ with γ slightly less than γ1 would still connects x and y, so the

index of at least one such z is 1. But now we have a contradiction: if x and y are both local

minima, then there is a minimax point z ∈]x,y[ andA∪{τm,nz : m,n ∈ ZZ} is a skeleton;

this cannot be since A is maximal.
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Step 2. Next we show that eitherx ory is a local minimum.Ifx is not a local minimum,

then ω+(x) = limt→∞ α+(x; t) is a local minimum. But ω+(x) ≤ y, so ω+(x) = y, and

we find that y must be a local minimum. Likewise, if y is not a local minimum, then

x = ω−(y) must be one. 
�
We have all the ingredients necessary to show the following, which was proven in a

slightly different form in Golé (1992 a), Theorem 3.6.

Theorem 17.5 Assume Wpq is a Morse function. If A is a maximal skeleton, then

ΓA = {α±(x; t) : t ∈ IR,x ∈ A is a minimax} ∪ A

is a C1 ghost circle.

Proof . It is simple to check that, by maximality, ΓA is connected, and a ghost circle.

As a union of unstable manifolds, ΓA is smooth except perhaps where different unstable

manifold meet, at the minima. But we showed above how the orbits α±(x; t) must converge

tangentially to the one dimensional eigenspace in the positive-negative cone of the minima.

Hence the GC constructed is also smooth at the minima. 
�

Exercise 17.6 Check that ΓA is indeed a GC.

18. Construction of Disjoint Ghost Circles

We now arrive at the main result of this chapter, which provides a vertical ordering of

Aubry-Mather sets:

Theorem 18.1 (Ordering of Aubry-Mather Sets) Given any interval [a, b] in IR there

is a family of nontrivial circles Cω, ω ∈ [a, b] in the cylinder such that:

(a) Each Cω is the projection of a GC Γω and hence is a graph over {y = 0} (as is

f(Cω)).

(b) The Cω are mutually disjoint and if ω > ω′, Cω is above Cω′ .

(c) Each Cω contains the Aubry-Mather set Mω of recurrent minimizer of rotation

number ω.



68 3: GHOST CIRCLES

This section and the next two are devoted to the proof of this theorem. We will first

construct, in this section and the next one, finite families of rational ghost circles. In Section

20, we will take limits of such families and conclude the proof of the theorem.

Let ω1, . . . , ωk be distinct rational numbers. The construction of the preceding section

provides us with maximal skeletonsA1, . . . ,Ak and corresponding GC’s ΓA1 , . . . , ΓAk . It

is not immediatly clear from this construction that the projections Cj = πΓAj are disjoint.

In this section we show that the skeletons can be chosen so that the Cj are indeed disjoint.

Definition 18.2 A family of skeletons Aj ⊂ Xpjqj is minimally linked if any pair x ∈
Ai,y ∈ Aj with i �= j is transverse with I(x,y) = 1.

Theorem 18.3 (Disjointness Theorem) If Aj ⊂ Xpjqj is a minimally linked family of

maximal skeletons, then the projected ghost circles Cj = πΓAj are disjoint.

Proof . Order the Aj so that their rotation numbers ρj = pj/qj are increasing. Then we

claim that

(18.1) ΓA1 ≺ ΓA2 ≺ ΓA3 ≺ · · · ≺ ΓAk .

Disjointness of the projected GCs then follows directly from the Graph Ordering Lemma

16.5. To see why (18.1) holds, we consider any pair x(i) ∈ ΓAi , x
(j) ∈ ΓAj and as-

sume that they are not transverse. Since ρ(ζtx(i)) �= ρ(ζtx(j)) we must always have

I
(
ζtx(i), ζtx(j)

)
≥ 1 when defined. By the Sturmian Lemma 14.3,

(18.2) I
(
ζtx(i), ζtx(j)

)
> 1

for all those t < 0 at which ζtx(i)∩| ζtx(j). But limt→−∞ ζtx(l) = y(l) for some y(l) ∈ Al
(l = i, j). Since the Al are minimally linked we must have I(y(i),y(j)) = 1, which

contradicts (18.2) . 
�

Theorem 18.4 For any k-tuple ω1, . . . , ωk of rational numbers there exists a mini-

mally linked family of skeletons A1, . . . ,Ak such that each Aj is a maximal skeleton.

This theorem, combined with the Disjointness Theorem, provides us with a disjoint

family of circles Cj = πΓAj in the annulus. The construction of the Aj’s will be such that
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they automatically contain the absolute minimizers of Wpiqi , which by Proposition 10.4

are the minimal energy orbits of Aubry–Mather. In our proof of Theorem 18.4 we begin

with constructing a maximal k-tuple of skeletons, and then show that each skeleton in this

k-tuple is maximal.

Proof of Theorem 18.4. Let Mj be the set of absolute minimizers of Wpjqj on Xpjqj .

Aubry’s fundamental lemma implies that M1, . . . ,Mk is a minimally linked family of

skeletons. As in the proof of Lemma 17.3 one easily finds a maximal k-tuple of minimally

linked skeletonsA1, . . . ,Ak withMj ⊂ Aj , by observing that there are only finitely many

such extensions. We shall now show that each Aj is a maximal skeleton.

