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GHOST CIRCLES

In Chapter 2, we saw how traces of the invariant circles of the completely integrable
map persist, either asinvariant circles, as periodic orbits or as invariant Cantor sets, in any
twist map. The main result of this chapter, Theorem 18.1, provides a vertical ordering of
these Aubry-Mather sets in the cylinder for each given map. Indeed, we show that each
Aubry-Mather set is a subset of a circle in afamily of disoint, homotopically nontrivial
circlesthat aregraph over thecircle {y = 0}. Thecirclesinthisfamily are ordered according
to the rotation number of the Aubry-Mather sets.

To prove this, we establish important properties of the gradient flow of the action
functional in the space of sequences. The central property, given by the Sturmian Lemma,
is that the intersection index of two sequences cannot increase under the gradient flow of
the action. One consequence is that the flow is monotone: it preserves the natura partial
order between sequences. This fact yields a new proof of the Aubry-Mather Theorem. It
also enables us to define specia invariant sets for the gradient flow that we called ghost
circles, which we study in some detail here. The family of circles that neatly arranges the
Aubry-Mather sets are projections of ghost circlesin the cylinder.

Theresultsof thischapter comefrom three sources. Golé (1992 a), in which propertiesof
ghost circlesweresystematically investigated; Golé (1992 b), wheregradient flow techniques
were used to give a proof of the Aubry-Mather theorem. There was agap in that last paper,
pointed out to me by Sinisa Slijepcevic which isfixed here thanksto alemmafrom Koch &
al. (1994). Finally, the bulk of this chapter comes from Angenent & Golé (1991), in which
we gave aproof of the ordering of Aubry-Mather setsviaghost circles. | am deeply indebted
to Sigurd Angenent for letting me publish this work here for the first time. The notion of
ghost circles originated in my thesis, in which | was looking for regularity properties for
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ghost tori, their higher dimensional counterparts. In Chapter 5, alink is made between ghost
tori and Floer Homology.

14. Gradient Flow of the Action
A. Definition of the Flow

Throughout this chapter, we consider a twist map f of the cylinder and its lift F* whose
generating function S is C2. For simplicity, we will also assume that the second derivative
of S is bounded. This mild assumption is satisfied for twist maps of the bounded annulus
which are extended to maps of the cylinder asin Lemma 8.2, aswell asfor standard maps.
In this section we investigate the property of the “gradient” flow of the action associated
with the generating function .S of F" solution to:

(14.1) T = —VW(CC)k = —[alS(xk,ka) + 825(xk_1,xk)], ke”Z

Since thisis an infinite system of ODES, we need to set up the proper spaces to talk about
such a flow. We endow IRZ with the norm :

+ o0
ol = 3 12t
2|k

—0o0

Welet X be the subspace of IRZ of elements of bounded norm, which is a Banach space.
On bounded subsetsof X, thetopology given by the above normisequivalent to the product
topology, itself equivalent to the topology of pointwise convergence.

Remember from Chapter 2 that Z? acts on IRZ by:

(Tm,na:)k: = Tk+m +n

The map 7,1 which we also denote by 7' has the effect of trandating each term of the
sequence by 1. The map 710 which we denote also by o is called the shift map, as it
shifts the indices of a sequences by 1. We define X/Z := X/T and we can choose as a
representative of a sequence x one such that xo € [0, 1). More generaly, in this chapter,
the quotient of any subset of IRZ by Z will be with respect to the action of the translation

T = TO,l-

Proposition 14.1 Suppose that the generating function S is C? with bounded second
derivative. The infinite system of O.D.E’s
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(14.2) & = —VW(x)r = —[01S(@k, Thy1) + 025 (—1, 1))

defines a C* local flow ¢t on X as well as on X/Z, for the topology of pointwise

convergence. The rest points of ¢t on X correspond to orbits of the map F.

Proof. We prove that the vector field —VWW is C! by exhibiting its differential. The
proposition follows from genera theorems on existence and uniqueness of solutions of
ODEs in Banach spaces (Lang (1983) , Theorems 3.1 and 4.3). The following map is the
derivative of  — —VW (x):

L {vktrez = {Brvr—1 + rvr + Besr1Vki1 trez

ap = —0228(xp—1,7x) — O11S (T, Tht1), Br = —0128(Tp—1,T1)
Indeed, this map is linear with (uniformly) bounded coefficients, hence a continuous linear
operator. Clearly:

—VW(x+v)+ VW (x) — L(v) = ||v||¢(v)

with lim, 0 ¢ (v) = 0. O

B. Order Properties of the Flow

Angenent (1988) wasthe first author, to my knowledge, to notice the similarity between the
ODE (14.1) and the heat flow of parabolic PDEs. Indeed, when we consider the standard
map with generating function S(z, X) = (X — z)? + V(z), the ODE (14.1) becomes

[l',‘k; = (—Aa:)k — V’(xk)

where A(x), = 2z, — -1 — k41 iSthe discretized Laplacian. It is not too surprising
therefore, that the gradient flow solution of (14.1) inherits analogous order properties to
those of heat flows (eg. , the comparison principle). In anice reversal of roles, delaLlave
(1999) hasnow proven Aubry-Mather typetheoremsfor certain PDES, using order properties
(see Chapter 9). To explore these properties in twist maps, we come back to the notion of
order introduced in Chapter 2. IRZ is partially ordered by:

r<y&sVkelZ, xp < yg.
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We also define x < y to mean x < y, but x # y; and we write x < y to denote the
condition z; < y; foral j € Z. The order interval [x,y] is defined by:

[z, y] = {z e R* |2 <z <y}
The positive order cone a x
Vi(z)={ye X |z <y}

with a similar definition for V_ (). These cones are closed for the topology of pointwise
convergence.

Thefollowing statement was observed by Angenent (1988). It isrelated to the compar-
ison principle for parabolic PDEs (In the case of the standard map.

Theorem 14.2 (Strict Monotonicity of ¢*) For x,y € X with * <y one has ('(x) <
Ct(y) for allt > 0.

We will give a simple proof of this theorem in Section 22. It is also a consequence of
the Sturmian Lemma (see below), which was stated in  Angenent (1988), and written in
Angenent & Golé(1991). Both proofswere communicated to theauthor by Sigurd Angenent.
In Chapter 2, we defined the notion of crossing of two sequences z, y inIRZ interms of their
Aubry diagrams. We remind the reader that such a crossing occurswhen thereisak € Z
at which either xy, — yx and x4+1 — Y41 have oppositesigns, or x = yr and xx—1 — yr—1
and zj1 — yi+1 have opposite signs. We say that two sequences are transverse if they have
no tangency, i.e. thereisno k € Z at which x, = yr and xx_1 — yx—1 and xx11 — Yrt+1
have same sign. We denote the transversdity of = and y by « i y. We now define the
intersection index I (x,y) to be the number of crossings of transverse sequences.

Lemma 14.3 (Sturmian Lemma) Let &,y € X have different rotation numbers. If x,y
are not transverse, then for all sufficiently small ¢ > 0 (*ex, (*y are transverse

and:
I(¢Tfx, ¢ fy) > 1(¢°x, Cy).

Otherwise, as long as Ctx and Cty stay transverse, their intersection index does not

change.
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Proof. See Section 22.

Asin Section 5.C, X, , isthe space of sequences of type p, ¢ and W,,, isthe periodic
action on these sequences.

Corollary 14.4 The sets CO, CO,, and X,, , are all invariant under the flow ¢*, and

so are their quotients by the action of T' = 19 1.

Proof. Theinequalities of the type < 7,,, &, which define the sets CO and CO,, are
all preserved under ¢*. Theinvariance of X, , comesfrom the periodicity of the generating
function S and its derivatives: when € X, , theinfinite dimensional vector field — VW
for the ODE (14.1) is a sequence of period n (made of subsequences of length n equal to
VWpq)- O

15. The Gradient Flow and the Aubry-Mather Theorem

In this section, we show how the existence of CO orbits of all rotation numbers can be
recovered from the monotonicity of the gradient flow ¢*. From Lemma 9.2 and Corollary
14.4, we know that the set CO,, /Z is compact and invariant under the flow ¢*. Rest points
of the flow in this set lift to CO orbits of rotation number w. It turns out that, even though
¢t isnot the gradient flow of any function, we can still makeit gradient like when restricted
to the appropriate subsets. Denote by XX = {x € X | supyez |7k — 2—1] < K}.

Theorem 15.1 Let C C X% /Z be a compact invariant set under o and forward
invariant under the flow ¢t. Then C must contain a rest point for the flow. In
particular CO,, /Z contains a restpoint and thus the map has a CO orbit of rotation

number w.

