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In order to estimate the minimum number of periodic orbits a symplectic twist map or a Hamiltonian
system may have, we need an estimate on the minimum number of critical points for the energy function of the
corresponding variational problem. Estimating the number of critical points of functions on compact manifolds
is the jurisdiction of Morse Theory and Lyusternick-Schnirelman Theory. Given the gradient flow of a real
valued function f on a compact manifold M/, Morse Theory rebuilds M from the unstable manifolds of the
critical points of f. The combinatorial data of this construction gives a relationship between the set of critical
points and the topology of M, in the guise of its homology. Unfortunately, the space on which the energy
function W is defined is not compact. However, it usually is a vector bundle over a compact manifold )/, and
reasonably natural boundary conditions on the map or Hamiltonian system translates into some conditions of
“asymptotic hyperbolicity” for 1. This is a situation where Conley’s theory, which studies the relationship
between the recurrent dynamics of general flows and the topology of (pieces of) their phase spaces was brought
to bear with great success.

For the reader who has no background in Algebraic Topology, we start in Section 61 by outlining an easy
way to compute the homology of a manifold by decomposing it into cells. We then illustrate Morse theory
by considering the cells given by the unstable manifolds of critical points of a real valued function on the
manifold. We hope that this will give such a reader at least a flavor of the rest of this chapter. Starting Section
63 , we assume familiarity with algebraic topology. We give the basic definitions of Conley’s theory and state
results on estimates of number of critical points in isolated invariant sets for gradient flows. In Section 64, we
prove these results. In Section 65, we apply these results to functions on vector bundles whose gradient flow

are asymptotically hyperbolic.
61.* Hands On Introduction To Homology Theory

To a manifold, or to certain subspaces of it, we want to associate some algebraic objects called homology
groups that are invariant under homeomorphisms or other natural topological deformations. Usually, the best
way to calculate these groups (but not the best way to show their invariance properties), is to decompose the
spaces studied into well understood pieces, and then define the groups from the combinatorial data describing
how these pieces fit together. In this introduction we decompose spaces into cells, which are discs of different

dimensions, and show how to compute cellular homology.
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A. Finite Cell Complexes

Given a topological space X (e.g. a differentiable manifold) we can construct a new one by attaching a cell
of dimension 7. This is done by choosing an attaching map f from the bounding sphere $™ * of the cell D"
(a disk of dimension ) to X . The new space, denoted by X Uy D" is given by the union of X and D" where
each point of JD" is identified with its image by f in X . The topology on X Uy D™ is that of the quotient
XUD"/{ ~ f(x)}.

Examples 61.1 One can construct the sphere $ by attaching the disc D? to a point p. The space X = {p}isa
manifold of dimension 0, and the attaching map f sends each point of the boundary circle of D? to p. One can
also construct a sphere by attaching a disk to another one (what is the attaching map?). These constructions

have obvious generalization to higher dimensions.

A cellular space is a space built by attaching a finite number of cells (successively), starting from a finite
number of points (cells of dimension 0). If in this process each cell is attached to cells of lower dimensions,
the space obtained is called a finite cell complex or CW complex. The union of all cells of dimension less
than £ in a finite cell complex is called the k—skeleton. Thus the £ + 1—skeleton is built by attaching cells of
dimension k£ + 1 to the k—skeleton. The dimension of the cell of maximum dimension in a cellular space X

(and hence of a CW complex) is called the dimension of X, denoted by the usual dimX.

Examples 61.2 The torus can be decomposed (not in a unique way!) into a finite cell complex: its O—skeleton
is the point z. To get the 1-skeleton we attach both extremities of the “meridian” « and the “equator” b to z.
The attaching maps send the boundaries —1 and 1 of the 1—cells a = [—1, 1] = b to the point z. Finally, the
2-skeleton is obtained by attaching the disk D (stretched to a square) to the 1-skeleton as indicated by the

“flat” picture of the torus. Note that the 1-skeleton looks like a “bouquet of two circles”.
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Fig. 61. 2. The torus T? as a finite CW complex.

One can generalize this construction to surfaces of any genus g (spheres with g handles) by gluing a 2 cell
to a polygon with 4¢ sides and identifying all vertices to a single point, and edges two by two as indicated by

their name and orientations on the following figure (g is 2 here):
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Fig. 61. 3. The double torus (surface of genus 2) as a finite CW complex. Identify edges according to their
names and orientations, and identify all vertices to one point. When cutting the octagon in half through the
curve v we obtain two handles, which are tori with a disk (bounded by the curve «) removed in each.

More generally, we will show in the next section that any compact manifold is homeomorphic to a finite

cell complex.
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Exercise 61.3 Decompose $", T™,IRIP" and the Klein bottle into finite cell complexes. Remember that
IRIP™ can be defined as ID™/ ~, where the relation ~ identifies any two antipodal points on the boundary
of the n disk ID™. The Klein bottle is [—1,1]?/ ~ where (1,%) ~ (=1, —y) and (z,1) ~ (z, —1).

B. Cellular Homology

Bouquets of spheres. When we “crush” the (k-2)-skeleton X}, of a finite cell complex X to a point
inside the (k-1)-skeleton X}, i, the boundary of each (k-1)-cell crushes to that point. Hence each (k-1)-cell of
X}, 1 becomes a (k-1)-sphere in X}, 1 /X},_o. All these spheres meet at exactly one point, where the crushed
X}, collapsed: we say that X, 1/ X}, is a bouquet of spheres. The attaching map f of a k—cell to X}, 1
gives rise to a map fas X /X2, by composition with the quotient map. Hence we have a map

f from a sphere of dimension k£ — 1 to a bouquet of spheres, all of dimension k — 1.

Digression on degree and homotopy. Any continuous map from a sphere S; to a sphere S5 of same
dimension comes equipped with a degree, which, informally, is an integer which measures the number of
times S; “wraps around” S> under this map. This integer can be negative, as we keep track of orientation.
Since the proper topological definition of degree requires homology (which we are in the process of defining),
we restrict ourselves to differentiable maps. The degree of a differentiable map f between two manifolds of

same dimension is given by:

(61.1) deg(f) = Z 1- (sign det Dfy)

zef~1(2)
where z is any regular value of f, i.e. the determinants in the above sum are not zero (by Sard’s theorem,
almost all values of a smooth map are regular). It turns out that the above number is independent of the (regular)
point z. The degree of a map is invariant under homotopy of the map. [Two continuous maps fj and f; between

the manifold M and the manifold N are homotopic if there is a continuous map F : [0,1] x M — N such
that F(0, z) = fo(2z), F(1,z)= fi(z)forall z in M ]

Back to horticulture. The attaching map f : $* 7! — X, / X2 has a multiple degree: on each sphere
S; in the bouquet one can compute the oriented number of preimages under fofa regular point as in (61.1)
(without loss of generality, we can assume that f is differentiable except at the common point of the spheres).
Suppose that c]ffl, ceey cﬁfkfl denote the (k — 1)—cells of the cell complex and c}, ..., c’;"vk its k-cells. We
now form an N, x Nj,_; integer matrix J), whose entry 0y (i7) is the degree of the attaching map from dc?
to the jth sphere of the bouquet, i.e. cffl / 80?71. The matrices Jy, for k € {1,...,dimX} essentially give

all the combinatorial data describing how the complex X is pieced together from our collection of cells.