Assume that one of theAj , sayA1 is not maximal. Then there is a critical point z ∈Wp1q1

with index 0 or 1, such that A1 ∪ {z} is completely ordered. In particular, there must exist

a couple of adjacent critical points x < y in A1 with z ∈]x,y[. We must deal with two

different cases:

A. Both x and y are local minima of Wp1q1 .

B. At least one of the critical points x or y has index 1.

Case A. By a minimax argument we will show that there is a critical point between x and

y which allows us to extend A1 to a larger skeleton A′1 for which (A′1, . . . ,Ak) is still

minimally linked. This would then contradict maximality of (A1, . . . ,Ak), and thereby

show that Case A cannot occur. To carry out the minimax argument we consider

Ω = {w ∈Wp1q1 : x < w < y,∀j ≥ 2,∀v ∈ Aj ,v ∩| w and I(v,w) = 1}.

and its closure Ω̄. The Sturmian Lemma implies that Ω, and hence Ω̄ are forward invariant

under the gradient flow ζt. Also, as in Mountain Pass Lemma 17.4, Ω̄ is compact, as are

the sublevel sets Ω̄γ = {w ∈ Ω̄ : Wp1q1(w) ≤ γ}. To obtain a critical point other

than x and y in Ω̄ we must show that not all the Ω̄γ’s have the same topology. If γ0 =

max (Wp1q1(x),Wp1q1(y)), then Ω̄γ0 is again not connected, since x and y are local

minima. On the other hand we have
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Lemma 18.5 Ω̄ is connected.

Postponing the proof of this statement to the next section, we can now easily complete

the minimax argument. Indeed, as in the Mountain Pass Lemma,

γ1 = inf
(
γ > γ0 : Ω̄γ connected

)

is a critical value of Wp1q1 , so there must be a third critical point w ∈ Ω̄. By the Sturmian

Lemma w must lie in Ω, and it follows from the Morse lemma that w has index 1. Put

(18.3) A′1 = A1 ∪ {τm,nw : m,n ∈ ZZ};

then (A′1, . . . ,Ak) is a minimally linked family of skeletons extending (A1, . . . ,Ak), and

we have our contradiction.

Case B. Assume that x has Morse index 1, and put w = ω+(x). Then w is a critical

point of Wp1q1 and is therefore transverse to any v ∈ Aj with j ≥ 2, by the Sturmian

Lemma. We claim that I(w,v) = 1. Indeed, for t → −∞ we have α+(x; t) → x. Since

(A1, . . . ,Ak) is minimally linked, we find that for all t sufficiently large negative α+(x; t)

and v are transverse with I(α+(x; t),v) = 1. By the Sturmian Lemma I(α+(x; t),v)

cannot increase, and since α+(x; t) and v have different rotation numbers I(α+(x; t),v) ≥
1 for all t: hence I(α+(x; t),v) = 1 for all t. Letting t → +∞ we get I(w,v) = 1, as

claimed. Defining A′1 as in ((18.3) ) we again get a larger minimally linked family of

skeletons, a contradiction. If x is a local minimum then y cannot be one by Case A, and

considering ω−(y) leads to a similar contradiction. 
�

19. Proof of Lemma 18.5

We must show that Ω̄ is connected. We shall do this by showing that any w ∈ Ω can be

connected to x via a path γ : [0, 1]→ Ω ∪ {x}.
For any j ∈ ZZ and any x < w ∈ Xp1q1 we put

Aj(x : w) = {vj : v ∈ A2 ∪ · · · ∪ Ak} ∩ [xj , wj).

For simplicity we shall write x ∩| A2 ∪ · · · ∪ Ak when we mean that x ∩| v for every

v ∈ A2 ∪ · · · ∪ Ak.
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Proposition 19.1 Given x < w in Xp1q1 ,

(i) Aj(x : w) is finite, for each j ∈ ZZ.

(ii) Aj+q1(x : w) = Aj(x : w) + p1.

(iii) If z ∈ Xp1q1 and x ≤ z ≤ w, then z ∩| A2 ∪ · · · ∪ Ak, if and only if they are

tranverse in the index range 0 ≤ j ≤ q1.

Proof . (i) : Wpjqj is a Morse function. (ii) holds because x,w ∈ Xp1q1 and the Al are

invariant under the action of τm,n, m, n ∈ ZZ. (iii) is a consequence of (ii). 
�
We define the height of w over x by

h(x : w) =
q1−1∑
j=0

# (Aj(x : w)) .

If the height h(x : w) vanishes then all the Aj(x : w) are empty and we can define

γ(t) = tw + (1 − t)x. Since xj ≤ γj(t) ≤ wj for all j and 0 ≤ t ≤ 1, it follows from

part (iii) of our last proposition that γ(t)∩| A2 ∪ · · · ∪ Ak for 0 ≤ t ≤ 1, so that γ(t) stays

within Ω̄. Call this a move of type 0.

We now assume that h(x : w) > 0, and we show how to decrease it to zero. Suppose

that for some l one has wl = vl > xl for some v ∈ A2 ∪ · · · ∪ Ak. Then there is an ε such

that 0 < ε < wl − xl and (wl − ε, wl) ∩Al(x : w) is empty and we can define

w′j =
{
wj − ε if j = l mod q1,
wj otherwise.

As before one can connect w and w′ by γ(t) = tw + (1 − t)w′ without leaving Ω̄. Call

this a move of type 1.

Assuming now thatwi �= vi for all i, we will move the sequencew down by interpolating

it linearly to:

z
(l)
i =

{
maxAi(x : w) if i = l mod q1,
wi otherwise

for some judiciously chosen l. Call this a move of type 2. Clearly z(l) ∈ Xp1q1 and x ≤
z(l) ≤ w, z(l) = z(l+q) and h(x : z(l)) = h(x : w) − 1. We need to show that for at

least one l ∈ ZZ, this move does not change the intersection index ofw with the elements of

A2 ∪ · · · ∪ Ak. Consider the set of elements in A2 ∪ · · · ∪ Ak that are immediately below

w:
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a
(si)
i

def= maxAi(x : w).

Assume that, among the sequences a(si) at least one has rotation number greater than that

of x and pick the one, say a(sj) which has the largest rotation number (If all a(si) have

lower rotation number than x, pick the one that has the lowest and proceed similarly). In

the following, we only worry about the possible changes of intersection index in the range

0 ≤ j ≤ q1. The periodicity condition (ii) of Proposition 19.1 insures that if there are

changes of index, they must occur periodically. There are three cases (see Figure 19.1 ) to

consider:

●

●

●

▲

❖

❖
❖ xj

xj-1

wj+1
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sjaj
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▲

aj-1
sj aj
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Fig. 19.1. The two possible moves of type 2.