Proof. Assume, by contradiction, that there are no rest pointsin C'. We show that, for
some large enough NV, the truncated energy function Wy = Z]_VN S(zg,xky1) isastrict
Lyapunov function for the flow ¢t on C. More precisely, we find areal a > 0 such that
%WN(m) < —aforal xinC. Thisimmediately yields a contradiction since on one hand
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Wy decreasesto —oo on any orbit in C', on the other hand, the continuous Wy is bounded
on the compact K. To show that Wy isaLyapunov function for some IV, we start with:

Lemma 15.2 Let C be as in Theorem 15.1. Suppose that there are no rest points
wn C'. Then, there exist a real eg > 0, a positive integer Ny such that, for all x € C
J+N
N>No=VieZ Y (VW()) > eo.

J

Proof. Suppose by contradiction that there exist sequences j,,, N,, and (™) with N,, —
oo such that

Jnt+Nn 5
(15.1) 3 <VW(m(”))k> 0.
jn

Letm(n) = —j, — [N, /2] where[] istheinteger part function, and let z'("™) = o™ ("),
This new sequence /(™) isstill in C, and satisfies:

Nn_[Nn/Z} 2

Z (VW(w’("))k> — 0 asn — oo.

k=—[N, /2]
By compactness of C, it has a subsequence that converges pointwise to some > in C.
Since S is C?, VW (), = lim,_oo VW (2'™), = 0 for al k and thus 2> is a rest
point, a contradiction. O

We now show that Wy isastrict Lyapunov function on C'. By chain rule:

N
d
- Wi(z) =— > 1018 (@, a1 ) VW (@) + 02 (s Thg1) VIV () 1]
—-N
N N+1
== S (g hs) VW (@) — Y DS (wp—1, 2%) VIV ()
(15.2) N —N+1
= — 815(x,N,x,N+1)VW(m),N — 825(xN,xN+1)VW(m)N+1
N

- Y (YW (=))®

—N+1
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Forall zin X%, wehave |z, — ;1| < K and hence, by periodicity, S(zx_1, ), its
partial derivatives as wellas VIV, are bounded on X ¥ . In particular, we can find some M
depending only on K such that

|—615(1‘_N,$_N+1)VW(33)_N — 8QS($N,Z’N+1)VW($)N+1| <M

for al = in XX and all integer k. Let p = [M/2¢0] and N > (p + 1) Ny, where Ny, gg
areasin Lemma 15.2. We claim that for such an N, Wy isaLyapunov function. Indeed,
we can split the sum Ei\’NH (VW(w)k)2 into 2p + 2 sums of length greater than Ny. By
Lemma 15.2, each of these subsums must be greater than ¢, and thus the total sum must
be greater than M + 2¢(, making the expression in (15.2) lessthan —2¢y. O

Remark 15.3 Asin Chapter 2, we can derive from Theorem 15.1 the existence of Aubry-
Mather setsof all rotation numbers. Thisproof doesnot yield thefact that the orbitsfound are
minimizers. Thisapparent weakness may be an asset in considering possible generalizations
of this theorem to higher dimensions (see Chapter 9). This proof is a variation of the one
given in Golé (1992 b). We are very grateful to Sinisa Slijepcevic, who pointed to agap in
Section 3 of that paper. The above is essentially arewriting of that section. It was inspired
by arguments found in Koch & a. (1994), who prove an interesting generalization of the
Aubry-Mather Theorem for functions on lattices of any dimensions (see Chapter 9).

16. Ghost Circles

The set of critical sequences corresponding to the orbits of an invariant circle of the twist
map f, isitself acirclein IRZ/Z. Trivialy, thiscircleisinvariant under ¢, asit is made of
rest points of the flow. This circle is one instance of a ghost circle. In general, we think of
ghost circles as (t-invariant sets that are the surviving traces in the sequence space IRZ of
such critical circles.

Definition 16.1 A subset I" ¢ IRZ isaGhost Circle, hereafter GC, if it is
1. dtrictly ordered: x,y € ' = x <y ory < x.
2. invariant under the Z* action (by 7., ,,), aswell as under the flow ¢?,
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3. closed and connected.

We will see in the Section 17 that GC's can be constructed by bridging the gaps of
the Aubry-Mather sets (identified to their corresponding subsets of rest pointsin IR%) with
connecting orbits of the gradient flow (?.

Any sequence x in a ghost circle I" is CO: since 7,,, ,& must also lie in I, which is
ordered, we must have x < 7, ,x Of 7, ,x < . Moreover, the fact that I is ordered
implies, by Lemma 13.3, that all sequencesin I" have same rotation number. We will call
this number p(I"), the rotation number of the ghost circle.

Proposition 16.3 Let I' be a ghost circle.

a) The coordinate projection map R%Z — R defined by « — x¢ induces a homeo-
morphism of I' to IR. The corresponding projection map IRZ/Z — IR/Z induces a
homeomorphism between I'/Z and the circle.

b) The set of ghost circles is closed in the Hausdorff topology of closed sets of RZ,
and it is compact in COyq )/ Z. The rotation number on GCs is continuous in this

topology.

Proposition 20.2 improves on part b) of this proposition by giving a sufficient condition
for convergence of sequences of GC's

Proof of Proposition 16.3. We show that, for any x,y in I, the projection § : « — xg
defines a homeomorphism from [z, y] N I" to theinterval [z, yo] in IR. As before, we give
IRZ the product topology. The projection map 4 is continuous and the set [, y] iscompact,
by Tychonov Theorem, as aproduct of closed intervals. Clearly § preservesthe strict order:
T <y = x9 < yo and hence it is one to one on I". Take any two pointsx < y in I".
As a continuous injection, the map § defines a homeomorphism between the compact set
I'N [z, y] and itsimage. We show that 6 (1" N [z, y]) = [6(x), I(y)]. For this, it sufficesto
show that I" N [z, y] is connected. Suppose not and I" N [z, y] = AU B where A and B are
closed and digointin I" N [x, y]. There are two possibilities: either both = and y belong to
thesameset, say Aorelsex € A, y € B. Inthefirst case, we could write " as the union
of two digoint closed sets:
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F=[(V-(#) N T)UAU (Vi) n D) B
£

acontradictionsince I" isconnected. Theother caseyieldsthe samecontradiction. SinceI'is
ordered, any bounded open ball for the product topol ogy intersects I” insideaninterval [z, y].
Hence what we have shown aboveimpliesin particular that § isalocal homeomorphism on
I'". To show that it isaglobal homeomorphism, it remainsto show that it isonto. Since I" is
r—invariant, if x isapoint of I", then 7,,, o« isaswell, and hencethe set {xo +m | m € Z}
isin é(I"). By what we proved above, all the pointsin between are also in §(I") and hence
0 isonto IR.

Thisprovesa). To prove b), notethat if I, — I" (in the Hausdorff topology) ask — oo
then any point =z € I" islimit (in the product topology of IRZ) of points (¥ € I},. Since
Tm.n and the flow ¢* are continuous, I" must be invariant under these maps. “Close” and
“connected” are adjectivesthat also behave well under Hausdorff limits. Finally, to see that
I isstrictly ordered, notethat if = # y arein I", we can find sequences (%), y(*) e I, with
z =limz® y =limy®. If z; < y;, we can assume z*) < y*) for al k sufficiently
large. Since I, is strictly ordered and ¢*-invariant, we must have ¢ ~tx(*) < ¢~ty*) and
hence(~tx < (~ty. Thestrict monotonicity of theflow nowimplies: = < . Thecontinuity
of the rotation number is adirect consequences of the continuity of the rotation number on

CO sequences, given by Lemma 9.1. O
It follows from this proposition that any GC hasaparameterization§ € IR — (&) € I’

of the form

(161) w(§> = ("'737—1(5),57:131(5),372(5)7'")'

wherethez ; (§) arestrictly increasing and continuousfunctionsof £. Inparticular § +— x4 (&)
is ahomeomorphism of IR. Invariance of I" under the Z? action 7 impliesthat zi(E+1) =
x;j(&) + 1, so that the =; define homeomorphisms of the circle as well; T-invariance also
impliesthat z2(&) = z1(x1(&)), and more generaly that the x,, are al iterates of x .
Any GC projectsnaturally toacirclerI” inthe annulus, wheretheprojection r : RZ —
A isdefined by
m(x) = (xo, —015(x0, x1))

Proposition 16.3 Let I' be a GC for the twist map f. Then wl" and f(wI") are
periodic graphs of periodic functions p(§) and ¥ (&) such that there is a constant
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L < o0, depending only on the map, and, where the derivatives are defined,

') >—-L, (& <L

Proof. 1If one parameterizes I" asin (16.1) , then =" isthe graph of

(16.2) y=—018(&21(6) = ¢(&).