Chain complexes. We now want to view the matrices O, as those of linear maps between finite dimensional
vector spaces, or modules. To do this, one thinks of ¢/, ..., cé‘"\,k as the basis vectors of an abstract vector

space (or free module) C;, whose elements are formal sums of the form

Ny
C = E ajcf,
1



61. Homology Theory 197

where a; is an element of some “coefficient” field (or ring) K (usually Z,, Z, Q or IR). Hence C); is generated

by the k-cells and dimC}, = Nj. For convenience, we define 9y = 0 on Cjy.

Lemma 61.4

(61.2) Ok—100, =0.

(The proof of this crucial lemma, which we will not give here (see, eg. Dubrovin & al. (1987) ) usually
uses the long exact sequence of a triple and a pair in simplicial homology). A chain of maps and vector spaces

(or modules):
Cn%Cnflﬁ...Ck%Ckfl —>—>CO

satisfying (61.2) is called a chain complex.

Definition 61.5 The kth homology group of the finite cell complex X with coefficients in a ring K is given
by:
Hk(X,K) = Ker ak/Im 8k+1.

where, by convention, g = 0 = 0,11

This definition makes sense since, by Lemma 61.4, Im Jx+1 C Ker 0.
Note that Hj,(X) = 0 whenever k£ > dim X or & < 0, since for such &, X, = ().

Example 61.6 The circle $* is a CW complex: we start with a point p and attach to it an interval I = [0, 1]
the boundary points of I become identified to p under the attaching map. Using IR as coefficients in our chain
complex, we get Cyp = R.p = IR, Cy = IR.J = IR. The map 9; = 0: p has the two preimages {0} and {1}

under the attaching map, but they come with opposite orientation under the orientation induced by /.

Example 61.7 Figure 61. 2 gives the generators for a chain complex for the torus: Cyp = IR - z,C; =
R-a@®R-b,C: =R - D. All the boundary maps are 0 in this case: d1a = 0 because it geometrically
yield z twice but with opposite orientation. Likewise for 01b. As for ;D = a + b — a — b = 0, again due to

orientation. Hence Ker 0y = Im 041 = Cy, for k = 1, 2, 3. We have shown:

R k=0
Hy(T?, R) = R> k=1
R k=2

Clearly, this result remains valid if we replace IR by any coefficient ring K.

Example 61.8 A less trivial example is given by the Klein bottle. This non orientable surface is a torus with
a twist and it cannot be embedded in IR®. We build it with the same cells z, a, b and D as the torus. The only

change occurs in the definition of 0s: instead of gluing D to two copies of b in opposite orientation, we give

them the same orientation (see Figure 61.4). As a result, the matrix of J5 is now .Letus use the integers Z

0
2
as our coefficient ring. Then Ker 0, = {0}. From this we immediately get that Hy(Klein, Z) = 0. Asin the



198  Appendix 2: TOPOLOGICAL TOOLS (Dec 30 1999)

torus,d; = Osothat Ker 9 = Cy) = a-Z®b-Z.Since Im 0y = {0}-a®2Z-b, Hy(Klein, Z) 2 Z S Z.
As in the case of the torus, Hy(Klein, Z) = Z (in fact, the rank of Hj gives the number of connected
components of a manifold). Now let’s reexamine the above computation with coefficients K = Z, instead:
the map 0> = 0 in this case since 2=0 in this ring. Thus, in this case we are back to the same situation as
with the torus: Hy(Klein,Zs) = Zy, Hy(Klein, Zy) = Zy @ Zo, Hy(Klein, Zy) =2 Z,. Finally, let’s
choose K = IR. Since Ker 02 = (s in this case again, Hy(Klein,IR) = IR. Since R/2IR = R/R =
{0}, H,(Klein,R) = IR. As before Hy(Klein,IR) = IR.

a
z > Z
b
4 D Y
b
z >
a z

Fig.61. 4. A cell decomposition for the Klein bottle. The only difference with that of the torus is the
orientation of one of the segments b.

Some general properties and definitions related to homology. Let X be a compact manifold
of dimension n. As we will see in next section, it can always be decomposed into a finite CTW complex.
edimHy(M,R) = rank Hy(M,Z) = by, is the k" Betti number of M.

o> 1 (=)*by = x(M) is the Euler characteristic of M.

eNeither by, nor x(M) depend on the chain decomposition chosen for M.

o) gives the number of connected component of M.

ob,, = 1if M is orientable, b,, = 0 if M is not orientable.

Topological invariance. The importance of homology stems in great part from its invariance under
topological equivalences. One topological equivalence is that of homeomorphism. A coarser equivalence (see
Exercise 61.10) is that of homotopy type. Two topological spaces M and /N have the same homotopy type if
there are continuous maps ¢ : M — N, 1) : N — M such that ¢ o v and v o ¢ are homotopic to the Identity

map of M and NN respectively. In other words M can be deformed into N and vice-versa.

Theorem 61.9 If the two manifolds M and N are homeomorphic, or have the same homotopy type,
then they have same homology: H.(M) = H.(N) (the star x stands for any integer).

Since the degree of the attaching maps are invariant under homotopy, homology is itself an invariant under

homotopy equivalence (this requires a more rigorous proof, of course, see eg. Dubrovin & al. (1987) ).

C. Cohomology

Roughly speaking, cohomology is dual to homology. For readers of this book, it might be easier to see it
through differential forms, which are dual to chains of cells in the sense that the integral < c¢,w >= jC wofa
form w on a chain c is a linear, real valued function in ¢ (it is also linear in w). The duality bracket given by

integration also satisfies:
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<dec,w>=< ¢, dw >

where d is the exterior differentiation on forms. This formal equality is a general requirement for defining
cohomology. In the case of forms it is simply given by Stokes’ Theorem. Finally, we can define the cochain
complex

d d dn
Ci=Cr=3...33 0

where C}} = A¥ is the vector space of k—forms and d}, is exterior differentiation. As with homology, we can

define the DeRham cohomology group as:
H*(M,R) = Ker dyy1/Im dy,

i.e. this cohomology is the quotient of closed forms over exact forms. One notable difference between
homology and cohomology is the direction of the arrows in the complexes that defines them. Another notable
difference, which makes the use of cohomology often preferable, is the existence of a natural product operation
in cohomology, called the cup product. In DeRham cohomology, this cup product takes the form of wedge
product of the forms:

[wﬂ U [w2] = [wl A LUQ}

where the notation [w] denotes the class of the closed form w. There are many different ways to define
cohomology, but it can be shown that (given some normalization requirements), they all give the same result
on compact manifolds. Poincaré, for instance, introduced cohomology (not under that name) by geometrically
constructing a dual complex to a triangulation (a special CW chain decomposition). In the next section, where
unstable manifolds of critical points of a Morse function will provide us with a chain decomposition, the dual

decomposition can be taken to be that of stable manifolds.