Case 1: a(sj)
j+1 > wj+1

Choose l = j and movew to z(l) as defined above. This could only change the intersection

index of w with a(sj). But in this case this intersection index remains the same: since

ρ(a(sj)) > ρ(w) = ρ(x), and I(a(sj),w) = 1, we must have a
(sj)
j−1 ≤ a

(sj−1)
j−1 < wj−1.

Hence the one crossing ofw and a(sj), which occured between j and j+1 is now moved to

a crossing that occurs at j, with no other crossing introduced with this or any other sequence

of A2 ∪ · · · ∪ Ak.

Case 2: a(sj)
j+1 < a

(sj+1)
j+1

Since by assumption ρ(a(sj+1)) ≤ ρ(a(sj)), we must have a
(sj+1)
j > a

(sj)
j and thus

a
(sj+1)
j > wj , by maximality of a(sj)

j . Now choose l = j + 1 and move w to z(l): the

one crossing of w and a(sj+1), which occured between j and j + 1 is now moved to a

crossing that occurs at j + 1.
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Case 3: a(sj)
j+1 = a

(sj+1)
j+1

The equality a
(sj)
i = a

(si)
i cannot be true for all i > j since otherwise w and a(sj) would

have same rotation number. Hence for some i > j, Case 1 or 2 must occur. Apply the

procedure for these cases there.

Concatenating moves alternating between type 1 and 2, we get a curve in Ω̄ betweenw

and and a sequence which has zero height. Concatenate this with a move of type 0 to get a

curve in Ω̄ between w and x. 
�

20. Proof of Theorem 18.1

Let ω1, ω2, · · · be an enumeration of the rational numbers in the interval (a, b).

Proposition 20.1 There is a family of GCs {Γ (n)
1 , . . . , Γ

(n)
n }, where Γ

(n)
j has rotation

number ωj, and where Γ
(n)
i ≺ Γ

(n)
j if ωi < ωj. Each Γ

(n)
i contains at least one

minimizing periodic orbit of rotation number ωi, and generically all of them.

Proof . If one assumes that the map f is such that the Morse property 17.1 holds, then,

according to Theorem 18.4, one can find a minimally linked family of maximal skeletons

{A(n)
1 , . . . ,A(n)

n } such that A(n)
j has rotation number ωj and contains all the absolute

minimizers of that rotation number. The corresponding GCs Γ (n)
i = ΓA(n)

i

then satisfy the

required conditions.

In general, when the Morse property 17.1 is not satisfied, one can approximate f by

smooth twist maps fε which do satisfy 17.1 (since this condition is generic); One thus obtains

ghost circles Γ (n)
j,ε , and by the compactness of the set of GCs with a fixed rotation number

(Proposition 16.3) one can extract a convergent subsequence whose limit will then be a

family {Γ (n)
1 , . . . , Γ

(n)
n } of GCs. But we need to make sure that limits of strictly ordered

rational GCs stay strictly ordered. To see this, notice that the set Γ (n)
i,ε ×Γ

(n)
j,ε is, when i �= j,

included in:

Ωij =
{
(v,w) ∈ PCOωi × PCOωj : v ∩| w and I(v,w) = 1

}

where PCOω is the set of periodic CO sequences of rotation number ω:

PCOp/q = COp/q ∩Xp,q.
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The set Ωij is, by the Sturmian lemma, positively invariant under the product gradient flow

ζt × ζt corresponding to any twist map. In fact: (ζt × ζt)(Clos Ωij) ⊂ (Int Ωij), as can

easily be checked (i.e.ClosΩij is an “attractor block” in the sense of Conley). As Hausdorff

limit of compact sets inΩij , the setΓ (n)
i ×Γ

(n)
j is inClosΩij . But, since it is both positively

and negatively invariant under ζt × ζt, Γ (n)
i × Γ

(n)
j must in fact be in Int Ωij where the

intersection number is well defined and always equal to 1. In other words, we have shown

that, whenever ωi < ωj one must have Γ
(n)
i ≺ Γ

(n)
j . Finally, the set Γ (n)

i contains at least

a minimizing periodic orbit, since the sets Γ (n)
i,ε contain by construction all the minimizing

periodic orbits of period ωi for fε, and limits of minimizers are minimizers. 
�

A. Rational Cω’s

We now construct the Cω’s of Theorem 18.1, starting with all the rational ω ∈ [a, b]. Again,

we use the compactness of the set of GCs: For each n, Proposition 20.1 provides us with

GCs Γ (n)
1 , . . ., Γ (n)

n with rotation numbers ω1, . . ., ωn. By compactness we can extract a

subsequence {nj} for which the Γ
(nj)
1 converge as j → ∞ to a GC of rotation number

ω1. Using compactness again, we can extract a further subsequence n′j for which Γ
(n′j)
1 and

Γ
(n′j)
2 both converge; repetition of this argument and application of the diagonal trick then

finally gives a subsequence n′′j for which all Γ
(n′′j )

k converge to some limiting GC Γ
(∞)
k

(of rotation number ωk) as j → ∞. By the same argument as in the previous proposition,

the limits Γ (∞)
k satisfy Γ

(∞)
i ≺ Γ

(∞)
j whenever ωi < ωj . We then define Cωk = πΓ

(∞)
k

and by the Graph Ordering Lemma 16.5, the Cωk ’s are disjoint. In the generic case, each

Γ
(n)
i contains all the periodic minimizers of rotation number ωi, and hence so must the limit

Γ
(∞)
i . In the non generic case, Γ (∞)

i must contain at least one periodic minimizer of the

energy.