Likewise, theimage f(nI") isthe graph of y = 025 (x_1(£),&) = ¥(&). We now give a
proof of the Lipschitz estimate. Using the parameterization of the projection of our GC as
in (16.2), it is enough to prove that the derivative of ¢ is bounded below. The same proof
would hold for the estimate for the image f(w1") of our circle. Applying the chain rule to
(16.2), we find:

’ dil?l
@ = =015 — 0125 - & > —011S.

Thislast term isbounded below by our assumption on the second derivative of S. A similar
argument proves the estimate for ¢’ (£). O

Remark 16.4 As mentioned before (see also Exercise 16.6), the set of critical sequences
corresponding to an invariant circle of fisaGC, call it I'. Inthiscase nI" = f(=I"), and
Proposition 16.3 provides a proof that invariant circles are Lipschitz, a result of Birkhoff
(see aso Proposition 12.3).

We end this section by giving a condition that insures that GCs do not intersect. We can
define a partial ordering on GC'sasfollows. Let I, I be GCs. Wesay that I} < I if
(i) fordlz e I, o’ € [yonehasx N «’ and I(x,x’) = 1;
(i) p(I1) < p(I2), i€ p(z) < p(z’).

Lemma 16.5 (Graph Ordering Lemma) If Iy < I then the circle w1 lies below wI%.

Proof. Let ! (¢) be parameterizations of the form (16.1) for I'; (j = 1,2). Thenx I is
the graph of ¢, (§) = —815(5,x§j)(§)). We claim that xgl)(é) < x§2)(§) for al &. Indeed,
for a given ¢ the sequences x,&l)(g) and 2 (&) intersect at site n = 0. Since they are
transverse, we must have :ngl)(g) # x§2)($); by comparing rotation numbers we then get
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M (€) < 29 (€). By combining thisinequality with the twist condition 915 < 0 we then
concludethat 1 (&) < v2(&), asclaimed. 0

Exercise 16.6 Prove that the set of = sequences corresponding to orbits of an nontrivial
invariant circle for the map is a GC. [If the map has a transitive invariant circle of rotation
number w, then its associated GC is the only GC with rotation number w (Golé (1992
a), Lemma 4.22. We conjecture that this remains true when the invariant circle is not
transitive (i.e., of Denjoy type).

17. Construction of Ghost Circles

Thissectionwill show that GCsare plentiful. In thefirst subsection we construct GCswhose
projection passes through any given Aubry-Mather set. The next subsection will specialize
to GCs with rational rotation numbers. For generic twist maps, we construct smooth GCs
containing periodic minimizers. In Section 18 we will refine this construction to obtain
ordered sets of GCs, whose projections do not intersect.

A*. Ghost Circles Through Any Aubry-Mather Sets

Let M, theminimal, recurrent Aubry-Mather set of rotation number w, as defined in Propo-
sition 12.9. It corresponds bijectively to the set, call it X, of « sequences of orbitsin M,,,.
By Aubry’s Fundamental Lemma 10.2, X, isacompletely ordered subset of CO,,. If x is
arecurrent minimizer, than sois ,,, ,x for any m,n € Z, so X, isinvariant under 7. Each
point of X, corresponds to an orbit of £, and thusis arest point of ¢*. In Golé (1992 a),
we proved the following theorem:

Theorem 17.1 The set X, is included in a ghost circle I', and hence the Aubry-
Mather set M, is included in the projection wI' of a ghost circle.

Proof (Sketch). X, is a Cantor set whose complementary gaps are included in order
intervals of the type |z, y[ where z,y € X,,. A theorem of Dancer and Hess (1991) on
monotone flowsimpliesthat, in conditionsthat are satisfied in the present case, if x < y are
two rest points for the strictly monotone flow ¢* and thereisno other restpoint in [x, y] then
there must be a monotone orbit (i.e. completely ordered) of ¢* joining  and y. Hence we
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can bridge all the gaps of X, with ordered orbits of ¢?, taking careto do so in an equivariant
way with respect to the 7 action. The resulting set isa GC. O

B. Smooth, Rational Ghost Circles

We now build rational Ghost Circles by piecing together the unstable manifolds of mountain
pass points for W, in X, ,. This construction will be crucial when we build digoint GCs
in Section 18. Let w = p/q be given. Beginning here and throughout Sections 18 and 19 ,
we shall assume the following:

For any p/q € Q, Wy, is a Morse—function on Xp,. (17.1)

Thisisageneric condition on twist maps, aswill be proven in Proposition 29.6. Sincea
GC consists of CO sequenceswe may assume that p and ¢ have no common divisor (seethe
proof of Proposition 10.4). Let x € X, , beacritical point of W,,,. The second derivative
of Wy, & x isaJacobi matrix: itistridiagonal with positive subdiagonal termsand positive
“corner” elements aswell:

fap B 0 - Bq ]
B1 o [ T 0
(17.2) VWp(®)= |0 Bo a3 o i |,
' ﬁq—l
LBg 0 oo By g

wherea; = —0225 (-1, ;) — 0115(xj,xj41),and 3; = —0125(x;—1, ;) > 0. Dueto
the Perron—Frobenius theorem, the largest eigenvalue )\ of —V2W,,(x) issimple, and the
eigenvector v = (v, ) correspondingto A, can bechosentobepositive:v; > 0,5 =1,...,q.
Moreover al other eigenvectorsarein different orthants (See Angenent (1988), Proposition
3.2and Lemma3.4). If x isacritical point of index 1, thereexist two orbitsay (x;t),t € R
of the gradient flow ¢* of W, with ay (z;¢) — x ast — —oo, and with

as(z;t) =x £e e 4o (ert) )

Thesetwo orbits, together with « itself, form the unstablemanifold of . Theorbitsa (; t)
are monotone, oy being increasing, and o decreasing; since 741 0x = « £ 1 are aso
critical points, wehavex — 1 < a4 (x;t) < x + 1 so that a4 (x; ¢) isbounded. Hence the
limits
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wi(x) = lim o (z;1)

exist and they are critical points of W,,. Since ¢* is monotone, there are no other critical
pointsy withw_(z) <y <z orx <y < wy(x). If y > x isanother critical point, then
y > wy(x). Moreover, since the Morse index must decrease along the negative gradient
flow, the points wy (x) have index O, i.e. they are local minima of ,,. We now show
that the orbits a1 (; t) converge to these points along their “slow stable manifold”, tangent
to the largest eigenvalue of —V?W,,,(w+(x)). Indeed, since wy () are minima, al the
eigenvalues are negative, and thus the largest one has the smallest modulus. All orbitsin the
stable manifold of w4 (x) except for afinite number that are tangent to the eigenspaces of
the other elgenvalues, are tangent to this” slow stable manifold”. But the other eigenvectors
are in different orthants than the positive or negative ones. Hence a (x;t), which are
in the positive or negative orthant of w. (x), must converge to w, (x) tangentialy to the
eigenvector of largest eigenvalue.

To construct a GC in W,,, we first consider the set of critical points such a GC must
contain.

Definition 17.2 A subset A C X, , isaskeleton if thefollowing hold.
Sy A consists of critical points of W,,, with Morseindex < 1,
S, Aisinvariant under the Z? action 7,
S3 Aiscompletely ordered.
A skeleton A is maximal if the only skeleton A" with A ¢ A" C X, , is A itself.

Lemma 17.3 A mazimal skeleton A for W, exists.

Proof. Chooser, swithrp+qs = 1anddefine7 = 7, ;. By Aubry’sfundamental lemma
the set A, of absolute minimisers of IV, is a skeleton. We fix some element = € A,. Any
skeleton A D A iscompletely determined by

B=AN[x,T(x)]={zcA:x<z<T(x)}.

Indeed, given B we can reconstruct A as follows:

(17.3) A= Ej T7(B).

j=—c0
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Conversely, any ordered set B C [x, 7 (x)] of critical points determinesaskeleton .4 D A,
by (17.3). The closed order interval [x, 7 (z)] is compact and 1V, is a Morse function, so
there are only finitely many critical pointsin [z, 7 (x)]. We can therefore choose amaximal
ordered set of critical points B C [z,7 (x)] and be sure that the corresponding A is a
maximal skeleton. O

Lemma 17.4 (Mountain Pass Lemma) If the skeleton A is maximal, then every
other point (according to the order) is a local minimum; the remaining points are

MINIMAaTes.