D*. Covering Spaces and Fundamental Group

Covering spaces. The simple notation T? = IR*/ Z? is rich in geometric and algebraic meaning. The
quotient map p : IR? — IR? / Z? is an instance of a covering map in that it is a local homeomorphism which is
such that each point in the torus has an evenly covered neighbourhood U such that p~1 U is made out of disjoint
copies of U (eg. take a disk of radius less than 1 U around the point z). That makes R%a covering space of
T?. In a covering space, the transformations that permute points in a fiber p—* (z) are homeomorphisms which
form a group under composition called the group of deck transformations. For instance, Z? is the group of

deck transformations of the covering space IR* — T2,

Lifting of curves. One can lift curves from a space M to its covering M in a well prescribed way: if the
curve «y starts at zy in M, choose one 2o € p‘l(zo) C M to start the lift of v, i.e. a curve v such that
p(¥) = 7. Above an evenly covered neighbourhood U of z, there is only one way to define 7, since there is
only one copy of U containing our choice Z;. One then proceed by continuity, covering y with a finite number
of overlapping evenly covered neighborhoods. A curve has as many distinct lifts as there are preimages of its

starting point.

Classification of covering spaces for T?. We can construct other covering spaces of the torus, with

other groups of deck transformations. For instance, the cylinder IR x $' = IR? /Z is a covering space of the
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torus with deck transformations group Z. IR? /(2Z ¢ 3Z) — IR/ Z* is also a covering space which is itself
a torus, but “6 times as big” as the standard one it covers. It has Z, & Z3 as group of deck transformations,
reflecting the finite number of elements a fiber p~!(z) has. In general, given any normal subgroup G of z?,
you get a covering space IR> /G — T? with deck transformations group Z> /G. In fact these are all the

possible covering spaces of the torus!

The fundamental group. The above classification generalizes to any manifolds, as we will see. Given a
connected manifold M, we need to find a covering space which serves the role IR? does for T2. It turns out
that the defining feature IR? has in this context is that it is connected and simply connected: any loop in IR?
is homotopic to a point, or constant loop. This makes IR? the universal cover of T?: it is the unique (up to
homeomorphism) covering space of T which is simply connected. Its uniqueness comes from a construction
which works for any manifold. Choose some point 2z in your manifold )M . Declare that two curves starting at
z are equivalent if they have same endpoint and are homotopic. Define the covering space M as the set of all
such equivalence classes. If [y] € M is one such equivalence class, define the covering map as p([7]) = (1)
(its endpoint). One can indeed show that, with the appropriate topology, this is a covering space, and its deck
transformations form a group called the fundamental group of M, denoted by 71 (M, zo) or 71 (M) in short
(changing the base point yields isomorphic groups). Since a deck transformation must permute points in a
fiber, 71 (M) is the group of all homotopy classes of loops based at a chosen point, with group law given by
concatenation of two loops (i.e. follow one, then the next, which is possible since they have same endpoints).
The inverse of a loop is the same loop traversed backwards. As an example, since Z2 is the deck transformation
for the universal cover IR? of T2, we must have 71 (T?) = Z?. More generally 7, (T™) = Z". On the other

hand 7 ($") = {0}, since the sphere is itself simply connected (and thus is its own universal cover).

Classification of covering spaces of any manifold M. As stated above, we can use the universal
cover M to classify all covering spaces of the (connected) manifold M: any other covering space N of M
is of the form N = M /G where G is a subgroup of 71 (M ). Furthermore, G = 71 (N) and if G is a normal
subgroup of 71 (M), then the deck transformations of N — M form the group 7 (M )/G. Remember that G
is normal if aGa~—' = G for any a € 71 (M). As an example, any subgroup of 7, (T?) = Z? is normal, since

Z? is abelian.

Fundamental group vs. homology. Note that 7, (T?) 2 Z? = H,(T?, Z). This is not a coincidence:
both groups were constructed as equivalence classes based on closed loops. In general, a theorem of Poincaré
(1895) says that H; (M, Z) is the abelianization of 71 (M): it is the fundamental group made commutative.
The way to abelianize a group G is by taking its quotient with the subgroup [G, G] of its commutators, which

are of the form zyz—'y~!. Hence we can write Poincaré’s theorem as:
H (M, Z) =2 7(M)/[r1 (M), 71 (M)].

To see how the case M = T? fits here, note that Z? is already abelian. In general, 71 (M) can be much
more complicated than H;(M,Z). Finally, this leads us to an important case of covering space, called
universal abelian cover of a manifold M. It is the covering M /[m1(M),71(M)] — M which, since
the subgroup [m1 (M), m1(M)] is always normal, has (abelian) deck transformation group H;(M,Z) =
w1 (M) /|7 (M), 71 (M)].
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Exercise 61.10 Show that the circle and the cylinder have same homotopy type but are not homeomorphic.
Exercise 61.11 Using Exercise 61.3 compute the homology of $™, T™, IRIP"™.

Exercise 61.12 Convince yourself, looking at Figure 61. 3 that the fundamental group of the double torus is
< a,b,c,d;aba b ede'd™" >, i.e. the group generated by the elements a, b, ¢, d together with the relation
that aba™'b—lede 'd™' = e, the neutral element. What is the first homology group of the double torus?
Repeat the question for surfaces of genus g.

62.* Morse Theory

‘We now show how any compact manifold can be described as a cellular space, with cells given by the unstable
manifolds of the critical points of a Morse function. This immediately yields a relationship between critical
points and Homology, in the guise of the Morse Inequalities. We first define some of these terms.

Let f : M — IR be a differentiable function on a manifold M. A critical point for f is a point z at which
the differential of f is zero: df (z) = 0.If f is twice differentiable, the critical point z is called nondegenerate
if
9%/ (2)

0x?

where this second derivative is taken with respect to any local coordinates = around z on M. The function

(62.1) det

£0

f is a Morse function if all its critical points are nondegenerate. One can show that there are many Morse
functions on any manifold. In fact Morse functions are generic in the set of twice differentiable functions. See
e.g. Guillemin & Pollack (1974) , as well as Milnor (1969) .