B. Irrational Cω’s

To complete our family of rational GCs with irrational ones, we once again take a limit. We

could proceed in a way similar to what we did in order to get all rational GCs, but we would

have to appeal to the axiom of choice (no diagonal tricks on uncountable sets!). To avoid

this, we first prove a proposition of monotone convergence of GCs. We shall write Γ1 ! Γ2

if either Γ1 ≺ Γ2 or ρ(Γ1) = ρ(Γ2) and πΓ1 is ( not necessarily strictly) below πΓ2.This
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last condition is equivalent to x
(1)
1 (ξ) ≤ x

(2)
1 (ξ) in the notation of the proof of the Graph

Ordering Lemma 16.5.

Proposition 20.2 (Monotone Convergence for Ghost Circles) Let Γ (j) be an increasing

sequence of GCs, i.e. assume that

Γ (1) ! Γ (2) ! Γ (3) ! · · · .

Assume also that the rotation numbers ρj = ρ(Γ (j)) are bounded from above. Then

there is a unique GC Γ (∞) such that Γ (j) → Γ (∞) as j → ∞. Moreover, if x(j)(ξ)

is the parametrization of Γ (j) with x
(j)
0 (ξ) ≡ ξ, then the x

(j)
k (ξ) converge monoton-

ically and uniformly to x
(∞)
k (ξ), where x(∞)(ξ) is the parametrization of Γ (∞) with

x
(∞)
0 (ξ) ≡ ξ.

Of course, the corresponding theorem for decreasing sequences of GCs also holds. We

postpone the proof of this proposition till the end of this section.

Assume now that we have constructed the rational GCs Γ (∞)
k as above. For any number

ω ∈ (a, b), rational or otherwise, we can then define two GCs Γ±ω as follows. Choose

a sequence of rational numbers ωnj which increases monotonically to ω. The Monotone

Convergence Theorem tells us that the limit of the corresponding GCs Γ (∞)
nj must exist. We

denote this limit byΓ−ω . This procedure might produce an ambiguous definition ofΓ−ω , since

the result could depend on the choice of the sequence nj : If one has two such sequences, nj

and n′j , then theΓ (∞)
nj andΓ (∞)

n′
j

might have two different limitsΓ andΓ ′. However, one can

take the union of the two sequences to obtain a third sequence n′′j , i.e. {n′′j } = {nj}∪{n′j}.
The ωn′′

j
then also increase to ω, so that the Γ

(∞)
n′′
j

also must converge to some GC Γ ′′.

Since nj and n′j are subsequences of n′′j , both sequences nj and n′j must produce the same

limiting GC: hence Γ = Γ ′ = Γ ′′, and the definition of Γ−ω is independent of the choice of

the nj . We choose to define Cω = πΓ−ω (or πΓ+
ω , but with the same choice of + or − for

all ω in order to avoid using the axiom of choice...).

We now check that, for ω irrational, the unique Aubry-Mather set Mω of recurrent

minimizers (see Proposition 12.9) is included in Cω. We can take a sequence of periodic

Aubry minimizing sequences xk ∈ Γ
(∞)
k where ωk ↗ ω (↘ if one chose Cω = πΓ+).

Then xk → x, an Aubry minimizing sequence in Γ−ω . The orbit that x corresponds to is
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recurrent and minimizing, as limit of recurrent and minimizing orbits. Its closure, which is

also included in Cω, must be the Aubry-Mather set Mω . From our definition of Γ±ω , it is

clear that:

ωi < ω < ωj ⇒ Γ
(∞)
i ≺ Γ−ω ! Γ+

ω ≺ Γ
(∞)
j ,

for rational ωi, ωj and irrational ω. Hence the set formed by the rational GCs Γ
(∞)
k and

the irrational ones Γω is completely ordered according to their rotation numbers. By the

Graph Ordering Lemma 16.5, the Cω’s (irrational and rational) that we have constructed

are mutually disjoint. 
�

Remark 20.2 Ifω is a rational number,Γ−ω is no longer necessarily inPCOω but is certainly

in COω. It may contain the sequences corresponding to homo(hetero)clinic orbits joining

hyperbolic periodic orbits of rotation number ω. Hence we may (and, probably, generically

do) have three distinct Ghost Circles Γ−ω ! Γω ! Γ+
ω for each rational ω where Γω is

Γ
(∞)
k for some k. We will call their projections C−ω , Cω and C+

ω respectively. Instead of the

set {Cω}ω∈[a,b] of strictly non mutually intersecting curves that we have found in Theorem

18.1, one might prefer to consider the bigger set {Cω ∪ C+
ω ∪ C−ω }ω∈[a,b]. It is not hard to

check that this is a closed set of GCs.

Proof of Proposition 20.2. It follows from the Graph Ordering Lemma 16.5 that the

x
(j)
k (ξ) are monotonic in j. We have assumed that the rotation numbers of the Γ (j) are

bounded, say by some integer M . Since x(j) is CO, this bound implies for l > 0 that

x
(j)
l (ξ) ≤ ξ + l(M + 1), and in view of the monotonicity of the x

(j)
l (ξ) they converge to

some x
(∞)
l (ξ). For negative l one finds that x(j)

l (ξ) ≥ ξ + l(M + 1), so that the x
(j)
l (ξ)

decrease to some x(∞)
l (ξ). Clearly x

(∞)
1 (ξ) is a nondecreasing function of ξ. We shall show

that it is strictly increasing, and continuous.

x
(∞)
1 (ξ) is strictly increasing. Let ξ < η be given. Then t �→ ζt(x(j)(ξ)) and t �→

ζt(x(j)(η)) both are on the GC Γ (j), so that they must be ordered in the same way for all

t ∈ IR. At t = 0 we have

ξ = ζt(x(j)(ξ))0 < ζt(x(j)(η))0 = η

so this ordering must hold for all t. Upon taking the limit j →∞we find that ζt(x(∞)(ξ)) ≤
ζt(x(∞)(η)) holds for all t. By the strict monotonicity of ζt, we must have strict inequality
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for all t, unless we have equality for all t. Equality cannot happen of course, since x(∞)
0 (ξ) =