Proof. If x < y are consecutive elements of a maximal skeleton .4 then we must show
that exactly one of « and y isalocal minimum.

Step 1. If x andy arebothloca minimathen thefoll owing standard minimax argument
shows that there isathird critical point of index 1 between x and y. Define Q = [, y] and
consider

Q' ={z€Q: Wy(z) <~}

Each Q7 iscompact, andif v > max W, | o then Q7 = Qs connected. On the other hand,
Q70 with vp = max (W, (), Wy,(y)) is not connected, since « and y are local minima

of W,,. Consider
~v1 = inf{y > v :  and y are in the same connected component of Q7 }.

By compactness, x and y are connected in @7, and hence v; > ~p. Suppose there is no
critical point of W), in |x, y[. Note that, by order preservation, Q = [z, y] is forward
invariant under the gradient flow: ¢*(Q) c Q for ¢t > 0. By compactness of Q7 =
Ny>y Q7 thereisan e > 0 such that ¢1(Q) ¢ @<, which implies that « and y are
connected in Q7 ¢, a contradiction. Hence there is at least one critical point z €|z, y|,
with W, (z) = 1. If theMorseindex of all such z were 2 or more, then the Morse Lemma
61.1 would show that @ with ~ dlightly less than v, would still connects « and y, so the
index of at least one such z is 1. But now we have a contradiction: if « and y are both local
minima, thenthereisaminimax point z €|z, y[and AU {7, »,z : m,n € Z} isaskeleton,
this cannot be since A is maximal.
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Step 2. Nextweshow that either « or y isalocal minimum.If 2 isnot alocal minimum,
then wy () = lim; o a4 (;t) isalocal minimum. But w (z) < y, SOw4 (x) = y, and
we find that y must be a local minimum. Likewise, if y is not a local minimum, then
x = w_(y) must be one. O

We have all the ingredients necessary to show the following, which was proven in a
dightly different form in Golé (1992 a), Theorem 3.6.

Theorem 17.5 Assume Wy, is a Morse function. If A is a mazimal skeleton, then
I'y={as(z;t):t e R,z € A is a minimaz} U A

is a O' ghost circle.

Proof. It is simple to check that, by maximality, 1", is connected, and a ghost circle.
As a union of unstable manifolds, I"4 is smooth except perhaps where different unstable
manifold meet, at the minima. But we showed above how the orbits a1 (a; ¢) must converge
tangentially to the one dimensional eigenspace in the positive-negative cone of the minima.
Hence the GC constructed is al so smooth at the minima. O

Exercise 17.6 Check that I'4 is indeed a GC.

18. Construction of Disjoint Ghost Circles

We now arrive at the main result of this chapter, which provides a vertical ordering of
Aubry-Mather sets:

Theorem 18.1 (Ordering of Aubry-Mather Sets) Given any interval [a,b] in IR there
is a family of nontrivial circles Cy,,w € [a,b] in the cylinder such that:

(a) Each C,, is the projection of a GC I, and hence is a graph over {y = 0} (as is
7).

(b) The C,, are mutually disjoint and if w > ', Cy, is above C .

(¢) Each C,, contains the Aubry-Mather set M, of recurrent minimizer of rotation

number w.
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This section and the next two are devoted to the proof of this theorem. We will first
construct, in this section and the next one, finite families of rational ghost circles. In Section
20, we will take limits of such families and conclude the proof of the theorem.

Let wy,...,w; bedistinct rational numbers. The construction of the preceding section
provides us with maximal skeletons A, . . ., A and corresponding GC'S 4., ..., 4, .|t
isnot immediatly clear from this construction that the projections C; = w14, aredigoint.
In this section we show that the skeletons can be chosen so that the C'; are indeed digjoint.

Definition 18.2 A family of skeletons A; C X, . IS minimally linked if any pair x €
A,y € Aj withi # jistransversewith I(x, y) = 1.

Theorem 18.3 (Disjointness Theorem) If A; C X, 4, is a minimally linked family of

mazimal skeletons, then the projected ghost circles C; = wl'4; are disjoint.

Proof. Order the A; so that their rotation numbers p; = p;/q; areincreasing. Then we
claim that

(18.1) [y, < Ty < Ty < < Tay.

Digointness of the projected GCs then follows directly from the Graph Ordering Lemma
16.5. To see why (18.1) holds, we consider any pair (V) € I's,, ) € Iy, and as-
sume that they are not transverse. Since p(¢tz™) # p(¢tz9)) we must always have
I(¢tz®,¢t2()) > 1 when defined. By the Sturmian Lemma 14.3,

(18.2) I (gta,-“),gta:(ﬂ) >1

forall thoset < 0 atwhich ¢tz N ¢txl). Butlim,_, o, 2™ =y forsomey®) € A,
(I = i,j). Since the A; are minimally linked we must have I(y®,y")) = 1, which

contradicts (18.2) . O
Theorem 18.4 For any k-tuple w1, ...,wr of rational numbers there exists a mini-
mally linked family of skeletons Ay, ..., Ay such that each A; is a maximal skeleton.

This theorem, combined with the Digointness Theorem, provides us with a digoint
family of circles C; = w14, inthe annulus. The construction of the .A;’s will be such that



18. Construction of Disjoint Ghost Circles 69

they automatically contain the absolute minimizers of W,,,,,, which by Proposition 10.4
are the minimal energy orbits of Aubry—Mather. In our proof of Theorem 18.4 we begin
with constructing a maximal k-tuple of skeletons, and then show that each skeleton in this
k-tuple is maximal.

Proof of Theorem 18.4. Let M bethe set of absolute minimizers of W, ,. on X, ..
Aubry’s fundamental lemma implies that M, ..., M is a minimally linked family of
skeletons. Asin the proof of Lemma 17.3 one easily findsamaximal k-tuple of minimally
linked skeletons Ay, . . ., A, with M; C A;, by observing that there are only finitely many
such extensions. We shall now show that each .4; isamaximal skeleton.

Assumethat oneof the A;, say .A; isnot maximal. Thenthereisacritical pointz € W, 4,
with index O or 1, such that .4, U {z} is completely ordered. In particular, there must exist
a couple of adjacent critical pointsx < y in .A; with z €]z, y[. We must deal with two
different cases:

A. Both z and y arelocal minimaof W), , .
B. At least one of the critical points « or y hasindex 1.

Case A. By aminimax argument we will show that thereis a critical point between x and
y which allows us to extend A, to alarger skeleton A} for which (A}, .., A) is dill
minimally linked. This would then contradict maximality of (Ay,...,.Ax), and thereby
show that Case A cannot occur. To carry out the minimax argument we consider

R={weW,gy z<w<yVj>2Vve A, v wandI(v,w) = 1}.

and its closure £2. The Sturmian Lemmaimpliesthat (2, and hence 2 are forward invariant
under the gradient flow ¢*. Also, asin Mountain Pass Lemma 17.4, (2 is compact, as are
the sublevel sets 27 = {w € 2 : W, (w) < ~}. To obtain a critical point other
than = and ¢ in £2 we must show that not all the £27’s have the same topology. If 7o =
max (Wp, 4, (), Wy, 4, (1)), then 270 is again not connected, since  and y are local
minima. On the other hand we have
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Lemma 18.5 (2 is connected.

Postponing the proof of this statement to the next section, we can now easily complete
the minimax argument. Indeed, as in the Mountain Pass Lemma,

71 = inf (v > 7o : £27 connected)

isacritical value of W, , so there must be a third critical point w € 2. By the Sturmian
Lemmaw must liein {2, and it follows from the Morse lemmathat w hasindex 1. Put

(18.3) Al = A U{rmow:m,n € Z};

then (A}, ..., Ax) isaminimally linked family of skeletons extending (A, ..., Ax), and
we have our contradiction.

Case B. Assume that = has Morse index 1, and put w = w4 (x). Then w is a critical
point of W), ,, and is therefore transverse to any v € A; with j > 2, by the Sturmian
Lemma. We claim that I(w,v) = 1. Indeed, for t — —oo we have oy (x;t) — . Since
(A1, ..., Ax) isminimaly linked, we find that for al ¢ sufficiently large negative oy (x; t)
and v are transverse with I(a (x;t),v) = 1. By the Sturmian Lemma I (o (x;t), v)
cannot increase, and since o, (; t) and v have different rotation numbers I (a4 (x; t), v) >
1 for al t: hence I(ay(x;t),v) = 1 for dl t. Letting t — +o00 we get I(w,v) = 1, as
claimed. Defining A} asin ((18.3) ) we again get a larger minimally linked family of
skeletons, a contradiction. If x is alocal minimum then y cannot be one by Case A, and
considering w_ (y) leadsto asimilar contradiction. 0

19. Proof of Lemma 18.5

We must show that (2 is connected. We shall do this by showing that any w € 2 can be
connected to x viaapathy : [0,1] — 2 U {x}.
Forany j € Zandany x < w € X,, 4, we put

Aj(x:w)={vj:ve A U---UA}Nz;,wj).