Note that the condition (62.1) is independent of the coordinate system. Indeed, at a critical point z,

0*f(z) _ 02" *f(=) Oy

oy2 Oy 0x? Oz’

2
This last formula also implies that the number of negative eigenvalues of the real, symmetric matrix %
does not depend on the coordinate system chosen around the critical point z. This number is called the Morse
index of z. Qualitatively, the level set portrait of a function around a nondegenerate critical point is entirely

determined by the index of the critical point. Indeed:

Lemma 62.1 (Morse Lemma) Let z be a nondegenerate critical point for a function f on a manifold

of dimension n. There is a coordinate system x around z such that:

f@)=f(z) 2] ...~ 2} +ap 1 +...+70.

We refer the reader to Milnor (1969) for a proof of this lemma, which generalizes the diagonalization
process (Gram-Schmidt) for bilinear forms. Since the Morse Lemma clearly implies that the critical points of
a Morse functions are isolated, we have:

Corollary 62.2 A Morse function on a compact manifold has a finite number of critical points.

The gradient flow of a function f is the solution flow for the O.D E.:
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(62.2) 2= —Vf(z).

The gradient V f is defined here by (V f,.) = df(.), where the brackets denotes some chosen Riemannian

metric. The minus sign is put in (62.2) so that /" decreases along the flow:

%f(z(t)) = —{VI(z())}* <0

with equality occurring exactly at the critical points. The eigenvectors corresponding to the negative eigenvalues

of 828’; (f) span a subspace of T, M which is tangent to the unstable manifold at z of the gradient flow: that
is, the z1, ...,z plane given by the Morse Lemma. We remind the reader that the unstable manifold of a
restpoint for a flow is the manifold of points whose backward orbit is asymptotic to the restpoint. Hence the
Morse index of a nondegenerate critical point of a Morse function is the dimension of its unstable

mamnifold.

Remark 62.3 Note that if the metric chosen to define the gradient is the euclidean one in the Morse coordinate
chart, the (z1, ..., xy) plane is itself the unstable manifold of the critical point, at least in that chart. This can

always be arranged, by a local perturbation of the metric, and we will assume from now on that this is the case.

The gist of Morse theory consists in studying how the topology of the sublevel sets:
M*={xe M| f(x)<a}

changes as a varies.

Theorem 62.4 If there is no critical points in f~'[a,b], then M?® and M® are diffeomorphic. The

inclusion of M® in MY is a deformation retraction.

w|
me

Fig. 62. 0. Deformation of a sublevel set M? into the sublevelset M® when there are no critical points in
f'la,b]. The lines with arrows represent trajectories of the gradient flow.

Proof. Deform M?" into M® by flowing down the trajectories of the gradient flow, with appropriate speed
and during an appropriate time interval. This is possible as long as there are no critical value in [a, b]. See

Figure 77?7 ad
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Theorem 62.5 Suppose f~1[a,b] is compact and has exactly one critical point in its interior, which
is degenerate and of index k. Then MY has the homotopy type of M® with a cell of dimension k

attached, namely, a ball in the unstable manifold of the critical point.

Proof. (sketch) Let z be the critical point, c = f(z) and € > 0 be a small real number. By the previous
theorem, M has the same homotopy type as M and likewise for A/°~¢ and M®. Hence, we just have to
show that M ¢ has the homotopy type of M “~¢ with a cell attached.

(Unstable)

(Stable)

Fig.62. 0. A neighborhood of a Morse critical point z. A suitable parameterization of the flow retracts
M°*€ onto M°~°U S, which itself can be deformed into M“~°U B.

We have represented in Figure 62. 0 the sets )/ °*¢ within a Morse neighborhood. The drawing makes
it intuitively clear that some reparameterization of the gradient flow (which we have represented by some

arrows) will collapse M€ into M°~€ U S. But the set S is given by:
S={f<c+ea?+...+a} <5},
which can obviously be deformed into:
B={f<c+ex;=...=x, =0},
that is, a ball in the unstable manifold of z. In other words,
MEte ~ MU B.

O

Any cellular space X is homotopically equivalent to a finite cell complex Y, where X and Y have the
same number of cells in each dimension (one deforms each of the attaching maps defining X into one that
attaches to cells of lower dimensions, see Dubrovin & al. (1987) , Section 4). This and the previous theorem

yield:
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Corollary 62.6 Any sublevel set M® of a Morse function on a compact manifold M has the homotopy
type of a finite CW complex, whose cells correspond to the unstable manifolds of the critical points.

Hence, since there always is a Morse function on any given manifold,

Corollary 62.7 Any compact manifold has the homotopy type of a finite CW complex, with a cell of

dimension k for each critical point of index k.

Corollary 62.8 (Morse inequalities) Given any Morse function f on a compact manifold M, the
homology of M is generated by a finite complex {Cy, O }(1,....dimay whose generators correspond to

the critical points of index k of f. In particular, if ¢, = dimC}, is the number of critical points of

ndez k,

(62.3) ¢k > by =rankH(M,Z)

and, better:

(62.4) Ck —Cr—1+...%7cog>bp —bp_1+...%bg,

with equality holding for k = n.

Proof. The first statement in the theorem is somewhat of a tautology for us, since we have “defined” the
homology of M as the cellular homology of any cellular complex representing /. Formula (62.3) is then
trivial, since

Hp(M) = Ker 0x/Im Ok1,

and Ker Oy is a subspace of C}.The inequalities (62.4) are a consequence of (62.3) and their proof, left to

the reader, only involves linear algebra. a

Remark 62.9 One can give a nice geometric interpretation of the maps J in the context of Morse theory.
Assume that the gradient flow ¢* of our chosen Morse function is Morse-Smale, i.e. that for any given pair
of critical points x, z, their respective stable and unstable manifold meet transversally. This is again a generic

situation, which has the following implications: the set
M(z,z) = W¥(x) N W?(2),
which is the union of all orbits connecting « and z, is a manifold and
dimM (x, z) = index(x) — index(z).

In particular, if index(x) — index(z) = 1, M (x, ) is a one dimensional manifold made of a finite number of
arcs that one can count, with £ according to a certain rule of intersection. This intersection number m(z, 2)

gives the coefficient in the generator z of (x), i.e.

Ok = Z m(x, z).z.

z2€Cy_1
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One can also define cohomology in this fashion: just take the same complex, but defined for the function — f.
What was stable becomes unstable manifold and Cj, becomes C,, 1. This not only gives us a geometric way

to see cohomology, but a trivial proof of Poincaré’s duality theorem:
H" *(M,R) = H,(M,R)

. For more details on this chain complex, which is sometimes called the Witten complex but dates back to
J. Milnor’s book on cobordism, see e.g. Salamon (1990) . For a proof of Poincaré’s duality using the Morse

complex, see Dubrovin & al. (1987) .

63. Controlling The Topology Of Invariant Sets

The relationship revealed by Morse between the critical point data of a function and the topology of the
underlying manifold has a very wide generalization in the theory of Conley, which brings about a similar
relationship for general continuous flows on locally compact topological spaces. We will outline this theory
in Section 51.C. For now, we make a small step toward this generalization.