ξ < η = x
(∞)
0 (η). Hence we have x(∞)(ξ) < x(∞)(η); in particular x(∞)

1 (ξ) < x
(∞)
1 (η).

x
(∞)
1 (ξ) is continuous. Since the x

(j)
1 (ξ) are monotonically increasing in both j and ξ,

their limit is increasing and lower semicontinuous in ξ. Thus we only have to show that

x
(∞)
1 (ξ) = x

(∞)
1 (ξ + 0). Assume that x(∞)

1 (ξ) < x
(∞)
1 (ξ + 0) and define a = {x(∞)

1 (ξ) +

x
(∞)
1 (ξ + 0)}/2. Then there is a sequence δj ↓ 0 such that x(j)

1 (ξ + δj) = a. As before

we consider ζt
(
x(j)(ξ + δj)

)
and ζt

(
x(j)(ξ)

)
, and take the limit j → ∞. Then, after

passing to a subsequence if necessary, ζt
(
x(j)(ξ + δj)

)
→ ζt (x∗) for some x∗ with

x∗0 = ξ and x∗1 = a, while ζt
(
x(j)(ξ)

)
→ ζt

(
x(∞)(ξ)

)
. Moreover we will have ζt (x∗) ≥

ζt
(
x(∞)(ξ)

)
for all t, again with either strict inequality for all t or equality for all t. But this

contradicts the fact that at t = 0 we have x∗0 = ξ = x
(∞)
0 (ξ) and x∗1 = a > x

(∞)
1 (ξ). Thus

x
(∞)
1 (ξ) is indeed continuous. Since the x

(j)
1 (ξ) increase monotonically to x

(∞)
1 (ξ), and

since x(∞)
1 (ξ) is continuous, the convergence must be uniform (Dini’s theorem). Therefore

the x
(j)
l (ξ), being iterates of x(j)

1 (ξ) (see (16.1) and below) also converge uniformly.

One now easily verifies that Γ (∞) = {x(∞)(ξ) : ξ ∈ IR} is a GC, and that it is the limit

in the Hausdorff metric of the Γ (j)s. 
�

Exercise 20.3 Complete the sketch of the following alternate conclusion to the proof of
Theorem 18.1, which does not use Proposition 20.3, but uses the axiom of choice. For
each ρ = (ω1, . . . , ωk) in Qk, and k arbitrary, consider the set, given by Theorems 18.3 and
18.4, Gρ =

⋃
ωi∈ρ

Γωi , union of GC’s whose projections do not intersect. Let

J[a,b] = closure{(x, y) ∈
(
CO[a,b]

)2 ∣∣ I(τm,nx, y) ≤ 1, ∀(m,n) ∈ ZZ2} .

This is a compact attractor block for the flow ζt× ζt on the cartesian product
(
CO[a,b]

)2
.

Let K ⊂ J[a,b] be the maximum invariant set in J[a,b]. Then K and its projection K′ on
the first component are both compact. Take an increasing (for the inclusion) sequence of
finite subsets R of Q, say {Rj}j∈IN such that

⋃
j∈IN
Rj = Q ∩ [a, b]. Since K′ is compact,

assume that the sequence of compact sets {GRi}i∈IN converges (in the Hausdorff topology)
to a set L in K′. Now show that for all ω ∈ [a, b], L ∩ COω contains at least one GC.
Show that two GCs Γω, Γω′ of different rotation numbers in L must satisfy Γω′ ∩ Γω′ = ∅.
To construct a partition, i.e. a family of non intersecting circles , pick (using the axiom of
choice!) one GC of L for each ω in [a, b].
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21.* Remarks and Applications
A*. Remarks

1) The techniques introduced in this chapter have a scope that goes beyond proving the

vertical ordering of Aubry-Mather sets. Angenent (1988) introduced the flow ζt and its

monotonicity. He used it to prove, for instance, the existence of periodic orbits that, in

the generic case, would come from “elliptic islands around elliptic islands”, as well as

homoclinic and heteroclinic orbits between hyperbolic points. The remarkable fact is that

his results do not make any generic assumption. This is a definite advantage of the variational

techniques over the hyperbolic techniques with which removing generic assumptions about

transversality of unstable manifolds is often a major hurdle. As an example, it was this

kind of technical hurdle that barred Tangerman & Veerman (1990a) to obtain a complete

proof that the Aubry-Mather sets are vertically ordered, a fact that they conjecture in that

paper. In Chapter 9, we review work by Angenent (1990), Koch & al. (1994) and Candel

& de la Llave (1997) which use the monotone properties of variational problem in higher

dimensional and PDE contexts.

2) Ghost circles first appeared in Golé (1992 a). They stemmed from an effort I was making

in understanding the ghost tori of my thesis (ζt-invariant sets for symplectic twist maps,

see Chapter 5). In the realm of twist maps, I had constructed ζt invariant circles within

the ghost tori. My advisor G. Hall as well as R. MacKay and J. Meiss asked me if their

projections were graphs. I proved that in Golé (1992 a), where I also recover a result similar

to that of Mather (1986) on the existence of invariant circles. MacKay and Muldoon showed

numerical evidence that well chosen ghost circles were disjoint, which led to the work of

Angenent & Golé (1991) which makes the bulk of this chapter.

In his work on toral and annulus homeomorphisms, LeCalvez (1997) proposes another

way to construct ghost circles: take an ordered circle in COω/ZZ which is ZZ2 invariant, but

not necessarily ζt invariant. A simple choice is the “straight” circle with xk(ξ) = kω + ξ.