For simplicity we shall writex h A U - - - U A, when we mean that « ) v for every
ve A U---UAL.
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Proposition 19.1 Given © < w in X 4,
(1) Aj(x : w) is finite, for each j € Z.

(i) Ajsay (@ w) = Ay w) + pr.

(11i) If z € Xp,q, and x < z < w, then z M A2 U---U Ay, if and only if they are

tranverse in the index range 0 < j < q1.

Proof. (i) : Wp,q, isaMorsefunction. (ii) holdsbecausez, w € X, ,, andthe A; are
invariant under the action of 7,,, ,,, m,n € Z. (iii) isaconseguence of (ii). O
We define the height of w over x by

q1—1

h(m:w) =) # (A w)).
j=0

If the height h(x : w) vanishes then all the A;(x : w) are empty and we can define
Y(t) =tw + (1 —t)x. Sincex; < ~;(t) < wjforal jand0 <t < 1, it follows from
part (iii) of our last propositionthat v(¢) N Az U--- U A, for 0 <t¢ < 1, sothat y(t) stays
within (2. Call this amove of type O.

We now assume that A(x : w) > 0, and we show how to decrease it to zero. Suppose
that for some! onehasw; = v; > x; forsomev € A, U --- U Ag. Thenthereisan ¢ such
that 0 < ¢ < w; — z; and (w; — e, w;) N Aj(x : w) isempty and we can define

p w; —e if j =1l mod g,
Wi = {wj otherwise.
As before one can connect w and w’ by y(¢) = tw + (1 — ¢)w’ without leaving 2. Call
thisamove of type 1.
Assuming now that w; # v; for al ¢, wewill movethe sequencew down by interpolating
it linearly to:
BONS {maxAi(w cw) ifi= l.mod q1,
t w; otherwise
for some judiciously chosen 1. Call this a move of type 2. Clearly 2 € X, ,, and = <
20 < aw, 20 = 2049 and h(x : 2()) = h(z : w) — 1. We need to show that for at
least onel € Z, thismove does not change the intersection index of w with the elements of
Ao U -+ U A. Consider the set of elementsin A, U - - - U A, that are immediately below

w.
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ags") L nax Ai(x:w).

Assume that, among the sequences a(*?) at least one has rotation number greater than that
of  and pick the one, say a(*7) which has the largest rotation number (If al a(*?) have
lower rotation number than x, pick the one that has the lowest and proceed similarly). In
the following, we only worry about the possible changes of intersection index in the range
0 < j < ¢. The periodicity condition (ii) of Proposition 19.1 insures that if there are
changes of index, they must occur periodically. There are three cases (see Figure 19.1) to
consider:

A U1

" qﬁu ] -+1D W]-+1
j+1
WJ' )
/ . /./; A
W1 3 ) Wi-1 |
- —& _ aﬁ i %ﬁﬂ
T g gy 4
[} 0
5 Xj+1 O Xj+1
xEI X xEI X
j-1 j-1
Case 1 Case 2

Fig.19.1. The two possible moves of type 2.
Case 1: ag-‘j:i > Wiy
Choose! = j and move w to z(!) as defined above. This could only change the intersection
index of w with a(*7), But in this case this intersection index remains the same: since
p(at)) > p(w) = p(x), and I(a'*), w) = 1, we must have ag.s_ji < agijil) < wj_1.
Hence the one crossing of w and a (%), which occured between j and j + 1 isnow moved to
acrossing that occursat j, with no other crossing introduced with this or any other sequence
of A, U---UA,.
Case 2: agfﬂi < aﬁjfl)
Since by assumption p(a(®*+1)) < p(al®i)), we must have agfsj“) > ag.sj) and thus
aés”l) > w;, by maximality of aésj). Now choose ! = j + 1 and move w to z(): the
one crossing of w and a(®+1), which occured between j and j + 1 is now moved to a

crossing that occursat j + 1.
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Case 3: ag-‘jﬁ = a§sjf1)
The equality a\*) = a{*") cannot be true for all i > j since otherwise w and a(*) would
have same rotation number. Hence for some ¢ > j, Case 1 or 2 must occur. Apply the
procedure for these cases there.

Concatenating moves alternating between type 1 and 2, we get acurvein {2 between w
and and a sequence which has zero height. Concatenate this with a move of type O to get a

curvein £2 between w and . O
20. Proof of Theorem 18.1
Let wy,ws, - - - bean enumeration of the rational numbersin the interval (a, b).

Proposition 20.1 There is a family of GCs {Fl(n), e ,F,E")}, where Fj(n) has rotation
number w;, and where Fi(n) < Fj(”) if wi < wj. Each Fi(n) contains at least one

minimizing pertodic orbit of rotation number w;, and generically all of them.

Proof. If one assumes that the map f is such that the Morse property 17.1 holds, then,
according to Theorem 18.4, one can find aminimally linked family of maximal skeletons
(A A such that A;") has rotation number w; and contains al the absolute
minimizers of that rotation number. The corresponding GCs Fi(”) = I' ;) then satisfy the
required conditions. l

In general, when the Morse property 17.1 is not satisfied, one can approximate f by
smooth twist maps f. which do satisfy 17.1 (sincethisconditionisgeneric); Onethusobtains
ghost circles FJ(’Z), and by the compactness of the set of GCs with a fixed rotation number
(Proposition 16.3) one can extract a convergent subsequence whose limit will then be a
family {Ff”), . ,Bﬁ”)} of GCs. But we need to make sure that limits of strictly ordered
rational GCs stay strictly ordered. To seethis, notice that the set Fi(’z X Fj(’z) is,wheni # j,
included in:

2;; = {(v,w) € PCO,, x PCO,, : v w and I(v,w)=1}
where PCO,, isthe set of periodic CO sequences of rotation number w:

PCO,/, = CO,y N Xpq

p/q p/4q
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Theset (2;; is, by the Sturmian lemma, positively invariant under the product gradient flow
¢ x ¢* corresponding to any twist map. In fact: (¢* x ¢*)(Clos £2;;) C (Int £2;5), ascan
easily bechecked (i.e. Clos §2;; isan " attractor block” in the sense of Conley). AsHausdorff
theset '™ x Fj(") isinClos £2;;. But, sinceitisboth positively
and negatively invariant under ¢ x (¢, Fi(") X Fj(”) must in fact bein Int (2;; where the

limit of compact setsin £2;;,
intersection number iswell defined and always equal to 1. In other words, we have shown
that, whenever w; < w; one must have Fl.(”) < Fj(”). Finally, the set Fi(”) contains at least
aminimizing periodic orbit, since the sets FZ.(”;) contain by construction all the minimizing
periodic orbits of period w; for f., and limits of minimizers are minimizers. O

A. Rational C,’s

We now construct the C,,,’sof Theorem 18.1, starting with all therational w € [a, b]. Again,
we use the compactness of the set of GCs: For each n, Proposition 20.1 provides us with
GCs Fl(”), ..., '™ with rotation numbers wy, . . ., w,,. By compactness we can extract a
subsequence {n; } for which the Fl(”") converge as j — oo to a GC of rotation number
w1 . Using compactness again, we can extract afurther subsequence n; for which Fl(n;' ) and
F§"9 ) both converge; repetition of this argument and application of the diagonal trick then
finally gives a subsequence n’; for which all F,En,j,) converge to some limiting GC F,E‘X’)
(of rotation number wy) as j — oo. By the same argument as in the previous proposition,
the limits ') satisfy "> < Fj(oo) whenever w; < w;. We then define C,,, = nI\>™
and by the Graph Ordering Lemma 16.5, the C,,, ’s are digoint. In the generic case, each
FZ.(”) containsall the periodic minimizers of rotation number w;, and hence so must the limit

)

Fi(oo). In the non generic case, Fi(oo must contain at least one periodic minimizer of the

energy.

B. Irrational C,’s

To complete our family of rational GCswith irrational ones, we once again take alimit. We
could proceed in away similar to what we did in order to get al rational GCs, but we would
have to appeal to the axiom of choice (no diagonal tricks on uncountable sets!). To avoid
this, wefirst prove a proposition of monotone convergence of GCs. We shall write I'; < I3
if either It < I or p(I1) = p(I%) and w17 is( not necessarily strictly) below 7 1%.This
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last condition is equivalent to mgl) (€) < :c&” (£) in the notation of the proof of the Graph
Ordering Lemma 16.5.