Here, and for the rest of this chapter, the cohomology used is the Cech cohomology with coefficients in
IR. We do not need to define this cohomology here: it is enough to state that it is well defined not only on
manifolds but on their compact subsets as well. Furthermore it is continuous for the Hausdorff topology on
compact subsets. Otherwise, it satisfies all the usual axioms and rules of cohomology and coincides with other
cohomologies on compact manifolds.

Consider a compact set / which is invariant under the gradient flow of a function 1/ on some finite dimen-
sional manifold. If W is a Morse function, then necessarily I is made of critical points and the intersections
of all their stable and unstable manifolds (prove it as an exercise!). Exactly as we did for manifolds, consider
the Floer-Witten chain complex, generated by the critical points and with boundary maps given by the stable-
unstable manifolds intersection data. It turns out (see the proof in Floer (1989) , and also Salamon (1990) ) that
this complex gives the (co)homology not of /, but of its Conley index, a topological/dynamical invariant of I
that we define below. In certain cases, as in what follows, one can evaluate the Conley index and hence give
lower estimates on the number of critical points. We use these results in Section 65 to estimate the number of

critical points of functions on vector bundles.

Definition 63.1 Let A/ be a finite dimensional manifold. A compact neighborhood B in M is called an
isolating block for a (continuous) flow ¢! if points on the boundary OB of B immediately leave B under the

flow, in positive or negative time:
2€dB=¢%) c B or ¢(=°9 c B® forsome €=e(z)>0.

The exit set B~ of B is defined as the set of points in 0 B which immediately flow out of B in positive time.

Given an isolating block B for the flow ¢’, define I(B) to be the maximal invariant set included in B

(“maximal” is in the sense of inclusion here). Alternatively:



206  Appendix 2: TOPOLOGICAL TOOLS (Dec 30 1999)

I(B) = Niems'(B).

There are two classical ways to measure the topological complexity of an invariant set I(B). One is its

cohomology cohomology Conley index:
h(I)= H*(B,B™).

The bigger the dimension of this vector space, the more complex the topology of I. Note that in the notation
h(I), we have deliberately omitted the mention of B: this is because the vector spaces H*(B, B~) are
isomorphic for all isolating block B such that I = I(B) (Conley & Zehnder (1984) ). Hence h([) is an

invariant of the set . In practice, the size of h(I) is measured by the sum of the Betti numbers

sb(h(I)) =Y dimH"(B,B").
k

This again is an invariant of /. A second, somewhat rougher way to measure the complexity of an invariant set
I (or any topological space which admits continuous (semi)flows and a cohomology) is the cuplength which

is defined as:
cd(I)=1+sup{k € N | Jw1,...w, w; € HY(I),n; >1, and wiU...Uwy # 0}

The following is a generalization of both Morse and Lyusternick-Schnirelman theories. It is itself the

consequence of the much more general theory of Conley for (semi)flows.

Theorem 63.2 Let I be a compact isolated invariant set for the gradient flow of a function W on
some manifold. If the function is Morse, the number of critical points in I is greater or equal to

sb(h(I)). Otherwise, the number of critical points is at least equal to cl(I).

Historically, the first time Theorem 63.2 was applied in a significant way was in the proof of the following

proposition, which appeared in several pieces in Conley & Zehnder (1983) :

Proposition 63.3 Let M be a compact manifold and W be a real valued function on M x IR™ x R™.
Suppose that the gradient flow of W admits an isolating block B of the form B ~ M x DT x D~
with exit set M x DT x 0D, where DT C IR", D~ C IR™ are homeomorphic to the unit balls. If
W is a Morse function, it has at least sb(M) critical points in B. In general, W has at least cl(M)

critical points.

== -

M 0 Do D
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Fig. 63. 0. The isolating neighborhood in Proposition 63.3.
Conley and Zehnder applied this theorem in the case M = T", where sb(M) = 2", and cl(M) = n + 1,

which gives a measure of the crudeness of the cuplength as compared to the sum of the Betti numbers. In the
following section we will give a proof of Theorem 63.2 (we will only sketch the sum of betti number estimate,

but give a complete proof of the cuplength estimate) as well as of Proposition 63.3.
64. Topological Proofs

The following lemma gives a situation where one can get a handle on the topology of an invariant set /. It is

central to the proofs of several topological results we will use, including Proposition 63.3.

Lemma 64.1 (Floer) Let B be an isolating block for a flow ¢* on a finite dimensional manifold,
and I be its maximal invariant set. Suppose that there is a retraction o : B — P, where P is some

compact subset of B. If there is a class u € H*(B,B™) such that :

v—uUa*(v): H(P) — H*(B,B7)

is an isomorphism, then
ar®: H*(P) — H*(I)

is injective, where oy denotes the restriction of a to I.

(If N C M are two topological spaces and ¢ : N — M is the inclusion map, a retraction is a map
r: M — N such that r o i = Idy, that is r restricts to Id on N). For a proof of Lemma 64.1, see Section
65.B.

Corollary 64.2 Let B, I, P be as in Lemma 64.1, and let the flow ¢t in that lemma be the gradient

of some function W. Then the number of critical points of W is at least cl(P).

Proof. If H*(P) — H*(I) is injective, cI(I) > ¢l(P) and the Corollary is an immediate consequence of
Proposition 63.2. o

A. Proof of the Cuplength Estimate in Theorem 63.2

Conley & Zehnder (1983) prove a cuplength estimate (their Theorem 5) that is valid for a compact invariant
set I of a general flow ¢*. We follow their proof. Define a Morse decomposition for I to be a finite collection
{M,}pep of disjoint compact and invariant subsets of I, which can be ordered in such a way that any « not
in Upc p M), is a-asymptotic to an M; and w-asymptotic to an M;, with i < j ( = is c-asymptotic (resp.
w-asymptotic) to M if lim; .o (1o0) ¢'(z) € M;). One can show that a compact invariant set always has

such a Morse decomposition. We now state Theorem 5 of Conley & Zehnder (1983) :

Theorem 64.6 Let I be any compact invariant set for a continuous flow, and let {Mp}pcp be a

Morse decomposition for I. Then
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(64.1) c(I) < cl(My).

peP

The relevant example for us is when ¢’ is the gradient flow of a function with a finite number of (not
necessarily nondegenerate) critical points on a compact invariant set /: it easy to check that these critical
points form a Morse decomposition. Since an isolated point has trivial cohomology, cl(M,,) = 1 for each p in
this example, and we have proven the cuplength estimate in Theorem 63.2. The case when the critical points

are not isolated is trivial in that theorem: ¢/(I) < oo is always true... We now prove Theorem 64.6.