Apply the flow ζt to this whole circle, and take a limit as the time t → ∞. Le Calvez

suggested to us that letting the flow act on non–intersecting collections of rational GCs may

be a way to prove Theorem 18.4. In a way that is reminiscent to Le Calvez’ construction of

GCs, Fathi (1997) has obtained, in the context of convex Lagrangian systems, the generalized

Aubry-Mather sets of Mather (see Chapter 9) by applying a flow in a functional analytic

space of Lagrangian graphs. Finally Katznelson & Ornstein (1997) find Aubry-Mather sets
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on a collection of pseudo–graphs that are (not strictly) ordered vertically. They do this by

iterating the map on circles in the annulus, trimming the image of the circles at each step so

that they remain pseudo–graphs (see Chapter 6). It would be interesting to investigate the

parallel between these different methods.

B. Approximate Action-Angle Variables for an Arbitrary Twist Map

If in some well chosen coordinate system (say (x, y)) of IR2 a twist map is completely

integrable, these coordinates are called Action-Angle variables (x is the angle, y the action).

Dewar & Meiss (1992) attempt the construction of approximate action-angle variables

using almost–invariant circles defined through a mean square flux variational principle. We

refer the reader to their paper as to the physical relevance of such coordinates. We show

here that similar approximate action variables can easily be defined from our GC’s. Given

any finite number of minimal Aubry-Mather sets, we will produce a continuous foliation

of the annulus by circles such that each of the Aubry-Mather set of our chosen collection

is contained in a different circle of the foliation. Moreover, such a construction will also

produce a completely integrable, albeit not necessarily differentiable map of the annulus

that coincides with the original map on the collection of Aubry-Mather sets and leaves the

foliation invariant. We sketch here the simple construction.

Let Mω1 , . . . ,Mωn be an arbitrary collection of minimal Aubry-Mather sets. From

Theorem 18.1, we know that we can produce a corresponding collection Γ1, . . . , Γn of

GC’s whose disjoint projections contain the chosen Aubry-Mather sets. Parameterize these

GC’s by their coordinate x0 as in (16.1) and order them by increasing rotation number.

Between two succesive GC’s , say Γk and Γk+1, construct the continuous family:

Γt(ξ) =
(
· · · , xt−1(ξ), ξ, x

t
1(ξ), · · ·

)
with xt1(ξ) = (1− t)x(k)

1 (ξ) + tx
(k+1)
1 (ξ)

xtj(ξ) = (xt1)
j(ξ)

where, since both x
(k)
1 and x

(k+1)
1 are lifts of homeomorphisms of the circle, xt1 also is (it

must be periodic and monotone); (xt1)
j represents the jth iterate of this homeomorphism.

It is not hard to see that, for t �= 0 or 1, Γt has all the properties of a GC except for that of

being invariant under the flow. In particular it is a circle in COωt/τ0,1 on which the shift

τ1,0 acts as a circle homeomorphism with rotation number ωt = (1 − t)ωk + tωk+1. Its
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projection πΓt is a graph in the annulus. The circles πΓt do not intersect for different t’s

since in the (x0, x1) coordinates, they are the linear interpolation along the x1 axis of the non

intersecting graphs of x(k)
1 and x

(k+1)
1 . Repeating this process between each pair of adjacent

Γk’s in our finite collection gives the continous foliation πΓt advertised. The completely

integrable map is given by τ1,0 acting on the family Γt of Ghost Circles, or alternatively by

π ◦ τ1,0 ◦ π−1 acting on the annulus, which is the topologically embedded image (by π) of

the family Γt.

Since for generic maps the rational GC’s can be made C1, the above construction

yields, when starting with a generic map and rational Aubry-Mather sets, a C1 foliation

(after smoothing the glueing of our interpolations with suitable time reparameterizations).

All the minimizing periodic orbits of the chosen rotation numbers are then embedded in the

construction. One can also take a limit of this process, by adding more and more Aubry-

Mather sets. One obtains an ordered continuum of circles in IRZZ which contains our set L
of the proof of Theorem 18.1. Alternatively, we could have started with the set L of GCs

and filled its gaps as above, all at once (gaps will occur between the Γ−ω and the Γ−ω of a

given rotation number).

Further study of this object might be interesting in order to draw a parallel between

twist maps and families of circle maps, eg. in the theory of renormalization (see MacKay

(1993)).

C*. Partition for Transport

In the theory of transport of MacKay, Meiss & Percival (1984) and (1986), it is sought to use

almost invariant circles in order to form disjoint boxes containing the “resonance zones”

around the elliptic islands (or hyperbolic points with reflexion) of the periodic minimax

orbits of different rational rotation numbers. It is not hard to see that the pairs Cp/q± of

projections of the p/q±GC’s each enclose the circleCp/q of Theorem 18.1: they are defined

as limits of circles that are respectively strictly above or strictly below Cp/q. Moreover, as

in the almost invariant circles (or partial separatrices) of MacKay, Meiss & Percival (1986),

Cp/q and the Cp/q± all meet at the minimum p/q orbits, at least when there are finitely

many of these minima (i.e. generically). Cp/q+ (resp. Cp/q−) contains the advance (resp.

retrograde) homoclinic orbits (min and minimax), by an argument of Hasselblat & Katok

(1995) , in their Proposition 13.2.11. We therefore hope that the boxes defined by the pairs



22. Remarks and Applications 81

Cp/q± of GC’s may be used as intended for the partial separatrices in MacKay, Meiss &

Percival (1986). The advantage of our boxes over those formed by partial separatrices is

that their boundaries are graphs and that they are disjoint from one another (statements

unproven to our knowledge for partial separatrices in the general case. See Tangerman &

Veerman (1990a) for partial results). Hence the calculation of the flux through them does

not rely on the hypothesis that the turnstiles of MacKay et al. always have the simple shape

of a figure 8. One of the advantages of their partial barriers is that they can canalise the flux

through “cheminees”, i.e., points exit a resonance zone through one turnstile (as opposed to

infinitely many in our case).