Proposition 20.2 (Monotone Convergence for Ghost Circles) Let I'9) be an mcereasing

sequence of GCs, i.e. assume that
r®<r®<pré <.

Assume also that the rotation numbers p; = p(F(j)) are bounded from above. Then

there is a unique GC I'°) such that ') — I'(™) as j — co. Moreover, if x\9)(€)

is the parametrization of I'U) with xéj)(f) =&, then the :v,(j)(f) converge monoton-
(c0)

ically and uniformly to x, " (£), where x() (&) is the parametrization of ') with

25 =¢.

Of course, the corresponding theorem for decreasing sequences of GCs aso holds. We
postpone the proof of this proposition till the end of this section.

Assume now that we have constructed the rational GCs r,g“’) as above. For any number
w € (a,b), rational or otherwise, we can then define two GCs I'F as follows. Choose
a sequence of rational numbers w,,; which increases monotonically to w. The Monotone
Convergence Theorem tells usthat the limit of the corresponding GCs F,(Lj."’) must exist. We
denotethislimit by I . Thisprocedure might produce an ambiguousdefinitionof I, since
the result could depend on the choice of the sequencen;: If one has two such sequences, n;
andn’, thenthe I'1>°) and FT(LZO) might havetwo different limits " and I"’. However, one can
take the union of the two sequencesto obtain athird sequencen, i.e. {n}/} = {n;} U{nj}.
The w,,» then also increase to w, so that the Ffj_’,o) also must converge to some GC 1.
Since n; and n’; are subsequences of n’/, both seqjuenceﬁ n; and n; must produce the same
limiting GC: hence I' = I'" = """, and the definition of I isindependent of the choice of
the n;. We choose to define C,, = I, (or =1, but with the same choice of + or — for
al w in order to avoid using the axiom of choice...).

We now check that, for w irrational, the unique Aubry-Mather set M, of recurrent
minimizers (see Proposition 12.9) isincluded in C,,. We can take a sequence of periodic
Aubry minimizing sequences ¥ € F,EOO) where w, / w (\ if one chose C,, = wI'T).
Then z* — =, an Aubry minimizing sequence in I . The orbit that = corresponds to is
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recurrent and minimizing, as limit of recurrent and minimizing orbits. Its closure, which is
also included in C,,, must be the Aubry-Mather set M, . From our definition of Fj, itis
clear that:

wi<w<wj =T < Iy < 0F <1,

for rational w;,w; and irrational w. Hence the set formed by the rational GCs r,§°°> and
the irrational ones I, is completely ordered according to their rotation numbers. By the
Graph Ordering Lemma 16.5, the C,’s (irrational and rational) that we have constructed
are mutually digoint. O

Remark 20.2 If wisarational number, I isnolonger necessarily in PCO,, butiscertainly
in CO,,. It may contain the sequences corresponding to homo(hetero)clinic orbits joining
hyperbolic periodic orbits of rotation number w. Hence we may (and, probably, generically
do) have three distinct Ghost Circles I, < I, < I} for each rationa w where I, is
F,Eoo) for some k. We will call their projectionsC , C.,, and C." respectively. Instead of the
set {C,, }we[q,p) OF strictly non mutually intersecting curves that we have found in Theorem
18.1, one might prefer to consider the bigger set {C,, U Cf U C }oejay)- Itisnot hard to
check that thisis a closed set of GCs.

Proof of Proposition 20.2. 1t follows from the Graph Ordering Lemma 16.5 that the
x,(j )(5) are monotonic in j. We have assumed that the rotation numbers of the I"%) are
bounded, say by some integer M. Since ) is CO, this bound implies for I > 0 that
xl(j) (&) < &+ 1(M + 1), and in view of the monotonicity of the ml(j) (&) they converge to
some a:l(‘”)(g). For negative [ one finds that ml(j)(ﬁ) > €+ (M + 1), so that the xl(j)(g)
decreaseto some :L-l(OO) (&). Clearly x§°°> (¢) isanondecreasing function of £. We shall show
that it is strictly increasing, and continuous.

xgoo)(f) is strictly increasing. Let € < n be given. Thent — (t(x()(¢)) and t —
¢t(z9)(n)) both are on the GC I'%), so that they must be ordered in the same way for all
t € IR. Att = 0 we have

£ =C"@(€)o < =V () =1

so thisordering must hold for all t. Upon taking thelimit j — oo wefindthat ¢*(2(>)(¢)) <

¢t(x(>)(n)) holdsfor all ¢. By the strict monotonicity of ¢*, we must have strict inequality
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for all ¢, unlesswe have equality for all ¢. Equality cannot happen of course, s ncexéoo) &) =

¢ < n =27 (n). Hence we have () (¢) < &(°°)(n); in particular z{°° (¢) < 2! (n).

x(f")(g) is continuous. Since the xﬁj )(5) are monotonically increasing in both j and &,
their limit is increasing and lower semicontinuous in £. Thus we only have to show that
2% (€) = 21 (¢ +0). Assume that z(°°)(¢) < 2°7 (¢ + 0) and definea = {z{°°(¢) +
xi”)(g + 0)}/2. Then there is a sequence ¢; | 0 such that xg% +0;) = a. As before
we consider ¢! (29 (¢ +4;)) and ¢! () (€)), and take the limit j — oo. Then, after
passing to a subsequence if necessary, ¢! () (¢ +6;)) — (¢ (z*) for some z* with
zg = Eandz} = a,while¢! (29 (¢)) — ¢! (2(°°)(€)). Moreover wewill have (* (z*) >
¢t (2> (€)) for all t, again with either strict inequality for all ¢ or equality for all ¢. But this
contradicts the fact that at ¢ = 0 we have zf = ¢ = 2°(¢) and 2t = a > 2> (€). Thus
x§°°>(g) is indeed continuous. Since the mgﬂ')(g) increase monotonically to :cloo)(f), and
since :z;(1°°) (£) is continuous, the convergence must be uniform (Dini’s theorem). Therefore
the xl(j ) (&), being iterates of xgj ) (&) (see(16.1) and below) also converge uniformly.

One now easily verifiesthat I'(>°) = {2()(¢) : ¢ € IR} isaGC, and that it isthe limit
in the Hausdorff metric of the I"¥)s, O

Exercise 20.3 Complete the sketch of the following alternate conclusion to the proof of
Theorem 18.1, which does not use Proposition 20.3, but uses the axiom of choice. For
each p = (w1,...,wg) in QF, and k arbitrary, consider the set, given by Theorems 18.3 and

18.4, G, = Uwiep I',,;, union of GC’s whose projections do not intersect. Let

Jia 5] = closure{(z,y) € (co[a,b]f | I(Tmnz,y) < 1, V¥(m,n) € Z%}.

This is a compact attractor block for the flow ¢* x ¢* on the cartesian product (CO[a,b])Q.
Let K C Jjq,,) be the maximum invariant set in Jig ). Then K and its projection K’ on
the first component are both compact. Take an increasing (for the inclusion) sequence of
finite subsets R of @, say {R’};e~ such that UjG]N R = QN Ja,b]. Since K’ is compact,
assume that the sequence of compact sets {Gri }iew converges (in the Hausdorff topology)
to a set £ in K’. Now show that for all w € [a,b], £L N CO,, contains at least one GC.
Show that two GCs I, I, of different rotation numbers in £ must satisfy I, N I,» = ().
To construct a partition, i.e. a family of non intersecting circles , pick (using the axiom of
choice!) one GC of L for each w in [a, b].
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21.* Remarks and Applications

A*. Remarks

1) The techniques introduced in this chapter have a scope that goes beyond proving the
vertical ordering of Aubry-Mather sets. Angenent (1988) introduced the flow ¢* and its
monotonicity. He used it to prove, for instance, the existence of periodic orbits that, in
the generic case, would come from “elliptic islands around €lliptic idands’, as well as
homoclinic and heteroclinic orbits between hyperbolic points. The remarkable fact is that
hisresultsdo not make any generic assumption. Thisisadefinite advantage of thevariational
techniques over the hyperbolic techniques with which removing generic assumptions about
transversality of unstable manifolds is often a major hurdle. As an example, it was this
kind of technical hurdle that barred Tangerman & Veerman (1990a) to obtain a complete
proof that the Aubry-Mather sets are vertically ordered, a fact that they conjecture in that
paper. In Chapter 9, we review work by Angenent (1990), Koch & al. (1994) and Candel
& delaLlave (1997) which use the monotone properties of variational problem in higher
dimensional and PDE contexts.