Proof. Note that if (M, ..., M}) is a Morse decomposition, then (M; . ,—1, M) is also a Morse de-
composition, where M ;1 is formed by the union of M; U ... U Mj,_; and of all the connecting orbits
between these sets. Hence, by induction, we only need to consider the case where k = 2, and (M1, M) is a
Morse decomposition for /. From the definition of a Morse decomposition, we can deduce the existence of
two compact neighborhoods 77 of M; and I of M5 in I with I3 U I = I and such that M; = ﬁt>0¢>t(11)
and My = My=0¢'(I2). In particular, by continuity of the Cech cohomology H*(I;) = H*(M;),j = 1,2.
Thus the proof of (64.1) reduces to that of the inequality cl(I1) + cl(I3) > cl(I) whenever I; U I = I are

three compact sets. The next lemma is devoid of dynamics:

Lemma 64.8 Let Iy U I, C I be three compact sets. If i1 : Iy — 1,93 : I — 1 andi:I;Uly — I are

the inclusion maps, then, for any o, 3 € H*(I),

ija=0 and 38=0=1i"(aUp)=0.

Proof. We chase the diagram:

H*(I,I,) ® H*(I,I,) = H*(I,I;UL)

Lt 1 J2 L
H<(I) ® HI) = H*(I)
L] 143 L

HYI) ® H*L) < H*I,UL).

The vertical sequences are exact sequences of pairs. Starting on the second line of the diagram with «, 3 €
H*(I), suppose ija = 0 = 433 then there must be @ € H*(I,I;) with jia = «a, f € H*(I, ;) with
j3B = .Now j*(@ U 3) = aU (8 and hence i* (o U ) = i* o j*(& U 3) = 0, by exactness. O

To finish the proof of Theorem 64.6,let cy, ...,y bein H*(I) and o U ... U oy # 0. Let this product
be maximum, so that c/(I) = [ + 1. Order the «’s in such a way that «; U ... U «, is the longest product
not in the kernel of ¢}. In particular ¢/(I;) > r + 1 and ij(ag U ... U, Uayy1) = 0. Lemma 64.8 forces
i5(ap41 U ... Uaq) # 0 (i* is one-to-one here, since I1 U I = I). Thus cl(l2) > 1 — (r+1)+1=1—r,
and cl(l1) +cl(I3) > 1+ 1 =cl(I). a
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B. Proof of Lemma 64.1

In this subsection, we prove Lemma 64.1 that we restate here:

Lemma 64.1 (Floer) Let B be an isolating block for a flow ¢* on a finite dimensional manifold,
and I be its mazimal invariant set. Suppose that there is a retraction o : B — P, where P is some
compact subset of B. If there is a class u € H*(B, B™) such that :

v—uUa*(v): H(P) — H*(B,B")

is an isomorphism, then

ar* s H*(P) — H*(I)

is injective, where oy denotes the restriction of a to I.
Proof. Define B® = N;~o¢' B, the set of points that stay in B for all negative time.

Lemma 64.9 1) H*(B,B*UB ) =0
2) 1* : H*(B*®) — H*(I1(B)) is an isomorphism, where | : I(B) — B is the inclusion.

Before proving this lemma, we use it to finish the proof of Lemma 64.1. Consider the diagram:

H*(B,B~) ©® H*(B,B®) = H*(B,B*UB~) =0
| Id L |k
H*(B,B~) ® H*B) > H*(B,B™)
L
-
H*(B>) = H*(I)

where all vertical maps are induced by inclusions, and the two first horizontal maps are given by Kiinneth
Formula. Suppose a;*v = 0 for some v € H*(P). Since [* is an isomorphism and oy = ape~ ol ,
0=ar* =0 (ap=)*v = (ap=)*v = 0. Since agx = a0 i,0 = ap~*v = i*a*v. The middle, vertical
sequence is the exact sequence of a pair. Hence there is a w € H*(B, B*) such that j*w = o*v. But
uwUa*y = k*(uUw) = k*(0) = 0 . The hypothesis of Lemma 64.1 forces v = 0. O

Proof of Lemma 64.9 Let Bt = ¢!(B) and B® = N;~qB" as before. Note in particular that, in the
Hausdorff topology, lim; .., B! = B>, and lim;_.o B¢ = B. To the triple of spaces (B, B~ U B, B™)

corresponds the exact sequence:
. SH*(B,B'UB™) — H*(B,B )SH*(B'UB~,B)>H*"B,B'UB)...,
(see eg. Dubrovin & al. (1987) ). We now show that :* is an isomorphism. Consider the diagram:
(BtUB~,B™)
i1

% Li
(B, B-nB!) 2 (B,B™)
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The excision theorem implies that 7] is an isomorphism, and the continuity of the Cech cohomology implies that
i3 is an isomorphism. Since the diagram commutes, 7* must be an isomorphism. But this forces H*(B, B! U
B7) = 0 in the above diagram. Taking the limit of this equality as ¢ — oo proves 2).

Using the long exact sequence of the pair (B>, I), the map [* induced by the inclusion [ : [ — B is
an isomorphism whenever H*(B>°, I) = (), which we proceed to show. Note that ¢~ B> C B> and, by
definition, I = N;>0¢~*(B>°). Consider the maps:

(Bw,¢7th) 45;: (¢7tBoo7¢7tBoo) L (BOO7¢7tBOO),

where j is the inclusion. The map j o ¢~* is clearly homotopic to Id, hence H*(B>,¢~*B>)
H*(¢tB>, ¢ *B>) = 0. Since this is true for all ¢, the continuity of the Cech cohomology concludes. O

C*. The Betti Number Estimate of Theorem 63.2 and Conley’s Theory: a Sketch

We have proven in Theorem 64.6that, for a general function W, the number of critical points in an invariant set
I for the gradient flow of W is greater than cl(I). We now show that if W is a Morse function, the number of
critical points in [ is greater than sb(7). To do so, one can either follow Floer (1989) in his generalization of the
Witten complex (of unstable manifolds of critical points for gradient flows, see Remark 62.9) to invariant sets.
His proof relies in part on Conley’s theory. Alternatively, one can use Conley’s generalized Morse inequalities
that we state in this subsection.