D*. An extension of Aubry’s Fundamental Lemma

As a consequence of Theorem 18.4, we get that any pairs of points in two unlinked maximal

skeletons of distinct rotation numbers have intersection index 1. By Aubry’s Fundamental

Lemma, we knew this to be the case for minimizers, but our results shows that it is also

true for the minimaxes and local minima in the skeletons. The relevance of this appears

clearer in the light of LeCalvez (1991), where he shows that this intersection number is

geometrically a linking number for the corresponding orbits of the suspension flow of the

map. Extending an idea of Hall (1984), he shows that this linking is an obstruction to

continue periodic orbits simultaneously, through paths of periodic orbits in an isotopy of

the map to some completely integrable twist map. In our terminology, his result implies

that the periodic orbits corresponding to critical sequences in a set of minimally linked

skeletons can “continue” simultaneously through curves of periodic orbits of an isotopy of

our map to a well chosen completely integrable map. In particular, LeCalvez already noted

that, because of Aubry’s Fundamental Lemma, any collection of minimum periodic orbits

can be continued simultaneously to orbits of a completely integrable map. A consequence

of Theorem 18.4, where we construct minimally linked sets that contain minimum and

minimax orbits, we get, using LeCalvez’ result, periodic local minimizers as well as orbits

of minimax type continuing simultaneously to orbits of a completely integrable map f0,

through paths of periodic orbits of a curve of maps joining f to f0.
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22. Proofs of Monotonicity and of the Sturmian Lemma

In this section, we give the proofs of Theorem 14.2 and Lemma 14.3. Eventhough it is a

consequence of the latter, we start with a simpler, direct proof of the former. Both proofs

are by S. Angenent.

A. Proof of Strict Monotonicity

We let the reader show that if the operator solution of the linearised equation:

(22.1) u̇(t) = Lu(t)

with

L : {vk}k∈ZZ �→ {βkvk−1 + αkvk + βk+1vk+1}k∈ZZ

αk = −∂22S(xk−1, xk)− ∂11S(xk, xk+1), βk = −∂12S(xk−1, xk)

is strictly positive, then the flow ζt is strictly monotone. L(x(t)) is an infinite tridiagonal

matrix with positive off diagonal terms−∂12S(xk, xk+1) (see Formula ( 17.1) for a finite di-

mensional version of this matrix). The diagonal terms ∂11S(xk, xk+1)+∂22∂2S(xk−1, xk)

are uniformaly bounded by assumption on S. Hence, for any T > 0 for whichx(t) = ζt(x)

is defined when 0 ≤ t ≤ T , we can find a positive λ such that:

B(t) = L(x(t)) + λId

is a strictly positive matrix. Ifu(t) is solution of the equation (22.1) then eλtu(t) is solution

of :

(22.2) v̇(t) = B(t)v(t),

hence the strict positivity of the solution operator for (22.1) is equivalent to that of (22.2) .

Looking at the integral equation:

v(t) = v(0) +
∫ t

0

B(s)v(s)ds,

one sees that Picard’s iteration will give positive solutions for a positive vector v(0). This

will imply, assuming that vk(0) > 0, vl(0) ≥ 0, for l �= k:
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vk+1(t) ≥ vk+1(0) +
∫ t

0

Bk,k+1(s)vk(s)ds > 0

The same holding for vk−1. By induction, vk(t) > 0,∀k ∈ ZZ and the operator solution is

strictly positive. This finishes the proof of Theorem 14.2. 
�

B. Proof of the Sturmian Lemma

Lemma 22.1 (Sturmian Lemma) Let x(·),y(·) ∈ CO be different solutions of

dxk
dt

= −∂2S(xk−1, xk)− ∂1S(xk, xk+1) ;

then I (x(t),y(t)) does not increase, and decreases whenever x(t) and y(t) are not

transverse.

To prove this lemma, we will examine a more general situation.

Let xi(t) (i0 ≤ i ≤ i1,−T ≤ t ≤ T ) be a solution of

(22.3)
dxi
dt

= ai(t)xi−1 + bi(t)xi(t) + ci(t)xi+1(t) (i0 < i < i1)

where we assume that the coefficients ai(t), bi(t), ci(t) are continuous and satisfy

(22.4) ai(t), ci(t) ≥ δ; ai, bi, ci ≤M

for all −T ≤ t ≤ T , i0 < i < i1, and for some constants δ, M > 0.

Lemma 22.2 Assume

xi(0)
{

= 0 for i0 < i < i1
�= 0 if i = i0 or i = i1.

Then the sequence {xi0(t), . . . , xi1(t)} has less sign changes when t > 0 than when

t < 0.

We will now see how Lemma 22.2. gives us a proof of the Sturmian Lemma 22.1.

Proof of Lemma 22.1. By the mean value theorem the difference z(t) = x(t) − y(t)

satisfies a linear equation of the form (22.3). Ifx(t0)∩| y(t0), then I (x(t),y(t)) is constant

for t near t0.
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If x(t0) and y(t0) are not transverse, then since x(t0) �= y(t0) one can choose i0 < i1

such that zi0(t0) �= 0, zi1(t0) �= 0, while zi(t0) = 0 for i0 ≤ i ≤ i1. Lemma 22.2 then

implies the Sturmian Lemma. 
�

Proof of Lemma 22.2. First a few reductions. Consider

yi(t) = Bi(t)xi(t)

with Bi(t) = exp{−
∫ t
0
bi(τ)dτ}; then

dyi
dt

= Ai(t)yi−1 + Ci(t)yi+1,

where

Ai(t)
def=

Bi−1(t)
Bi(t)

ai(t), Ci(t)
def=

Bi+1(t)
Bi(t)

ci(t).

In other words, we may assume that the bi(t) vanish. Note that {xi(t)} and {yi(t)} have

the same sign changes.