2) Ghost circlesfirst appeared in Golé (1992 a). They stemmed from an effort | was making
in understanding the ghost tori of my thesis (¢t-invariant sets for symplectic twist maps,
see Chapter 5). In the realm of twist maps, | had constructed ¢ invariant circles within
the ghost tori. My advisor G. Hall as well as R. MacKay and J. Meiss asked me if their
projectionswere graphs. | proved that in Golé (1992 a), where | also recover aresult similar
tothat of Mather (1986) on theexistence of invariant circles. MacKay and Muldoon showed
numerical evidence that well chosen ghost circles were digoint, which led to the work of
Angenent & Golé (1991) which makes the bulk of this chapter.

In hiswork on toral and annulus homeomorphisms, LeCalvez (1997) proposes another
way to construct ghost circles: take an ordered circlein CO,,/Z which is Z? invariant, but
not necessarily ¢* invariant. A simple choice isthe “straight” circle with z(¢) = kw + £.
Apply the flow ¢? to this whole circle, and take a limit as the time t — oo. Le Calvez
suggested to usthat letting the flow act on non—intersecting collections of rational GCs may
be away to prove Theorem 18.4. In away that isreminiscent to Le Calvez' construction of
GCs, Fathi (1997) hasobtained, inthe context of convex L agrangian systems, thegeneralized
Aubry-Mather sets of Mather (see Chapter 9) by applying a flow in a functional analytic
space of Lagrangian graphs. Finally Katznelson & Ornstein (1997) find Aubry-Mather sets
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on a collection of pseudo—graphs that are (not strictly) ordered vertically. They do this by
iterating the map on circlesin the annulus, trimming the image of the circles at each step so
that they remain pseudo—graphs (see Chapter 6). It would be interesting to investigate the
paralel between these different methods.

B. Approximate Action-Angle Variables for an Arbitrary Twist Map

If in some well chosen coordinate system (say (z,y)) of IR? atwist map is completely
integrable, these coordinates are called Action-Angle variables (x istheangle, y the action).

Dewar & Meiss (1992) attempt the construction of approximate action-angle variables
using almost—invariant circles defined through a mean square flux variational principle. We
refer the reader to their paper as to the physical relevance of such coordinates. We show
here that similar approximate action variables can easily be defined from our GC's. Given
any finite number of minimal Aubry-Mather sets, we will produce a continuous foliation
of the annulus by circles such that each of the Aubry-Mather set of our chosen collection
is contained in a different circle of the foliation. Moreover, such a construction will aso
produce a completely integrable, albeit not necessarily differentiable map of the annulus
that coincides with the original map on the collection of Aubry-Mather sets and leaves the
foliation invariant. We sketch here the simple construction.

Let M,,,...,M,, bean arbitrary collection of minimal Aubry-Mather sets. From
Theorem 18.1, we know that we can produce a corresponding collection 7, ..., I, of
GC’'swhose digoint projections contain the chosen Aubry-Mather sets. Parameterize these
GC'’s by their coordinate x as in (16.1) and order them by increasing rotation number.
Between two succesive GC's, say I, and I}, construct the continuous family:

Ft(f) = ( o 73721(5)75;1'3(5)7 o )
with  24(€) = (1 — )™ (€) + t2F ()

7;(€) = (#1)7 (¢)

where, since both z{*) and z{**)

are lifts of homeomorphisms of the circle, 2! alsois (it
must be periodic and monotone); ()7 represents the jth iterate of this homeomorphism.
It is not hard to see that, for ¢ £ 0 or 1, I; has all the properties of a GC except for that of
being invariant under the flow. In particular it isacirclein CO,, /79,1 on which the shift

71,0 acts as a circle homeomorphism with rotation number w; = (1 — t)wy, + twiy1. Its
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projection w1 isagraph in the annulus. The circles w1 do not intersect for different t's
sinceinthe(xg, z1) coordinates, they arethelinear interpolation along the z; axisof thenon
intersecting graphs of a:g’” and xﬁk“) . Repeating this process between each pair of adjacent
I.’sin our finite collection gives the continous foliation 71 advertised. The completely
integrable map is given by 7, o acting on the family I; of Ghost Circles, or aternatively by
moT0o0m T acting on the annulus, which is the topologically embedded image (by ) of
the family 5.

Since for generic maps the rational GC's can be made C*, the above construction
yields, when starting with a generic map and rational Aubry-Mather sets, a C*! foliation
(after smoothing the glueing of our interpolations with suitable time reparameterizations).
All the minimizing periodic orbits of the chosen rotation numbers are then embedded in the
construction. One can aso take a limit of this process, by adding more and more Aubry-
Mather sets. One obtains an ordered continuum of circlesin IRZ which contains our set £
of the proof of Theorem 18.1. Alternatively, we could have started with the set £ of GCs
and filled its gaps as above, all at once (gaps will occur between the I and the I of a
given rotation number).

Further study of this object might be interesting in order to draw a parallel between
twist maps and families of circle maps, eg. in the theory of renormalization (see MacKay
(1993)).

C*. Partition for Transport

In thetheory of transport of MacKay, Meiss& Percival (1984) and (1986), it issought to use
almost invariant circles in order to form disjoint boxes containing the “resonance zones”
around the élliptic islands (or hyperbolic points with reflexion) of the periodic minimax
orbits of different rational rotation numbers. It is not hard to see that the pairs C,, /,+ of
projectionsof thep/q+ GC'seach enclosethecircle €, /, of Theorem 18.1: they are defined
as limits of circles that are respectively strictly above or strictly below C,, /,. Moreover, as
in the amost invariant circles (or partial separatrices) of MacKay, Meiss & Percival (1986),
Cp/q and the C,, .+ al meet at the minimum p/q orbits, at least when there are finitely
many of these minima (i.e. generically). C,, .+ (resp. C,/,—) contains the advance (resp.
retrograde) homoclinic orbits (min and minimax), by an argument of Hasselblat & Katok
(1995) , in their Proposition 13.2.11. We therefore hope that the boxes defined by the pairs
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Cp/q+ Of GC's may be used as intended for the partial separatrices in MacKay, Meiss &
Percival (1986). The advantage of our boxes over those formed by partial separatrices is
that their boundaries are graphs and that they are digoint from one another (statements
unproven to our knowledge for partial separatrices in the general case. See Tangerman &
Veerman (1990a) for partial results). Hence the calculation of the flux through them does
not rely on the hypothesisthat the turnstiles of MacKay et al. always have the simple shape
of afigure 8. One of the advantages of their partial barriersisthat they can canalise the flux
through “cheminees’, i.e., points exit aresonance zone through one turnstile (as opposed to
infinitely many in our case).

D*. An extension of Aubry’s Fundamental Lemma

Asaconsequence of Theorem 18.4, we get that any pairsof pointsin two unlinked maximal
skeletons of distinct rotation numbers have intersection index 1. By Aubry’s Fundamental
Lemma, we knew this to be the case for minimizers, but our results shows that it is also
true for the minimaxes and local minima in the skeletons. The relevance of this appears
clearer in the light of LeCalvez (1991), where he shows that this intersection number is
geometrically alinking number for the corresponding orbits of the suspension flow of the
map. Extending an idea of Hall (1984), he shows that this linking is an obstruction to
continue periodic orbits simultaneously, through paths of periodic orbits in an isotopy of
the map to some completely integrable twist map. In our terminology, his result implies
that the periodic orbits corresponding to critical sequences in a set of minimally linked
skeletons can “continue” simultaneously through curves of periodic orbits of an isotopy of
our map to awell chosen completely integrable map. In particular, LeCalvez already noted
that, because of Aubry’s Fundamental Lemma, any collection of minimum periodic orbits
can be continued simultaneously to orbits of a completely integrable map. A consequence
of Theorem 18.4, where we construct minimally linked sets that contain minimum and
minimax orbits, we get, using LeCalvez’ result, periodic local minimizers aswell as orbits
of minimax type continuing simultaneously to orbits of a completely integrable map f,
through paths of periodic orbits of a curve of mapsjoining f to fj.
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22. Proofs of Monotonicity and of the Sturmian Lemma

In this section, we give the proofs of Theorem 14.2 and Lemma 14.3. Eventhough it isa
consequence of the latter, we start with a simpler, direct proof of the former. Both proofs
are by S. Angenent.