Let I be a compact invariant set for a continuous flow ¢! and (M3, ..., M}) be a Morse decomposition
of I. Analogously to Theorem 64.6, Conley-Morse inequalities relate certain betti numbers of the Morse sets
M; to the corresponding betti numbers of I. To define the adequate betti numbers, we need to generalize the
notion of isolating block to that of index pair for isolated invariant sets. A compact set [ is an isolated invariant
set if there is a neighborhood N of I such that I = I(N) is the maximal invariant subset in N. An index
pair for an isolated invariant set I is a pair of compact spaces (N7, N3) such that N\ N, is a neighborhood
of I and I = I(N;\N3). This generalizes the concept of isolating block. In particular N> plays the role of
the exit set, see Conley (1978), Conley & Zehnder (1984) . The fundamental property of these sets is that the
homotopy type [IN1/Na, %] is independent of the choice of index pair for I and hence defines a topological
invariant called the Conley index of the invariant set I. Giving less information, but easier to manipulate is
the cohomology Conley index H*(N;y, N») = h(I), again an invariant of 1. If (N;, Ny) = (B, B™) for an
isolating block B, this definition of h(7) is the same as we have given previously. One way to encode the
information given by h(I) is via the coefficients of the Poincaré polynomial:

p(t, h(I)) :== >t/ dimHI (Ny, Ny).
Jj=0
In Conley & Zehnder (1984) , it is proven that, given a Morse decomposition (Mj, . . ., M},) for an invariant
set I of a continuous flow ¢’, there is a filtration Ny C Ny C ... C Ny, such that (Nj, N;_1) is an index

pair for ;. This is instrumental in proving the following:

Theorem 64.12 (Conley-Morse inequalities)

k

(64.2) > p(t, h(My)) = p(t, (D)) + (1+1)Q(D),

Jj=1
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where Q(t) is a polynomial with positive coefficients

This theorem is an extraordinary generalization of the classical Morse inequalities: it is valid for any
continuous flow on a locally compact space (not necessarily a manifold!). To see that one indeed retrieves the
betti number estimates of Theorem 63.2, one uses the Morse decomposition of our invariant set / given by
the (isolated) critical points 21, ..., z . Thanks to the Morse Lemma, it is not hard to construct an isolating
block for each z;, and show that the Conley index of z; is a pointed sphere made by collapsing the boundary
local unstable manifold of z; to a point: take the set S in Figure 64. 1.

Xlyeranny Xk
(Unstable)

Xkt Iyananes Xn

(Stable)

Fig.64. 1. The index pair (S, S™) retracts on (B, B™), a pair made of the local unstable manifold of z and
its boundary (a disk of dimension k equal to the index of the critical point z and its bounding sphere). Thus
h(z) = H*(S,S7) = H*(B, B™) & H*($", *) which has exactly one generator in dimension k.

Hence p(t, h(z;)) = t"7, where u; is the Morse index of z;. Now the pair (7, (}) is an isolating pair for
I (no points exit 1), and thus p(¢, h(I)) = > t*dimH"(I). The positivity of the coefficients of () in (64.2)

therefore insures that there are at least dim H" () critical points of index .

D. Proof of Proposition 63.3

To prove this proposition, we let the manifold M play the role of P in Lemma 64.1. The retraction « of that
lemma is given by the canonical projection « : B — M. Clearly the projection of B onto M x D~ is a
deformation retract, which deforms B~ onto M x dD~.Hence H*(B,B~) 2 H*(M x D~ ,M x 9D ).

Now, Kiinneth Formula gives an isomorphism:
@]
H*(M)® H*(D,0D") S H*(M x D~ ,M x 0D")

where, as suggested by the notation, one gets all of the classes in the right hand side vector space as cup
products of classes in the two left hand side spaces (with the appropriate identifications given by the inclusion
maps). But, letting n = dimD~, we have H*(D—,0D~) = H*($", *), which has exactly one generator u

in dimension 7.
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Hence H*(M) = H*+4m M (B B~) and sb(M) = sb(h(I)) where I is the maximal invariant set in B.
This and Theorem 63.2 yield the Betti number estimate. The homeomorphism H*(M) = H*(B, B~) is of
the type prescribed by Lemma 64.1. This implies that the induced map H*(M) — H*(I) is injective and
hence cl(I) > cl(M). This fact and Theorem 63.2 give the cuplength estimate. O

E*. Floer’s Theorem of Global Continuation of Hyperbolic Invariant Sets.

Floer’s Lemma 64.1 is the cornerstone to the proof of the following theorem, where he makes good use of the
powerful property of “invariance under continuation” of the Conley Index. This theorem illustrates the power
of Conley’s theory, and shows the historical root of Floer’s Cohomology. Note that, in the theory of dynamical
systems, the hyperbolicity of an invariant set for a dynamical system is intimately related to its persistence
under small perturbations of the system: this relationship is the core of many theorems on structural stability.
What is interesting about the following theorem (and Conley’s theory in general) is that it provides situations
when the persistence of an invariant set can be made global (but rough).

The notion of continuation of invariant sets makes use of the simple following fact: an index pair for a
flow ¢! will remain an index pair for all flows that are C° close to ¢'. Two isolated invariant sets for two
different flows are related by continuation if there is a curve of flows joining them (i.e. an isotopy) which
can be (finitely) covered by intervals of flows having the same index pair. The following theorem (Theorem
2 in Floer (refine) ) can be seen as an instance of weak, but global, stability of normally hyperbolic invariant

sets.

Theorem 64.16 (Floer) Let ¢} be a one parameter family of flows on a C* manifold M. Suppose
that Gqo is a compact C? submanifold invariant under the flow ¢l. Assume moreover that Gg is

normally hyperbolic, i.e. there is a decomposition:
TM|, =TGy® EY ¢ B~

which is invariant under the covariant linearization of the vector field Vo corresponding to ¢} with

respect to some metric ( , ), so that for some constant m > 0:

(&, DVo&) < —m(&.€) for & € E-

(64.3)
(&, DVp€) > mi{€, &) for & € ET

Suppose that there is a retraction o : M — Gg and that there is a family G of invariant sets for ¢’

which are related by continuation to Gy . Then the map:

(ofg,)" : H*(Go) = H*(G»)

in Cech cohomology is injective.

In this precise sense, normally hyperbolic invariant sets continue globally: their topology can only get

more complicated as the parameter varies away from 0.
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65. Generating Phases Quadratic at Infinity
A. Generating Phases on Product Spaces

The following proposition serves a key role in various proofs in this book, as well as in symplectic topology.

Proposition 65.1 Let M be a compact manifold, and W a real-valued function on M x R® satisfying:
1 [OoW

65.1 lim — | —(q,v —dQv)zo,

(63.1) loll—oo [V (317( ) ®)

where Q(v) is a nondegenerate quadratic form on R™. Then W has at least cl(M) critical points.

If W is a Morse function, then it has at least sb(M) critical points.

The function W of Proposition 65.1 is a special case of a class of function called generating phases. We

develop this notion in the next subsection.