The coefficients Ai, Ci satisfy

(22.5) δe−MT ≤ Ai(t), Ci(t) ≤Me+MT

By integrating the differential equation for yi(t) we find that for i0 < i < i1 one has

(22.6) yi(t) =
∫ t

0

{Ai(τ)yi−1(τ) + Ci(τ)yi+1(τ)}dτ

Proposition 22.3 For i0 < i < i1 one has

(22.7) yi(t) = Mit
i−i0 + Nit

i1−i + o
(
|t|i−i0 + |t|i1−i

)
(t→ 0)

where the constants Mi and Ni are given by

Mi = Ai(0)Ai−1(0) · · ·Ai0+1(0)
yi0(0)

(i− i0)!
,

Ni = Ci(0)Ci+1(0) · · ·Ci1−1(0)
yi1(0)

(i1 − i)!
.

We shall prove this by induction. The relevant property of the coefficients Mi, Ni is that

the Mi have the same sign as yi0(0), and the Ni have the same sign as yi1(0). Furthermore,
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one of the two terms in (22.7) always dominates the other, unless i − i0 = i1 − i, i.e.

unless i = i0+i1
2 ; if i < i0+i1

2 then yi(t) = Mit
i−i0 + o

(
ti−i0

)
, if i > i0+i1

2 then

yi(t) = Nit
i1−i + o

(
ti1−i

)
.

Proof . We may assume i1 − i0 ≥ 2. The yi(t) are continuous, and hence bounded as

t→ 0. Therefore it follows from (22.6) that |yi(t)| ≤ C |t| for |t| ≤ T .

If i1 − i0 = 2, then the only i with i0 < i < i1 is i = i0 + 1 = i1 − 1, and we have

yi0+1(t) =
∫ t

0

{Ai0+1(0)yi0(0) + Ci1−1(0)yi1(0) + o(1)}dτ

= Mi0+1t + Ni0−1t + o(t),

as claimed.

If i1 − i0 > 2, then yi0+2(t) = o(1), and (22.6) implies

yi0+1(t) =
∫ t

0

{Ai0+1(0)yi0(0) + o(1)}dτ

= Mi0+1yi0(0)t + o(t).

Likewise (22.6) implies yi1−1(t) = Ni0−1yi1(0)t + o(t). If i1 − i0 = 3 this proves the

claim; if i1 − i0 > 3, then for all i0 + 1 < i < i1 − 1 one deduces from (22.6) and the

estimate |yi±1(t)| ≤ C |t| that |yi(t)| ≤ Ct2.

The general induction step in the derivation of (22.7) is as follows. Assume that it has

been shown that (22.7) holds for all i with i0 < i < i0 + k, or i1 − k < i < i1; moreover

assume it has been shown that |yi(t)| ≤ C |t|k for i0 + k ≤ i ≤ i1 − k. If i0 + k = i1 − k,

then (22.7) implies

yi0+k(t) =
∫ t

0

{Ai0+k(0)Mi0+k−1τ
k−1 + Ci1−k(0)Ni1−k+1τ

k−1 + o
(
τk−1

)
}dτ

= Mi0+kt
k + Ni1−kt

k + o
(
tk

)
,

with

Mi0+k = Ai0+k(0)
1
k
Mi0+k−1,

Ni1−k = Ci1−k(0)
1
k
Ni1−k+1.

In this case the claim is proved. Otherwise i0 +k < i1−k, and a similar computation shows

that (22.7) holds when i = i0 + k and i = i1 − k. Finally, using (22.6) again, one finds
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that for i0 + k < i < i1 − k the estimate
∣∣yi±1(t)

∣∣ ≤ C |t|k implies |yi(t)| ≤ C |t|k+1,

which completes the induction step. 
�
Lemma 22.2 follows directly from the proposition. If yi0(0) and yi1(0) have the same

sign, say they are positive, then the expansion (22.7) implies that all yi(t) are positive for

t > 0; For small negative t the sequence yi0(t), yi0+1(t), . . ., yi1(t) alternates signs, except

in the middle, i.e. if i1 − i0 is odd then yi0+k(t) and yi0+k+1(t) (with k =
[
i1−i0

2

]
) will

have the same sign. Indeed, (22.7) says the sequence {yi0(t), . . . , yi1(t)} has the signs as

the sequence

(c0, c1t, c2t2, . . . , ck−1t
k, ckt

k, ck+1t
k−1, . . . , c2k−1t, c2k)

if i1 − i0 = 2k is even, and {yi0(t), . . . , yi1(t)} will have the same signs as the sequence

(c0, c1t, c2t2, . . . , cktk+1, ck+1t
k, . . . , c2kt, c2k+1)

if i1− i0 = 2k+1 is odd; here the cj’s are positive constants, with the possible exception of

the coefficient ck of tk+1 in the second sequence. If yi0(0) and yi1(0) have opposite signs,

then one can again use the expansion (22.7) to derive that the sequence {yi(t)} has exactly

one sign change for t > 0, and i1 − i0 − 1 sign changes for t < 0. If i1 − i0 = 2, then

{yi0(t), yi0+1(t), yi0+2(t)} is “transverse” to the zero sequence for all small t, whatever

the sign of yi0+1(t) is. Thus, if {yi0(t), . . . , yi1(t)} is not transverse to the zero sequence

at t = 0, then either i1 > i0 + 2, or i1 = i0 + 2, and yi0(0) and yi1(0) have the same sign.

In either case we have shown that the number of sign changes of {yi0(t), . . . , yi1(t)} drops

at t = 0. 
�
Lemma 22.2 implies the following:

Lemma 22.4 If {xi0(t), . . . , xi1(t)} is a C1 solution of (22.3) , with xi0(t), xi1(t) �= 0

for all t0 < t < t1, then

(a) the number of sign changes of {xi0(t), . . . , xi1(t)} does not increase;

(b) this number drops whenever {xi0(t), . . . , xi1(t)} is not transverse to the zero

sequence.