A. Proof of Strict Monotonicity
We let the reader show that if the operator solution of the linearised equation:
(22.1) u(t) = Lu(t)

with
L : A{vi}kez — {Brvr—1 + arvr + Br+1Vk+1 thez
ap = —0225(Tk—1,2k) — 0115 (Tks Tht1),  Or = —0125(Th—1,Tk)

is strictly positive, then the flow ¢ is strictly monotone. L(x(t)) is an infinite tridiagonal
matrix with positive off diagonal terms — 012 S (x, z+1) (See Formula(17.1) for afinitedi-
mensional version of thismatrix). Thediagonal terms0;1.5(xy, Tr+1) + 022025 (xk—1, Tk )
are uniformaly bounded by assumption on S. Hence, for any 7' > 0 for which z(t) = (*(x)
isdefined when 0 < t < T', we can find a positive \ such that:

B(t) = L(z(t)) + \d

isadtrictly positive matrix. If w(t) issolution of the equation (22.1) then e*w(t) issolution
of :

(22.2) b(t) = B(t)v(t),

hence the strict positivity of the solution operator for (22.1) is equivalent to that of (22.2) .
Looking at the integral equation:

one sees that Picard’s iteration will give positive solutions for a positive vector v(0). This
will imply, assuming that v, (0) > 0, v;(0) > 0, for [ # k:
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t
U]H_l(t) > Uk_|_1(0) -|-/ Bk’k+1(s)vk(s)d8 >0
0

The same holding for v;_;. By induction, v (t) > 0,Vk € Z and the operator solution is
strictly positive. This finishes the proof of Theorem 14.2. O

B. Proof of the Sturmian Lemma

Lemma 22.1 (Sturmian Lemma) Let (-),y(-) € CO be different solutions of

dx
d—tk = —025(xp—1, k) — O15(Th, Tht1) ;

then I (x(t),y(t)) does not increase, and decreases whenever x(t) and y(t) are not

transverse.

To prove this lemma, we will examine a more general situation.
Let z;(t) (ig < i <ip,—T <t <T)beasolution of

dx;
dt

where we assume that the coefficients a;(t), b;(t), ¢;(t) are continuous and satisfy

(22.3)

= a;(t)zi—1 + bi(t)xi(t) + ci(t)Tip1(t) (i < < iy)

(22.4) ai(t), Ci(t) Z 5; a;, bi, C; S M

forall -T <t <T,iy <1< iq,andfor someconstants§, M > 0.

Lemma 22.2 Assume

‘ =0 forig<i<i
xl(o){;«éo ifi=ig ori=i.

Then the sequence {x;,(t),..., i (t)} has less sign changes when t > 0 than when
t <0.

We will now see how Lemma 22.2. gives us a proof of the Sturmian Lemma 22.1.
Proof of Lemma 22.1. By the mean value theorem the difference z(t) = x(t) — y(t)

satisfiesalinear equation of theform (22.3). If (o) N y(to), then I (x(t), y(t)) isconstant
for ¢ near to.
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If x(to) and y(tp) are not transverse, then since x(ty) # y(to) one can choose iy < iy
such that 2% (ty) # 0, 2%t (to) # 0, while 2*(ty) = 0 for iy < i < i;. Lemma 22.2 then
implies the Sturmian Lemma. O

Proof of Lemma 22.2. First afew reductions. Consider

yi(t) = Bi(t)z:(t)

with B;(t) = exp{— [, bi(7)dr}; then

% = Ai(t)yi—1 + Ci(t)yit1,
where Boy(®) Buns (0
def —1 def i+1

In other words, we may assume that the b;(¢) vanish. Note that {z;(¢)} and {y;(t)} have
the same sign changes.
The coefficients A;, C; satisfy

(22.5) S MT < Ay(t), Cs(t) < Me™T
By integrating the differential equation for y; (¢) we find that for iy < i < ¢; one has

(22.6) yi(t) = /0 {A;(T)yi—1(7) + Ci(T)yir1(7) }dT

Proposition 22.3 For g < i < 11 one has
(22.7) yi(t) = Mt"™" + Nit" =" + o (|t~ + [¢]"* ™) (t —0)

where the constants M; and N; are given by

M; = Ai(0)Ai—1(0) - - Aig+1(0) (Z-ﬁ_O(Z))g’
N; = C3(0)Ci11(0) - - - Cil—l(o)(gfli_(oi))!-

We shall provethis by induction. The relevant property of the coefficients M, N; isthat
the M, havethe samesign asy;, (0), and the N; have the samesign asy;, (0). Furthermore,
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one of the two terms in (22.7) aways dominates the other, unlessi — i = i, — i, i.e.
unless § = “odiisif § < ol then y;(t) = Mti= + o (ti7%), if i > “of then
yi(t) = Nit" =" o (t" 7).

Proof. We may assume i; — ig > 2. The y;(¢) are continuous, and hence bounded as
t — 0. Thereforeit follows from (22.6) that |y;(t)| < C'|t| for [t] < T.
If i1 —ig = 2, thentheonly ¢ withig < i < iy isi =149+ 1 =14, — 1, and we have

io 1 () = / {441 (0)yi (0) + Cs,_1 (0}, (0) + o(1) }dr
= i0+1t+Ni0_1t+O(t),

as claimed.
If i1 —ip > 2, theny;,4+2(t) = o(1), and (22.6) implies

t
o1 (6) = [ {4110y (0) + (1)}
= M, +19i,(0)t + o(2).
Likewise (22.6) impliesy;, —1(t) = N;,—19:,(0)t + o(t). If i1 — ip = 3 this proves the
clam; if iy —ig > 3, thenforall ipc + 1 < ¢ < i; — 1 one deduces from (22.6) and the
estimate |y;+1(t)| < C |t] that |y;(t)| < Ct2.

The general induction step in the derivation of (22.7) is as follows. Assume that it has
been shown that (22.7) holds for all ¢ withig < i < ig + k,0ri; — k < i < i1; moreover
assume it has been shown that |y, (t)| < C |t|" forio + k < i < iy — k. If ig + k = iy — k,
then (22.7) implies

t
Yig+k(t) = / {Aig 11 (0) M1 71+ Ciy, — g (O)Niy — o1 7+ 0 (7°71) Jr
0

= My xt" + Ny, it* + 0 (t7)

with
1
Mg+ = Aig+1(0) 3 Mig k-1,
1
Ny, = Cil—k:(O)ENil—kz—i—l-

Inthiscasetheclaimisproved. Otherwiseio + &k < i1 — k, and asimilar computation shows
that (22.7) holdswhen i = iy + k and ¢ = i; — k. Finally, using (22.6) again, one finds
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that for ig + k < i < i1 — k the estimate |y (¢)| < C |¢t|" implies |y;(t)| < C[¢[**,
which completes the induction step. O

Lemma 22.2 follows directly from the proposition. If y;,(0) and y;, (0) have the same
sign, say they are positive, then the expansion (22.7) impliesthat all y;(t) are positive for
t > 0; For small negative t the sequence y;, (t), Vi +1(t), - - ., yi, (t) aternates signs, except
in the middle, i.e. if 4, — 4 isodd then y;, 4« (t) and y;,+x11(t) (With & = [25%2]) will
have the same sign. Indeed, (22.7) says the sequence {y;,(?),...,y:, (t)} hasthesignsas
the sequence

(co,crt,eat®, .. cpnt?, ot cpprt™ L conit, cop)
if i1 —ip = 2k iseven, and {y;, (1), ..., vy, (t)} will have the same signs as the sequence
(Co, Clt, 62t2, N ,thk+1, Ck_|_1tk, e ,Cgkt, 62k+1>

if iy —ip = 2k + 1 isodd; herethe c;’s are positive constants, with the possi ble exception of
the coefficient c;, of t**1 in the second sequence. If y;,(0) and y;, (0) have opposite signs,
then one can again use the expansion (22.7) to derive that the sequence {y;(¢)} has exactly
one sign change for t > 0, and i; — ip — 1 sign changes for ¢ < 0. If i1 — ig = 2, then
{Yio (1), Yig+1(t), Yig+2(t) } IS “transverse” to the zero sequence for al small ¢, whatever
the sign of y;,+1(¢) is. Thus, if {y;,(t),...,y:, (1)} isnot transverse to the zero sequence
att =0, then either iy > ig + 2, or iy, = ip + 2, and y;,(0) and y;, (0) have the same sign.
In either case we have shown that the number of sign changes of {y;, (t), ..., v, (t)} drops
at=0. O
Lemma 22.2 implies the following:

Lemma 22.4 If {z;,(t),..., 25, (t)} is a Ct solution of (22.3) , with x;,(t), z;,(t) # 0
for all ty <t < ty, then

(a) the number of sign changes of {x;,(t),...,x;, (t)} does not increase;

(b) this number drops whenever {x;,(t),...,x; (t)} is not transverse to the zero

Sequence.