Proof. In an appropriate orthonormal basis (e1, ..., ex) of R™,

ay
Q(v) = (Av,v) with A= ,

aK

with a; # 0.Let (vq,...,vk) be the coordinates of an element v € IR* in this basis. We claim that:
B(C) = {(g,v) € M x R¥ | sup|v;| < C}
J

is an isolating block for the gradient flow of —1¥, when C' is large enough.
To prove this, note that B(C') is a compact neighborhood. Thus, in order to show that the flow exits in
small positive or negative time at the boundary of B(C'), it suffices to check that, on each “face” {v; = C'} of

0B(C), the dot product of VW with the normal vector to this face is non zero. The same argument will apply

to the face {v; = —C'}. The normal unit vector pointing out at a point z = (g, v) of {v; = C'} is e;. But:
oW 09 (0% 00
ov T v o ov)

- 1 (OW 90
—C(CL]-FG(%—%).BJ)

This last expression must be of the sign of a;, for large C' as the last term inside the bracket tends to zero
when C' — oo (J|v]] is of the order of C'.) The same proof works for the face {v; = —C'}, since the outward
normal vector is —e; on this face. We have proved that, for all C' larger than some Cj, the set B(C) is an
isolating block. Denote by B~ the exit set of B = B(C), i.e. the subset of 9B on which points flow out in
positive time. In this case B~ is the union of the faces {v; = £C'} such that the corresponding eigenvalue a;;
is negative (remember, we are looking at the gradient flow of —W).

Hence B = M x DT @ D~ where the disks DT, D™ are respectively the intersections of the positive
and negative eigenspaces of Q with the set {sup, [v;| < C'},and the exit setis B~ = M x D" © 9D~ . We
are exactly in the situation of Proposition 63.3 which gives us the appropriate estimates for the number of

critical points inside B. a
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B. Generating Phases on Vector Bundles

Proposition 65.1 is a cornerstone in the theory of generating phases. We now develop this theory a little and
prove a generalization of Proposition 65.1 for functions on non trivial bundles which we will need. In Chapter

9, we will show how this theory gives an approach to symplectic topology.

Definition 65.2 A generating phase is a function
W.:EF—-1R

where E is the total space of a vector bundle £ — M and M a manifold.
If moreover W satisfies:
1 0
65.2 lim —— —W—Q):O,
(652) lvl|—oo [|V]] <8v( )

where, for each q, Q(q, v) is a nondegenerate quadratic form with respect to the fiber v, then we say W is a

generating phase quadratic at infinity , abbreviated g.p.q.1..

We will see in Chapter 9 that the term “generating” refers to the fact that, provided they satisfy a generic
condition in their derivative, generating phases generate Lagrangian manifolds of 7 M . Generating phases are
also called generating functions when associated to the Lagrangian manifold that they generate, or generating
phase function. We will show in Chapter 9 that twist maps generating functions are generating functions in
this sense. We now define some elementary operations on generating phases. These will enable us to extend
Proposition 65.1 to cover general g.p.q.i.’s. These operations are specially important in symplectic topology
in that they enable one to define symplectic invariants of Lagrangian manifolds (capacities) as minimax values
of their generating functions (see Viterbo ( 1992) and Siburg (1995)).

Definition 65.3 Let W, : F; — IR, and W5 : E5 — IR be two generating phases. We say that W, and W5

are equivalent if there is a fiber preserving diffeomorphism ¢ : £y — Es such that:

Wy o® =W + cst.

Definition 65.4 Let W, : F; — IRbeag.p.q.i.and f : £5 — IR a nondegenerate quadratic form in the fibers
of Es. The function Wy : E; & Ey — IR defined by:

Wa(gq,v1,v2) = Wi(q,v1) + f(q,v2)

is called a stabilization of W7.

Proposition 65.5 If the generating phase W1 is equivalent to Wa, or is a stabilization of Wy (or both)
then critical points of W1 are mapped bijectively into those of Wa and the set of critical values are

the same, up to a shift by a constant.

Proof. Let Wy o® = W5 + C as in Definition 65.2. Then,
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dWy = &*dW,

Hence the set of critical points of W is sent bijectively to that of 15 by @. There is a constant discrepancy
of C between critical values of W7 and W5 in this case .

Now let
Wa(q,v1,v2) = Wi(q,v1) + f(q,v2)

be as in Definition 65.3. Critical points of a generating phases W satisfy, in particular, 0W/Jv = 0. But here,

OWy

9 = (8W1111,6fvg) =0=vy,=0

and since any point (g, 0) of F is critical for f, the critical points of W5 correspond exactly to those of W7 .

It is easy to see that the critical values of 1¥/; and W5 are the same at the corresponding critical points. ad

Proposition 65.6 Let M be a compact manifold and W : E — IR be a g.p.q.i. on a fiber bundle
E — M. Then W has at least cl(M) critical points. If W is a Morse function, then it has at least
sb(M) critical points.

Proof. Ttis a corollary of Proposition 65.1 and of the following:

Lemma 65.7 Let W : E — IR be a ¢.p.q.i. Then it is equivalent, after stabilization, to a g.p.q.i.
W : M x R¥ — IR whose quadratic part O is independent of the base point.

Proof. ( We follow Theret (1999)) There exists a fiber bundle F' such that E & F is trivial (eg. take F' to
be the dual of E, see Klingenberg (1982)). Stabilize W by endowing F' with a nondegenerate quadratic form
Q5. Since E @ F is trivial, there is a fiber bundle diffeomorphism @ : E @& F — M x IRX. A fiber bundle
diffeomorphism being linear in each fiber, (W @& Q;) o #~!isa g.p.q.i.on M x RE.

We now show that any g.p.q.i. W (g, v) on atrivial bundle M x R is equivalent to one with a quadratic part
which is independent of the base point q. Let Q be the quadratic part of W and write Q(q, v) = (A(q)v,v),
where (, ) denotes the dot product on R¥ . Let Ej ®E, = Eg4bethe decomposition of £, into the positive and

negative eigenspaces of A(q). If the fiber bundles £+ and E~ were trivial, the Gram-Schmidt diagonalization

I 0 + ~ —
0 I) on 7 ¢ E,and

the resulting fiber bundle diffeomorphism would make W equivalent to a g.p.q.i. such as we advertised. To

process would make Q equivalent to a constant quadratic form with matrix

arrive to this situation, stabilize Q| e (resp. Q‘ p-) to a positive definite Q" (resp. negative definite Q)
on a trivial bundle £ (resp. £7). O

Remark 65.8 Our definition of g.p.q.i. is more general than the one commonly found in the (french) literature
(i.e. Sikorav (1986), Laudenbach & Sikorav (1985), Chaperon (1989), Theret (1999), Viterbo ( 1992)). Usually
one asks that W be equal to its quadratic part O outside of a compact set. One can show (see Theret (1999))
that if W — Q is bounded outside of a compact set, then W is equivalent, after stabilization, to such a g.p.q.i..
It is not clear to us that the same would hold with our more general asymptotic condition. In that sense,

Proposition 65.6is stronger of its kind than any we know of in the literature.
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Proposition gpqi or TOPOpropgpqi is 65.6, Proposition TOPOproptrivialgpqi is 65.1Theorem floerthm or
TOPOthmfloer is 64.16, Proposition TOPOpropczis 63.3, Section TOPOsectionproofs is 64, Section TOPO-
sectioninvtset is 63, Lemma TOPOlemfloer is 64.1, Theorem TOPOthmsbcl is 63.2, Section TOPOsecgpqi
is 65



